GreenTransPowerCalculate/pv/eva_pv.py

573 lines
26 KiB
Python
Raw Normal View History

2025-04-27 17:25:43 +08:00
import os
import sys
import pandas as pd
import math
import requests
from scipy.optimize import fsolve
# 获取当前文件的绝对路径
current_dir = os.path.dirname(os.path.abspath(__file__))
print(current_dir)
# 添加当前目录到sys.path
sys.path.append(current_dir)
# 默认文件路径
PV_EXCEL_PATH = f"{current_dir}/pv_product.xlsx" # 请确保此文件存在或更改为正确路径
# CONFIG_PATH = r"./config.json" # 配置文件路径
# 地形类型与复杂性因子范围
TERRAIN_COMPLEXITY_RANGES = {
"distributed": {
"耕地": (1.0, 1.2), "裸地": (1.0, 1.2), "草地": (1.1, 1.3),
"灌木": (1.3, 1.5), "湿地": (1.5, 1.8), "林地": (1.5, 1.8), "建筑": (1.2, 1.5)
},
"centralized": {
"耕地": (1.0, 1.2), "裸地": (1.0, 1.2), "草地": (1.1, 1.3),
"灌木": (1.3, 1.6), "湿地": (1.5, 1.8), "林地": (1.6, 2.0)
},
"floating": {"水域": (1.2, 1.5)}
}
# 地形类型与土地可用性、发电效率的映射
TERRAIN_ADJUSTMENTS = {
"耕地": {"land_availability": 0.85, "K": 0.8}, "裸地": {"land_availability": 0.85, "K": 0.8},
"草地": {"land_availability": 0.85, "K": 0.8}, "灌木": {"land_availability": 0.75, "K": 0.75},
"湿地": {"land_availability": 0.65, "K": 0.75}, "水域": {"land_availability": 0.85, "K": 0.8},
"林地": {"land_availability": 0.65, "K": 0.7}, "建筑": {"land_availability": 0.6, "K": 0.75}
}
# 光伏类型的装机容量上限 (MW/平方千米)
CAPACITY_LIMITS = {
"distributed": 25.0, "centralized": 50.0, "floating": 25.0
}
# 实际面板间距系数
PANEL_SPACING_FACTORS = {
"distributed": 1.5, "centralized": 1.2, "floating": 1.3
}
def get_slope_from_api(lat, lon):
"""
通过 OpenTopoData API 获取地形坡度单位
返回坡度0-25°失败时返回 None由调用者处理
"""
if not isinstance(lat, (int, float)) or not isinstance(lon, (int, float)):
print("警告:经纬度必须是数值")
return None
if not (-90 <= lat <= 90) or not (-180 <= lon <= 180):
print(f"警告:经纬度超出范围 (lat={lat}, lon={lon})")
return None
# 尝试多个数据集
datasets = ["srtm30m", "etopo1"]
step = 0.001 # 约100米
points = [
f"{lat:.6f},{lon:.6f}",
f"{lat + step:.6f},{lon:.6f}",
f"{lat - step:.6f},{lon:.6f}",
f"{lat:.6f},{lon + step:.6f}",
f"{lat:.6f},{lon - step:.6f}"
]
locations = "|".join(points)
for dataset in datasets:
url = f"https://api.opentopodata.org/v1/{dataset}"
params = {
"locations": locations,
"interpolation": "cubic"
}
print(f"发送请求dataset={dataset}, locations={locations}")
try:
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
if "results" not in data or len(data["results"]) != 5:
print(f"警告:{dataset} 返回无效数据: {data.get('error', '无错误信息')}")
continue
elevations = [result["elevation"] for result in data["results"]]
if any(elev is None for elev in elevations):
print(f"警告:{dataset} 高程数据包含空值")
continue
distance = 100
height_diffs = [
abs(elevations[1] - elevations[0]),
abs(elevations[2] - elevations[0]),
abs(elevations[3] - elevations[0]),
abs(elevations[4] - elevations[0])
]
avg_height_diff = sum(height_diffs) / len(height_diffs)
slope_rad = math.atan2(avg_height_diff, distance)
slope_deg = math.degrees(slope_rad)
slope_deg = min(max(slope_deg, 0), 25)
print(f"获取成功!坡度: {slope_deg:.2f}° (dataset={dataset})")
return slope_deg
except requests.exceptions.HTTPError as e:
print(f"警告:{dataset} 请求失败 (HTTP {e.response.status_code}): {e.response.text}")
continue
except requests.exceptions.RequestException as e:
print(f"警告:{dataset} 请求失败: {e}")
continue
except Exception as e:
print(f"警告:处理 {dataset} 数据出错: {e}")
continue
print("警告:所有数据集均失败")
return None
def calculate_psh_average(lat, lon, start_year=2010, end_year=2023):
"""
NASA POWER API 获取峰值日照小时数PSH
返回平均 PSH小时/失败时返回默认值 4.0
"""
url = "https://power.larc.nasa.gov/api/temporal/monthly/point"
params = {
"parameters": "ALLSKY_SFC_SW_DWN",
"community": "RE",
"longitude": lon,
"latitude": lat,
"format": "JSON",
"start": str(start_year),
"end": str(end_year)
}
try:
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
if "properties" not in data or "parameter" not in data["properties"]:
return 4.0
ghi_data = data["properties"]["parameter"].get("ALLSKY_SFC_SW_DWN", {})
if not ghi_data:
return 4.0
ghi_data = {k: v for k, v in ghi_data.items() if not k.endswith("13")}
if not ghi_data:
return 4.0
df = pd.DataFrame.from_dict(ghi_data, orient="index", columns=["GHI (kWh/m²/day)"])
new_index = [f"{k[:4]}-{k[-2:]:0>2}" for k in df.index]
df.index = new_index
if df.empty:
return 4.0
df["PSH (hours/day)"] = df["GHI (kWh/m²/day)"]
if df["PSH (hours/day)"].isna().any():
return 4.0
df['Year'] = df.index.str[:4]
annual_avg = df.groupby('Year')['PSH (hours/day)'].mean()
if annual_avg.empty:
return 4.0
psh = annual_avg.mean()
if math.isnan(psh):
return 4.0
print(f"获取成功平均PSH: {psh:.2f} 小时/天")
return psh
except requests.exceptions.RequestException:
return 4.0
except Exception:
return 4.0
def calculate_optimal_tilt(lat):
"""根据纬度计算最佳倾角(单位:度)"""
try:
lat_abs = abs(lat)
if lat_abs < 25:
optimal_tilt = lat_abs * 0.87
elif lat_abs <= 50:
optimal_tilt = lat_abs * 0.76 + 3.1
else:
optimal_tilt = lat_abs * 0.5 + 16.3
return optimal_tilt
except ValueError as e:
raise Exception(f"倾角计算错误: {e}")
def pv_area(panel_capacity, slope_deg, shading_factor=0.1, land_compactness=1.0, terrain_complexity=1.0):
"""计算单块光伏组件占地面积"""
base_area = panel_capacity * 6
slope_factor = 1 + (slope_deg / 50) if slope_deg <= 15 else 1.5
shade_factor = 1 + shading_factor * 2
compact_factor = 1 / land_compactness if land_compactness > 0 else 1.5
terrain_factor = terrain_complexity
return base_area * slope_factor * shade_factor * compact_factor * terrain_factor
def calculate_pv_potential(available_area_sq_km, component_name, longitude, latitude, slope_deg=10,
shading_factor=0.1, land_compactness=0.8, terrain_complexity=1.2,
terrain_type="耕地", pv_type="centralized", land_availability=0.85,
min_irradiance=800, max_slope=25, electricity_price=0.65, q=0.02,
is_fixed=True, optimize=True, peak_load_hour=16, cost_per_kw=3.4,
E_S=1.0, K=0.8, project_lifetime=25, discount_rate=0.06):
"""计算最小和最大组件数量的光伏系统潜力"""
if available_area_sq_km <= 0:
raise ValueError("可用面积必须大于0")
if slope_deg < 0 or slope_deg > max_slope:
raise ValueError(f"坡度必须在0-{max_slope}度之间")
available_area_hectares = available_area_sq_km * 100
valid_terrains = TERRAIN_COMPLEXITY_RANGES.get(pv_type, {})
if terrain_type not in valid_terrains:
raise ValueError(f"{pv_type} 光伏不支持 {terrain_type} 地形。可选地形:{list(valid_terrains.keys())}")
terrain_adjustments = TERRAIN_ADJUSTMENTS.get(terrain_type, {"land_availability": 0.85, "K": 0.8})
adjusted_land_availability = terrain_adjustments["land_availability"] / max(1.0, terrain_complexity)
adjusted_K = terrain_adjustments["K"] / max(1.0, terrain_complexity)
pv_info = get_pv_product_info(component_name)
single_panel_capacity = pv_info["max_power"] / 1000
pv_size = pv_info["pv_size"].split("×")
panel_length = float(pv_size[0]) / 1000
panel_width = float(pv_size[1]) / 1000
panel_area_sqm = panel_length * panel_width
tilt, azimuth = get_tilt_and_azimuth(is_fixed, optimize, longitude, latitude, peak_load_hour)
array_distance = calculate_array_distance(panel_width * 1.1, tilt, latitude)
spacing_factor = PANEL_SPACING_FACTORS.get(pv_type, 1.2)
adjusted_array_distance = array_distance * spacing_factor
effective_area_hectares = available_area_hectares * adjusted_land_availability
effective_area_sqm = effective_area_hectares * 10000
area_per_mw = 10000 * (1 + slope_deg / 50 if slope_deg <= 15 else 1.5) * (
1 + shading_factor * 2) * terrain_complexity * spacing_factor
capacity_density_limit = CAPACITY_LIMITS.get(pv_type, 5.0) / 1000
max_capacity_by_density = effective_area_sqm * capacity_density_limit
row_spacing = panel_length * math.sin(math.radians(tilt)) + adjusted_array_distance
effective_panel_area = panel_area_sqm * (row_spacing / panel_length) * 1.2
min_area_per_panel = effective_panel_area * 0.8
max_area_per_panel = effective_panel_area * 1.5
max_panels = math.floor(effective_area_sqm / min_area_per_panel)
min_panels = math.floor(effective_area_sqm / max_area_per_panel)
max_capacity_raw = calculate_installed_capacity(pv_info["max_power"], max_panels)
min_capacity_raw = calculate_installed_capacity(pv_info["max_power"], min_panels)
max_capacity = min(max_capacity_raw, max_capacity_by_density)
min_capacity = min(min_capacity_raw, max_capacity_by_density * 0.8)
theoretical_max_capacity_mw = available_area_sq_km * CAPACITY_LIMITS.get(pv_type, 5.0)
if max_capacity / 1000 > theoretical_max_capacity_mw:
max_capacity = theoretical_max_capacity_mw * 1000
max_panels = math.floor(max_capacity * 1000 / pv_info["max_power"])
if min_capacity / 1000 > theoretical_max_capacity_mw * 0.8:
min_capacity = theoretical_max_capacity_mw * 1000 * 0.8
min_panels = math.floor(min_capacity * 1000 / pv_info["max_power"])
min_metrics = calculate_pv_metrics(
component_name=component_name, electricity_price=electricity_price, pv_number=min_panels,
q=q, longitude=longitude, latitude=latitude, is_fixed=is_fixed, optimize=optimize,
peak_load_hour=peak_load_hour, cost_per_kw=cost_per_kw * terrain_complexity, E_S=E_S, K=adjusted_K,
override_capacity=min_capacity
)
min_lcoe = calculate_lcoe(
capacity=min_metrics["capacity"], annual_energy=min_metrics["annual_energy"],
cost_per_kw=cost_per_kw * terrain_complexity, q=q, project_lifetime=project_lifetime,
discount_rate=discount_rate
)
max_metrics = calculate_pv_metrics(
component_name=component_name, electricity_price=electricity_price, pv_number=max_panels,
q=q, longitude=longitude, latitude=latitude, is_fixed=is_fixed, optimize=optimize,
peak_load_hour=peak_load_hour, cost_per_kw=cost_per_kw * terrain_complexity, E_S=E_S, K=adjusted_K,
override_capacity=max_capacity
)
max_lcoe = calculate_lcoe(
capacity=max_metrics["capacity"], annual_energy=max_metrics["annual_energy"],
cost_per_kw=cost_per_kw * terrain_complexity, q=q, project_lifetime=project_lifetime,
discount_rate=discount_rate
)
if min_panels == max_panels:
print(f"警告:最小和最大组件数量相同 ({min_panels}),请检查地形复杂性或面积是否过小")
if min_panels == 0 or max_panels == 0:
print(f"警告组件数量为0请检查输入参数")
out_metrics = {
"min_case": {
**min_metrics, "lcoe": min_lcoe, "actual_panels": min_panels,
"available_area_sq_km": available_area_sq_km, "available_area_hectares": available_area_hectares,
"effective_area_hectares": effective_area_hectares, "panel_area_sqm": max_area_per_panel,
"terrain_type": terrain_type, "pv_type": pv_type, "theoretical_max_capacity_mw": theoretical_max_capacity_mw
},
"max_case": {
**max_metrics, "lcoe": max_lcoe, "actual_panels": max_panels,
"available_area_sq_km": available_area_sq_km, "available_area_hectares": available_area_hectares,
"effective_area_hectares": effective_area_hectares, "panel_area_sqm": min_area_per_panel,
"terrain_type": terrain_type, "pv_type": pv_type, "theoretical_max_capacity_mw": theoretical_max_capacity_mw
}
}
return max_metrics
def calculate_lcoe(capacity, annual_energy, cost_per_kw, q, project_lifetime=25, discount_rate=0.06):
"""计算平准化度电成本(LCOE)"""
total_investment = capacity * cost_per_kw * 1000
annual_om_cost = total_investment * q
discount_factors = [(1 + discount_rate) ** -t for t in range(1, project_lifetime + 1)]
discounted_energy = sum(annual_energy * discount_factors[t] for t in range(project_lifetime))
discounted_costs = total_investment + sum(annual_om_cost * discount_factors[t] for t in range(project_lifetime))
if discounted_energy == 0:
return float('inf')
return discounted_costs / discounted_energy
def get_pv_product_info(component_name, excel_path=PV_EXCEL_PATH):
"""从Excel获取光伏组件信息"""
INDIAN_SITES = {
"Gujarat": {"latitude": 22.2587, "longitude": 71.1924},
"Rajasthan": {"latitude": 27.0238, "longitude": 74.2179},
"Tamil Nadu": {"latitude": 11.1271, "longitude": 78.6569}
}
try:
df = pd.read_excel(excel_path)
if len(df.columns) < 10:
raise ValueError("Excel文件需包含至少10列组件名称、尺寸、功率等")
row = df[df.iloc[:, 1] == component_name]
if row.empty:
raise ValueError(f"未找到组件:{component_name}")
return {
"component_name": component_name,
"max_power": row.iloc[0, 5],
"efficiency": row.iloc[0, 9],
"pv_size": row.iloc[0, 3]
}
except FileNotFoundError:
raise FileNotFoundError(f"未找到Excel文件{excel_path}")
except Exception as e:
raise Exception(f"读取Excel出错{e}")
def get_tilt_and_azimuth(is_fixed=True, optimize=True, longitude=116, latitude=None, peak_load_hour=16):
"""计算光伏系统的倾角和方位角"""
if optimize and latitude is None:
raise ValueError("优化模式下需提供纬度")
if is_fixed:
if optimize:
tilt = calculate_optimal_tilt(latitude)
azimuth = (peak_load_hour - 12) * 15 + (longitude - 116)
azimuth = azimuth % 360 if azimuth >= 0 else azimuth + 360
else:
print("倾角0°(水平)-90°(垂直) | 方位角0°(正北)-180°(正南),顺时针")
tilt = float(input("请输入倾角(度)"))
azimuth = float(input("请输入方位角(度)"))
if not (0 <= tilt <= 90) or not (0 <= azimuth <= 360):
raise ValueError("倾角需在0-90°方位角需在0-360°")
else:
azimuth = 180
if optimize:
tilt = calculate_optimal_tilt(latitude)
else:
print("倾角0°(水平)-90°(垂直)")
tilt = float(input("请输入倾角(度)"))
if not (0 <= tilt <= 90):
raise ValueError("倾角需在0-90°")
return tilt, azimuth
def calculate_array_distance(L, tilt, latitude):
"""计算阵列间距"""
beta_rad = math.radians(tilt)
phi_rad = math.radians(latitude)
return (L * math.cos(beta_rad) +
L * math.sin(beta_rad) * 0.707 * math.tan(phi_rad) +
0.4338 * math.tan(phi_rad))
def calculate_equivalent_hours(P, P_r):
"""计算等效小时数"""
if P_r == 0:
raise ValueError("额定功率不能为 0")
return P / P_r
def calculate_installed_capacity(max_power, num_components):
"""计算装机容量"""
if max_power < 0 or num_components < 0 or not isinstance(num_components, int):
raise ValueError("功率和数量需为非负数,数量需为整数")
return (max_power * num_components) / 1000
def calculate_annual_energy(peak_hours, capacity, E_S=1.0, K=0.8):
"""计算年发电量"""
if any(x < 0 for x in [peak_hours, capacity]) or E_S <= 0 or not 0 <= K <= 1:
raise ValueError("输入参数需满足辐射量、容量≥0E_S>0K∈[0,1]")
return peak_hours * 365 * (capacity / E_S) * K
def calculate_environmental_benefits(E_p_million_kwh):
"""计算环境收益"""
if E_p_million_kwh < 0:
raise ValueError("年发电量需≥0")
return {
"coal_reduction": E_p_million_kwh * 0.404 * 10,
"CO2_reduction": E_p_million_kwh * 0.977 * 10,
"SO2_reduction": E_p_million_kwh * 0.03 * 10,
"NOX_reduction": E_p_million_kwh * 0.015 * 10
}
def calculate_reference_yield(E_p, electricity_price, IC, q, n=25):
"""计算净现值(NPV)和内部收益率(IRR)"""
if E_p < 0 or electricity_price < 0 or IC <= 0 or not 0 <= q <= 1:
raise ValueError("发电量、电价≥0投资成本>0回收比例∈[0,1]")
def npv_equation(irr, p, w, ic, q_val, n=n):
term1 = (1 + irr) ** (-1)
term2 = irr * (1 + irr) ** (-1) if irr != 0 else float('inf')
pv_revenue = p * w * (term1 / term2) * (1 - (1 + irr) ** (-n))
pv_salvage = q_val * ic * (term1 / term2) * (1 - (1 + irr) ** (-n))
return pv_revenue - ic + pv_salvage
irr_guess = 0.1
irr = float(fsolve(npv_equation, irr_guess, args=(E_p, electricity_price, IC, q))[0])
if not 0 <= irr <= 1:
raise ValueError(f"IRR计算结果{irr:.4f}不合理,请检查输入")
npv = npv_equation(irr, E_p, electricity_price, IC, q)
return {"NPV": npv, "IRR": irr * 100}
def calculate_pv_metrics(component_name, electricity_price, pv_number, q, longitude, latitude,
is_fixed=True, optimize=True, peak_load_hour=16, cost_per_kw=3.4, E_S=1.0, K=0.8,
override_capacity=None):
"""
__计算光伏项目的各项指标__
Raises:
Exception: _description_
Returns:
_type_: _description_
"""
try:
tilt, azimuth = get_tilt_and_azimuth(is_fixed, optimize, longitude, latitude, peak_load_hour)
pv_info = get_pv_product_info(component_name)
width_mm = float(pv_info["pv_size"].split("×")[1])
L = (width_mm / 1000) * 1.1
array_distance = calculate_array_distance(L, tilt, latitude)
max_power = pv_info["max_power"]
if override_capacity is not None:
capacity = override_capacity
else:
capacity = calculate_installed_capacity(max_power, pv_number)
peak_hours = calculate_psh_average(latitude, longitude)
single_daily_energy = peak_hours * (capacity / pv_number) * K if pv_number > 0 else 0
E_p = calculate_annual_energy(peak_hours, capacity, E_S, K)
h = calculate_equivalent_hours(E_p, capacity) if capacity > 0 else 0
E_p_million_kwh = E_p / 1000000
env_benefits = calculate_environmental_benefits(E_p_million_kwh)
IC = capacity * cost_per_kw * 1000
ref_yield = calculate_reference_yield(E_p, electricity_price, IC, q)
return {
"longitude": longitude,
"latitude": latitude,
"component_name": component_name,
"tilt": tilt,
"azimuth": azimuth,
"array_distance": array_distance,
"max_power": max_power,
"capacity": capacity,
"peak_sunshine_hours": peak_hours,
"single_daily_energy": single_daily_energy,
"annual_energy": E_p,
"equivalent_hours": h,
"coal_reduction": env_benefits["coal_reduction"],
"CO2_reduction": env_benefits["CO2_reduction"],
"SO2_reduction": env_benefits["SO2_reduction"],
"NOX_reduction": env_benefits["NOX_reduction"],
"IRR": ref_yield["IRR"]
}
except Exception as e:
raise Exception(f"计算过程中发生错误: {str(e)}")
# def print_result(min_case, max_case):
# """优化输出格式,使用表格展示结果"""
# headers = ["指标", "最小组件数量", "最大组件数量"]
# table_data = [
# ["经度", f"{min_case['longitude']:.2f}", f"{max_case['longitude']:.2f}"],
# ["纬度", f"{min_case['latitude']:.2f}", f"{max_case['latitude']:.2f}"],
# ["光伏类型", min_case["pv_type"], max_case["pv_type"]],
# ["地形类型", min_case["terrain_type"], max_case["terrain_type"]],
# ["组件型号", min_case["component_name"], max_case["component_name"]],
# ["识别面积 (平方千米)", f"{min_case['available_area_sq_km']:.2f}", f"{max_case['available_area_sq_km']:.2f}"],
# ["识别面积 (公顷)", f"{min_case['available_area_hectares']:.2f}", f"{max_case['available_area_hectares']:.2f}"],
# ["有效面积 (公顷)", f"{min_case['effective_area_hectares']:.2f}", f"{max_case['effective_area_hectares']:.2f}"],
# ["理论最大容量 (MW)", f"{min_case['theoretical_max_capacity_mw']:.2f}",
# f"{max_case['theoretical_max_capacity_mw']:.2f}"],
# ["单块组件占地 (m²)", f"{min_case['panel_area_sqm']:.2f}", f"{max_case['panel_area_sqm']:.2f}"],
# ["组件数量", f"{min_case['actual_panels']:,}", f"{max_case['actual_panels']:,}"],
# ["倾角 (度)", f"{min_case['tilt']:.2f}", f"{max_case['tilt']:.2f}"],
# ["方位角 (度)", f"{min_case['azimuth']:.2f}", f"{max_case['azimuth']:.2f}"],
# ["阵列间距 (m)", f"{min_case['array_distance']:.2f}", f"{max_case['array_distance']:.2f}"],
# ["单块功率 (Wp)", f"{min_case['max_power']}", f"{max_case['max_power']}"],
# ["装机容量 (MW)", f"{min_case['capacity'] / 1000:.2f}", f"{max_case['capacity'] / 1000:.2f}"],
# ["峰值日照 (小时/天)", f"{min_case['peak_sunshine_hours']:.2f}", f"{max_case['peak_sunshine_hours']:.2f}"],
# ["年发电量 (kWh)", f"{min_case['annual_energy']:,.0f}", f"{max_case['annual_energy']:,.0f}"],
# ["等效小时数", f"{min_case['equivalent_hours']:.2f}", f"{max_case['equivalent_hours']:.2f}"],
# ["LCOE (元/kWh)", f"{min_case['lcoe']:.4f}", f"{max_case['lcoe']:.4f}"],
# ["标准煤减排 (kg)", f"{min_case['coal_reduction']:,.0f}", f"{max_case['coal_reduction']:,.0f}"],
# ["CO₂减排 (kg)", f"{min_case['CO2_reduction']:,.0f}", f"{max_case['CO2_reduction']:,.0f}"],
# ["SO₂减排 (kg)", f"{min_case['SO2_reduction']:,.0f}", f"{max_case['SO2_reduction']:,.0f}"],
# ["NOx减排 (kg)", f"{min_case['NOX_reduction']:,.0f}", f"{max_case['NOX_reduction']:,.0f}"],
# ["IRR (%)", f"{min_case['IRR']:.2f}", f"{max_case['IRR']:.2f}"]
# ]
# print("\n===== 光伏系统潜力评估结果 =====")
# print(tabulate(table_data, headers=headers, tablefmt="grid"))
# 主程序
if __name__ == "__main__":
print("\n======= 光伏系统潜力评估 =======")
latitude = 45.3
longitude = 116.4
available_area_sq_km = 20
pv_type = "distributed"
terrain_type = "耕地"
terrain_config = {
"耕地": 1.1, "裸地": 1.1, "草地": 1.2, "灌木": 1.4,
"湿地": 1.65, "林地": 1.65, "建筑": 1.35, "水域": 1.35
}
component_name = "TWMND-72HD580"
electricity_price = 0.55
# 验证复杂性因子范围
terrain_complexity = terrain_config.get(terrain_type)
# 通过 API 获取坡度
slope_deg = get_slope_from_api(latitude, longitude)
print(f"使用参数:坡度={slope_deg:.2f}°,地形复杂性因子={terrain_complexity}")
# 计算光伏潜力
result = calculate_pv_potential(
available_area_sq_km=available_area_sq_km,
component_name=component_name,
longitude=longitude,
latitude=latitude,
slope_deg=slope_deg,
terrain_complexity=terrain_complexity,
pv_type=pv_type,
terrain_type=terrain_type,
electricity_price=electricity_price
)
print(result)
"""
{
"code": 200,
"data": {
"longitude": 123.2,
"latitude": 39,
"component_name": "TWMND-72HD580",
"tilt": 32.74,
"azimuth": 67.2,
"array_distance": 1.7867506003426947,
"max_power": 580,
"capacity": 849999.9999999999,
"peak_sunshine_hours": 3.9739880952380946,
"single_daily_energy": 0.5311220578210978,
"annual_energy": 896676222.9437226,
"equivalent_hours": 1054.9132034632032,
"coal_reduction": 3622.5719406926396,
"CO2_reduction": 8760.526698160169,
"SO2_reduction": 269.0028668831168,
"NOX_reduction": 134.5014334415584,
"IRR": 17.18080081007375
}
}
"""