GreenTransPowerCalculate/wind/wind_total.py

204 lines
7.6 KiB
Python
Raw Normal View History

2025-04-27 17:25:43 +08:00
import pandas as pd
import math
from scipy.optimize import fsolve
import os
import sys
# 获取当前文件的绝对路径
current_dir = os.path.dirname(os.path.abspath(__file__))
print(current_dir)
# 添加当前目录到sys.path
sys.path.append(current_dir)
def wind_farm_analysis(device_name, area_km2, electricity_price, file_path, velocity_avg, T_avg,
lateral_spacing_factor=5, longitudinal_spacing_factor=10, q=0.02, altitude=11,
hub_height=100, Cp=0.45, eta=0.8, cost_per_mw=5000):
"""
封装函数分析风电场的风机数量及各项经济和技术指标
参数
device_name (str): 设备名称
area_km2 (float): 风电场面积平方公里
electricity_price (float): 电价/kWh
file_path (str): 风机参数 Excel 文件路径
velocity_avg (float): 全年平均风速
T_path (str): 全年平均温度
lateral_spacing_factor (float): 横向间距因子默认为 5D
longitudinal_spacing_factor (float): 纵向间距因子默认为 10D
q (float): 运维成本占初始投资成本的比例默认 0.02 表示 2%
altitude (float): 海拔高度m默认 11m
hub_height (float): 轮毂高度m默认 100m
Cp (float): 风能利用系数默认 0.45
eta (float): 总系统效率默认 0.8
cost_per_mw (float): MW 投资成本万元/MW默认 5000 万元/MW
返回
dict: 包含风电场分析结果的字典
"""
def estimate_wind_turbine_count(area_km2, blade_diameter):
area_m2 = area_km2 * 1_000_000
lateral_spacing = lateral_spacing_factor * blade_diameter
longitudinal_spacing = longitudinal_spacing_factor * blade_diameter
turbine_area = lateral_spacing * longitudinal_spacing
turbine_count = int(area_m2 / turbine_area)
print(f"单台风机占地面积: {turbine_area:,} 平方米 "
f"(横向间距: {lateral_spacing} 米, 纵向间距: {longitudinal_spacing} 米)")
print(f"估算风机数量: {turbine_count}")
return turbine_count
def get_wind_turbine_specs(device_name, file_path):
try:
df = pd.read_excel(file_path)
match = df[df.iloc[:, 0] == device_name]
if not match.empty:
rated_power = match.iloc[0, 1]
swept_area = match.iloc[0, 7] # 扫风面积
blade_diameter = match.iloc[0, 6] # 叶片直径
print(f"找到设备 '{device_name}',额定功率: {rated_power} kW, "
f"扫风面积: {swept_area} m², 叶片直径: {blade_diameter}")
return rated_power, swept_area, blade_diameter
else:
raise ValueError(f"未找到设备名称: {device_name}")
except FileNotFoundError:
raise FileNotFoundError(f"文件未找到: {file_path}")
except Exception as e:
raise Exception(f"发生错误: {str(e)}")
def air_density(altitude, hub_height, T0):
z = altitude + hub_height
LR = 0.0065
T = T0 - LR * z + 273.15
return (353.05 / T) * math.exp(-0.034 * (z / T))
def wind_power_density(densities, velocity_avg):
rho_v3 = densities * velocity_avg
return 0.5 * rho_v3
def estimated_wind_power(num_turbines, rated_power):
if not isinstance(num_turbines, int) or num_turbines < 0:
raise ValueError("风机数量必须为非负整数")
return rated_power * num_turbines
def calculate_power_output(S, w, Cp, eta):
# 瓦时
return w * S * Cp * 8760 * eta
def calculate_equivalent_hours(P, P_r):
if P_r == 0:
raise ValueError("额定功率不能为 0")
return (P / 1000) / P_r
def calculate_environmental_benefits(E_p_million_kwh):
"""计算环境收益"""
if E_p_million_kwh < 0:
raise ValueError("年发电量需≥0")
return {
"coal_reduction": E_p_million_kwh * 0.404 * 10,
"CO2_reduction": E_p_million_kwh * 0.977 * 10,
"SO2_reduction": E_p_million_kwh * 0.03 * 10,
"NOX_reduction": E_p_million_kwh * 0.015 * 10
}
def calculate_reference_yield(E_p, electricity_price, IC, q, n=20):
def npv_equation(irr, p, w, ic, q_val, n=n):
term1 = (1 + irr) ** (-1)
term2 = irr * (1 + irr) ** (-1) if irr != 0 else float('inf')
pv_revenue = p * w * (term1 / term2) * (1 - (1 + irr) ** (-n))
pv_salvage = q_val * ic * (term1 / term2) * (1 - (1 + irr) ** (-n))
return pv_revenue - ic + pv_salvage
irr_guess = 0.1
irr = float(fsolve(npv_equation, irr_guess, args=(E_p, electricity_price, IC, q))[0])
if not 0 <= irr <= 1:
raise ValueError(f"IRR计算结果{irr:.4f}不合理")
return irr * 100
# 获取设备信息
rated_power, swept_area, blade_diameter = get_wind_turbine_specs(device_name, file_path)
# 估算风机数量
num_turbines = estimate_wind_turbine_count(area_km2, blade_diameter)
# 读取温度数据并计算空气密度
avg_density = air_density(altitude, hub_height, T_avg)
# 计算风功率密度
wpd = wind_power_density(avg_density, velocity_avg)
# 计算装机容量
total_power = estimated_wind_power(num_turbines, rated_power)
# 计算初始投资成本
IC = total_power * cost_per_mw * 1000000
# 计算年发电量 kwh
P_test = calculate_power_output(swept_area, wpd, Cp, eta) * num_turbines
# 计算等效小时数
h = calculate_equivalent_hours(P_test, rated_power)
# 计算 IRR
P_test_IRR = P_test/1000
irr = calculate_reference_yield(P_test_IRR, electricity_price, IC, q)
env_benefits = calculate_environmental_benefits((P_test / 10000000))
# 返回结果
out = {
"device": device_name,
"rated_power": rated_power,
"swept_area": swept_area,
"blade_diameter": blade_diameter,
"num_turbines": num_turbines,
"avg_density": avg_density,
"wpd": wpd,
"total_power": total_power,
"annual_power_output": P_test / 10000000, # 万 kWh
"equivalent_hours": h,
"IRR": irr
}
out.update(env_benefits)
return out
# 主程序
if __name__ == "__main__":
file_path = f"{current_dir}/wind_product.xlsx"
v_avg = 4.2
tavg = 15
device_name = "GW165-5.2"
area_km2 = 23.2
electricity_price = 0.45
result = wind_farm_analysis(
device_name=device_name,
area_km2=area_km2,
electricity_price=electricity_price,
file_path=file_path,
velocity_avg=v_avg,
T_avg=tavg
)
print(result)
"""
{
"code": 200,
"data": {
"device": "GW165-5.2",
"rated_power": 5.2,
"swept_area": 21382,
"blade_diameter": 165,
"num_turbines": 23,
"avg_density": 1.2118668826686871,
"wpd": 1.9995803564033336,
"total_power": 119.60000000000001,
"annual_power_output": 310.11418354861905,
"equivalent_hours": 596.3734299011904,
"IRR": 9.985793133871693,
"coal_reduction": 12528.61301536421,
"CO2_reduction": 30298.155732700077,
"SO2_reduction": 930.342550645857,
"NOX_reduction": 465.1712753229285
}
}
"""