GreenTransPowerCalculate/wind/wind2.py

231 lines
9.8 KiB
Python
Raw Normal View History

2025-04-27 17:25:43 +08:00
import pandas as pd
import math
from scipy.optimize import fsolve
import requests
import json
import os
def wind_farm_analysis(device_name, area_km2, electricity_price, file_path, latitude, longitude,
lateral_spacing_factor=5, longitudinal_spacing_factor=10, q=0.02, altitude=11,
hub_height=100, Cp=0.45, eta=0.8, cost_per_kw=5):
"""
封装函数分析风电场的风机数量及各项经济和技术指标使用 NASA POWER API 获取风速和温度数据
参数
device_name (str): 设备名称
area_km2 (float): 风电场面积平方公里
electricity_price (float): 电价/kWh
file_path (str): 风机参数 Excel 文件路径
latitude (float): 目标地点的纬度
longitude (float): 目标地点的经度
lateral_spacing_factor (float): 横向间距因子默认为 5D
longitudinal_spacing_factor (float): 纵向间距因子默认为 10D
q (float): 运维成本占初始投资成本的比例默认 0.02 表示 2%
altitude (float): 海拔高度m默认 11m
hub_height (float): 轮毂高度m默认 100m
Cp (float): 风能利用系数默认 0.45
eta (float): 总系统效率默认 0.8
cost_per_mw (float): MW 投资成本万元/MW默认 5000 万元/MW
返回
dict: 包含风电场分析结果的字典
"""
def estimate_wind_turbine_count(area_km2, blade_diameter):
area_m2 = area_km2 * 1_000_000
lateral_spacing = lateral_spacing_factor * blade_diameter
longitudinal_spacing = longitudinal_spacing_factor * blade_diameter
turbine_area = lateral_spacing * longitudinal_spacing
turbine_count = int(area_m2 / turbine_area)
print(f"单台风机占地面积: {turbine_area:,} 平方米 "
f"(横向间距: {lateral_spacing} 米, 纵向间距: {longitudinal_spacing} 米)")
print(f"估算风机数量: {turbine_count}")
return turbine_count
def get_wind_turbine_specs(device_name, file_path):
try:
df = pd.read_excel(file_path)
match = df[df.iloc[:, 0] == device_name]
if not match.empty:
rated_power = match.iloc[0, 1]
swept_area = match.iloc[0, 7] # 扫风面积
blade_diameter = match.iloc[0, 6] # 叶片直径
print(f"找到设备 '{device_name}',额定功率: {rated_power} KW, "
f"扫风面积: {swept_area} m², 叶片直径: {blade_diameter}")
return rated_power, swept_area, blade_diameter
else:
raise ValueError(f"未找到设备名称: {device_name}")
except FileNotFoundError:
raise FileNotFoundError(f"文件未找到: {file_path}")
except Exception as e:
raise Exception(f"发生错误: {str(e)}")
def fetch_nasa_data(latitude, longitude, start_year="2023", end_year="2023"):
"""
NASA POWER API 获取 12 个月的平均气温和风速数据不保存缓存
"""
try:
url = (f"https://power.larc.nasa.gov/api/temporal/monthly/point?"
f"parameters=T2M,WS10M&community=RE&longitude={longitude}&latitude={latitude}&"
f"start={start_year}&end={end_year}&format=JSON")
response = requests.get(url)
response.raise_for_status() # 检查请求是否成功
data = response.json()
# 提取气温和风速数据
year = start_year
temperatures = [data["properties"]["parameter"]["T2M"][f"{year}{str(i).zfill(2)}"] for i in range(1, 13)]
wind_speeds = [data["properties"]["parameter"]["WS10M"][f"{year}{str(i).zfill(2)}"] for i in range(1, 13)]
# 检查数据完整性
if len(temperatures) != 12 or len(wind_speeds) != 12:
raise ValueError("NASA 数据不完整,未包含 12 个月的数据")
return temperatures, wind_speeds
except requests.exceptions.HTTPError as http_err:
raise Exception(f"HTTP 错误: {str(http_err)}\n响应内容: {response.text}")
except Exception as e:
raise Exception(f"从 NASA POWER API 获取数据时出错: {str(e)}")
def adjust_wind_speed(v_10m, h_ref=10, h_hub=100, alpha=0.143):
"""根据风切变公式调整风速v_hub = v_ref * (h_hub/h_ref)^alpha"""
return v_10m * (h_hub / h_ref) ** alpha
def air_density(altitude, hub_height, T0):
z = altitude + hub_height
LR = 0.0065
T = T0 - LR * z + 273.15
return (353.05 / T) * math.exp(-0.034 * (z / T))
def wind_power_density(densities, wind_speeds):
sum_rho_v3 = sum(rho * (v ** 3) for rho, v in zip(densities, wind_speeds))
return (1 / (2 * 12)) * sum_rho_v3
def estimated_wind_power(num_turbines, rated_power):
if not isinstance(num_turbines, int) or num_turbines < 0:
raise ValueError("风机数量必须为非负整数")
return rated_power * num_turbines
def calculate_power_output(S, w, Cp, eta,num_turbines):
return w * S * Cp * 8760 * eta *num_turbines
def calculate_equivalent_hours(P, P_r):
if P_r == 0:
raise ValueError("额定功率不能为 0")
#传入的P(发电量)wh,P_r(额定功率)Kw
return (P / 1000) / P_r
def calculate_environmental_benefits(E_p_million_kwh):
if E_p_million_kwh < 0:
raise ValueError("年发电量需≥0")
return {
"coal_reduction": E_p_million_kwh * 0.404 * 10,
"CO2_reduction": E_p_million_kwh * 0.977 * 10,
"SO2_reduction": E_p_million_kwh * 0.03 * 10,
"NOX_reduction": E_p_million_kwh * 0.015 * 10
}
def calculate_reference_yield(E_p, electricity_price, IC, q, n=20):
def npv_equation(irr, p, w, ic, q_val, n=n):
term1 = (1 + irr) ** (-1)
term2 = irr * (1 + irr) ** (-1) if irr != 0 else float('inf')
pv_revenue = p * w * (term1 / term2) * (1 - (1 + irr) ** (-n))
pv_salvage = q_val * ic * (term1 / term2) * (1 - (1 + irr) ** (-n))
return pv_revenue - ic + pv_salvage
irr_guess = 0.1
irr = float(fsolve(npv_equation, irr_guess, args=(E_p, electricity_price, IC, q))[0])
if not 0 <= irr <= 1:
raise ValueError(f"IRR计算结果{irr:.4f}不合理")
return irr * 100
# 获取设备信息
rated_power, swept_area, blade_diameter = get_wind_turbine_specs(device_name, file_path)
# 估算风机数量
num_turbines = estimate_wind_turbine_count(area_km2, blade_diameter)
# 从 NASA POWER API 获取气温和风速数据
monthly_temps, wind_speeds = fetch_nasa_data(latitude, longitude, start_year="2023", end_year="2023")
# 调整风速到轮毂高度
wind_speeds = [adjust_wind_speed(v) for v in wind_speeds]
# 计算空气密度
densities = [air_density(altitude, hub_height, T0) for T0 in monthly_temps]
avg_density = sum(densities) / len(densities)
# 计算风功率密度 w/m2
wpd = wind_power_density(densities, wind_speeds)
# 计算装机容量 KW
total_power = estimated_wind_power(num_turbines, rated_power)
# 计算初始投资成本
IC = total_power * cost_per_kw * 1000
# 计算年发电量 Wh
P_test = calculate_power_output(swept_area, wpd, Cp, eta,num_turbines)
# 计算等效小时数 年发电量(Wh)/额定功率(KW)
h = calculate_equivalent_hours(P_test, rated_power)
# 计算环境收益(转换为万 kWh
E_p_million_kwh = P_test / 10000000 # 转换为 万 kWh
env_benefits = calculate_environmental_benefits(E_p_million_kwh)
# 计算 IRR
P_test_IRR = P_test/1000
irr = calculate_reference_yield(P_test_IRR, electricity_price, IC, q)
# 返回结果
return {
"device": device_name,
"rated_power": rated_power,
"swept_area": swept_area,
"blade_diameter": blade_diameter,
"num_turbines": num_turbines,
"avg_density": avg_density,
"wpd": wpd,
"total_power": total_power /1000, #变为了MW
"annual_power_output": P_test/10000000 , # 万 kWh
"equivalent_hours": h,
"coal_reduction": env_benefits["coal_reduction"],
"CO2_reduction": env_benefits["CO2_reduction"],
"SO2_reduction": env_benefits["SO2_reduction"],
"NOX_reduction": env_benefits["NOX_reduction"],
"IRR": irr
}
# 主程序
if __name__ == "__main__":
file_path = r"/home/zhaojh/workspace/GreenTransPowerCalculate/wind/wind_product.xlsx"
device_name = 'GW165-4.0'
area_km2 = 10
electricity_price = 0.6
latitude = 39
longitude = 116
result = wind_farm_analysis(
device_name=device_name,
area_km2=area_km2,
electricity_price=electricity_price,
file_path=file_path,
latitude=latitude,
longitude=longitude
)
print(f"\n设备: {result['device']}")
print(f"额定功率: {result['rated_power']:.2f} KW")
print(f"扫风面积: {result['swept_area']:.2f} m^2")
print(f"叶片直径: {result['blade_diameter']:.2f} m")
print(f"风机数量: {result['num_turbines']}")
print(f"平均空气密度: {result['avg_density']:.3f} kg/m^3")
print(f"风功率密度: {result['wpd']:.2f} W/m^2")
print(f"项目装机容量: {result['total_power']:.2f} MW")
print(f"年发电量: {result['annual_power_output']:.3f} 万 kWh")
print(f"等效小时数: {result['equivalent_hours']:.2f} 小时")
print(f"CO₂减排量{result['CO2_reduction']:,.0f} kg")
print(f"SO₂减排量{result['SO2_reduction']:,.0f} kg")
print(f"NOx减排量{result['NOX_reduction']:,.0f} kg")
print(f"内部收益率 IRR: {result['IRR']:.2f}%")