This commit is contained in:
linnce 2025-04-27 09:57:22 +08:00
parent 3bb8c38050
commit 0e9d2ef236
1 changed files with 583 additions and 0 deletions

View File

@ -0,0 +1,583 @@
import pandas as pd
import math
import numpy as np
import requests
from scipy.optimize import fsolve
from tabulate import tabulate
# 默认文件路径
PV_EXCEL_PATH = r"./pv_product.xlsx" # 请确保此文件存在或更改为正确路径
# 地形类型与复杂性因子范围
TERRAIN_COMPLEXITY_RANGES = {
"distributed": {
"耕地": (1.0, 1.2), "裸地": (1.0, 1.2), "草地": (1.1, 1.3),
"灌木": (1.3, 1.5), "湿地": (1.5, 1.8), "林地": (1.5, 1.8), "建筑": (1.2, 1.5)
},
"centralized": {
"耕地": (1.0, 1.2), "裸地": (1.0, 1.2), "草地": (1.1, 1.3),
"灌木": (1.3, 1.6), "湿地": (1.5, 1.8), "林地": (1.6, 2.0)
},
"floating": {"水域": (1.2, 1.5)}
}
# 地形类型与土地可用性、发电效率的映射
TERRAIN_ADJUSTMENTS = {
"耕地": {"land_availability": 0.85, "K": 0.8}, "裸地": {"land_availability": 0.85, "K": 0.8},
"草地": {"land_availability": 0.85, "K": 0.8}, "灌木": {"land_availability": 0.75, "K": 0.75},
"湿地": {"land_availability": 0.65, "K": 0.75}, "水域": {"land_availability": 0.85, "K": 0.8},
"林地": {"land_availability": 0.65, "K": 0.7}, "建筑": {"land_availability": 0.6, "K": 0.75}
}
# 光伏类型的装机容量上限 (MW/平方千米)
CAPACITY_LIMITS = {
"distributed": 25.0, "centralized": 50.0, "floating": 25.0
}
# 实际面板间距系数
PANEL_SPACING_FACTORS = {
"distributed": 1.5, "centralized": 1.2, "floating": 1.3
}
def calculate_psh_average(lat, lon, start_year=2010, end_year=2023):
"""
NASA POWER API 获取峰值日照小时数PSH
返回平均 PSH小时/失败时返回默认值 4.0
"""
print("DEBUG: Starting calculate_psh_average (version 2025-04-28)")
url = "https://power.larc.nasa.gov/api/temporal/monthly/point"
params = {
"parameters": "ALLSKY_SFC_SW_DWN",
"community": "RE",
"longitude": lon,
"latitude": lat,
"format": "JSON",
"start": str(start_year),
"end": str(end_year)
}
try:
print(f"DEBUG: Requesting NASA POWER API for lat={lat}, lon={lon}")
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
print("DEBUG: API response received")
data = response.json()
print("DEBUG: Validating API data")
if "properties" not in data or "parameter" not in data["properties"]:
print("ERROR: NASA POWER API returned invalid data format")
return 4.0
ghi_data = data["properties"]["parameter"].get("ALLSKY_SFC_SW_DWN", {})
if not ghi_data:
print("ERROR: No GHI data found in API response")
return 4.0
print("DEBUG: Filtering GHI data")
print(f"DEBUG: Raw GHI data keys: {list(ghi_data.keys())}")
ghi_data = {k: v for k, v in ghi_data.items() if not k.endswith("13")}
if not ghi_data:
print("ERROR: No valid GHI data after filtering")
return 4.0
print(f"DEBUG: Filtered GHI data keys: {list(ghi_data.keys())}")
print("DEBUG: Creating DataFrame")
df = pd.DataFrame.from_dict(ghi_data, orient="index", columns=["GHI (kWh/m²/day)"])
print(f"DEBUG: Original DataFrame index: {list(df.index)}")
print("DEBUG: Reformatting DataFrame index")
new_index = []
for k in df.index:
try:
# 验证索引格式
if not (isinstance(k, str) and len(k) == 6 and k.isdigit()):
print(f"ERROR: Invalid index format for {k}")
return 4.0
year = k[:4]
month = k[-2:]
formatted_index = f"{year}-{month:0>2}" # 使用 :0>2 确保两位数字
print(f"DEBUG: Formatting index {k} -> {formatted_index}")
new_index.append(formatted_index)
except Exception as e:
print(f"ERROR: Failed to format index {k}: {e}")
return 4.0
df.index = new_index
print(f"DEBUG: Reformatted DataFrame index: {list(df.index)}")
if df.empty:
print("ERROR: DataFrame is empty")
return 4.0
print("DEBUG: Calculating PSH")
df["PSH (hours/day)"] = df["GHI (kWh/m²/day)"]
if df["PSH (hours/day)"].isna().any():
print("ERROR: PSH data contains invalid values")
return 4.0
print("DEBUG: Grouping by year")
df['Year'] = df.index.str[:4]
print(f"DEBUG: Year column: {list(df['Year'])}")
annual_avg = df.groupby('Year')['PSH (hours/day)'].mean()
print(f"DEBUG: Annual averages: {annual_avg.to_dict()}")
if annual_avg.empty:
print("ERROR: Annual average PSH data is empty")
return 4.0
print("DEBUG: Calculating final PSH")
psh = annual_avg.mean()
if math.isnan(psh):
print("ERROR: PSH calculation resulted in NaN")
return 4.0
print(f"DEBUG: PSH calculated successfully, value={psh:.2f}")
print(f"获取成功平均PSH: {psh:.2f} 小时/天")
return psh
except requests.exceptions.RequestException as e:
print(f"ERROR: NASA POWER API request failed: {e}")
return 4.0
except Exception as e:
print(f"ERROR: Error processing API data: {e}")
return 4.0
def calculate_optimal_tilt(lat):
"""根据纬度计算最佳倾角(单位:度)"""
try:
lat_abs = abs(lat)
if lat_abs < 25:
optimal_tilt = lat_abs * 0.87
elif lat_abs <= 50:
optimal_tilt = lat_abs * 0.76 + 3.1
else:
optimal_tilt = lat_abs * 0.5 + 16.3
return optimal_tilt
except ValueError as e:
raise Exception(f"倾角计算错误: {e}")
def pv_area(panel_capacity, slope_deg, shading_factor=0.1, land_compactness=1.0, terrain_complexity=1.0):
"""计算单块光伏组件占地面积"""
base_area = panel_capacity * 6
slope_factor = 1 + (slope_deg / 50) if slope_deg <= 15 else 1.5
shade_factor = 1 + shading_factor * 2
compact_factor = 1 / land_compactness if land_compactness > 0 else 1.5
terrain_factor = terrain_complexity
return base_area * slope_factor * shade_factor * compact_factor * terrain_factor
def calculate_pv_potential(available_area_sq_km, component_name, longitude, latitude, slope_deg=10,
shading_factor=0.1, land_compactness=0.8, terrain_complexity=1.2,
terrain_type="耕地", pv_type="centralized", land_availability=0.85,
min_irradiance=800, max_slope=25, electricity_price=0.65, q=0.02,
is_fixed=True, optimize=True, peak_load_hour=16, cost_per_kw=3.4,
E_S=1.0, K=0.8, project_lifetime=25, discount_rate=0.06):
"""计算最小和最大组件数量的光伏系统潜力"""
# 输入验证
if available_area_sq_km <= 0:
raise ValueError("可用面积必须大于0")
if slope_deg < 0 or slope_deg > max_slope:
raise ValueError(f"坡度必须在0-{max_slope}度之间")
# 转换为公顷
available_area_hectares = available_area_sq_km * 100
# 验证光伏类型与地形类型
valid_terrains = TERRAIN_COMPLEXITY_RANGES.get(pv_type, {})
if terrain_type not in valid_terrains:
raise ValueError(f"{pv_type} 光伏不支持 {terrain_type} 地形。可选地形:{list(valid_terrains.keys())}")
# 获取地形调整参数
terrain_adjustments = TERRAIN_ADJUSTMENTS.get(terrain_type, {"land_availability": 0.85, "K": 0.8})
adjusted_land_availability = terrain_adjustments["land_availability"] / max(1.0, terrain_complexity)
adjusted_K = terrain_adjustments["K"] / max(1.0, terrain_complexity)
# 获取组件信息
pv_info = get_pv_product_info(component_name)
single_panel_capacity = pv_info["max_power"] / 1000 # kWp
pv_size = pv_info["pv_size"].split("×")
panel_length = float(pv_size[0]) / 1000 # 米
panel_width = float(pv_size[1]) / 1000 # 米
panel_area_sqm = panel_length * panel_width
# 获取阵列间距
tilt, azimuth = get_tilt_and_azimuth(is_fixed, optimize, longitude, latitude, peak_load_hour)
array_distance = calculate_array_distance(panel_width * 1.1, tilt, latitude)
spacing_factor = PANEL_SPACING_FACTORS.get(pv_type, 1.2)
adjusted_array_distance = array_distance * spacing_factor
# 计算有效面积
effective_area_hectares = available_area_hectares * adjusted_land_availability
effective_area_sqm = effective_area_hectares * 10000
# 计算每MW占地面积
area_per_mw = 10000 * (1 + slope_deg / 50 if slope_deg <= 15 else 1.5) * (
1 + shading_factor * 2) * terrain_complexity * spacing_factor
# 容量密度限制 (kW/m²)
capacity_density_limit = CAPACITY_LIMITS.get(pv_type, 5.0) / 1000
max_capacity_by_density = effective_area_sqm * capacity_density_limit
# 计算单块组件占地面积
row_spacing = panel_length * math.sin(math.radians(tilt)) + adjusted_array_distance
effective_panel_area = panel_area_sqm * (row_spacing / panel_length) * 1.2
# 调整 min/max 布局以确保差异
min_area_per_panel = effective_panel_area * 0.8 # 密集布局
max_area_per_panel = effective_panel_area * 1.5 # 稀疏布局
max_panels = math.floor(effective_area_sqm / min_area_per_panel)
min_panels = math.floor(effective_area_sqm / max_area_per_panel)
# 计算装机容量
max_capacity_raw = calculate_installed_capacity(pv_info["max_power"], max_panels)
min_capacity_raw = calculate_installed_capacity(pv_info["max_power"], min_panels)
# 应用容量密度限制
max_capacity = min(max_capacity_raw, max_capacity_by_density)
min_capacity = min(min_capacity_raw, max_capacity_by_density * 0.8) # 稀疏布局取80%
# 检查理论上限
theoretical_max_capacity_mw = available_area_sq_km * CAPACITY_LIMITS.get(pv_type, 5.0)
if max_capacity / 1000 > theoretical_max_capacity_mw:
max_capacity = theoretical_max_capacity_mw * 1000
max_panels = math.floor(max_capacity * 1000 / pv_info["max_power"])
if min_capacity / 1000 > theoretical_max_capacity_mw * 0.8:
min_capacity = theoretical_max_capacity_mw * 1000 * 0.8
min_panels = math.floor(min_capacity * 1000 / pv_info["max_power"])
# 计算指标
min_metrics = calculate_pv_metrics(
component_name=component_name, electricity_price=electricity_price, pv_number=min_panels,
q=q, longitude=longitude, latitude=latitude, is_fixed=is_fixed, optimize=optimize,
peak_load_hour=peak_load_hour, cost_per_kw=cost_per_kw * terrain_complexity, E_S=E_S, K=adjusted_K,
override_capacity=min_capacity
)
min_lcoe = calculate_lcoe(
capacity=min_metrics["capacity"], annual_energy=min_metrics["annual_energy"],
cost_per_kw=cost_per_kw * terrain_complexity, q=q, project_lifetime=project_lifetime,
discount_rate=discount_rate
)
max_metrics = calculate_pv_metrics(
component_name=component_name, electricity_price=electricity_price, pv_number=max_panels,
q=q, longitude=longitude, latitude=latitude, is_fixed=is_fixed, optimize=optimize,
peak_load_hour=peak_load_hour, cost_per_kw=cost_per_kw * terrain_complexity, E_S=E_S, K=adjusted_K,
override_capacity=max_capacity
)
max_lcoe = calculate_lcoe(
capacity=max_metrics["capacity"], annual_energy=max_metrics["annual_energy"],
cost_per_kw=cost_per_kw * terrain_complexity, q=q, project_lifetime=project_lifetime,
discount_rate=discount_rate
)
# 警告
if min_panels == max_panels:
print(f"警告:最小和最大组件数量相同 ({min_panels}),请检查地形复杂性或面积是否过小")
if min_panels == 0 or max_panels == 0:
print(f"警告组件数量为0请检查输入参数")
# 返回结果
return {
"min_case": {
**min_metrics, "lcoe": min_lcoe, "actual_panels": min_panels,
"available_area_sq_km": available_area_sq_km, "available_area_hectares": available_area_hectares,
"effective_area_hectares": effective_area_hectares, "panel_area_sqm": max_area_per_panel,
"terrain_type": terrain_type, "pv_type": pv_type, "theoretical_max_capacity_mw": theoretical_max_capacity_mw
},
"max_case": {
**max_metrics, "lcoe": max_lcoe, "actual_panels": max_panels,
"available_area_sq_km": available_area_sq_km, "available_area_hectares": available_area_hectares,
"effective_area_hectares": effective_area_hectares, "panel_area_sqm": min_area_per_panel,
"terrain_type": terrain_type, "pv_type": pv_type, "theoretical_max_capacity_mw": theoretical_max_capacity_mw
}
}
def calculate_lcoe(capacity, annual_energy, cost_per_kw, q, project_lifetime=25, discount_rate=0.06):
"""计算平准化度电成本(LCOE)"""
total_investment = capacity * cost_per_kw * 1000
annual_om_cost = total_investment * q
discount_factors = [(1 + discount_rate) ** -t for t in range(1, project_lifetime + 1)]
discounted_energy = sum(annual_energy * discount_factors[t] for t in range(project_lifetime))
discounted_costs = total_investment + sum(annual_om_cost * discount_factors[t] for t in range(project_lifetime))
if discounted_energy == 0:
return float('inf')
return discounted_costs / discounted_energy
def get_pv_product_info(component_name, excel_path=PV_EXCEL_PATH):
"""从Excel获取光伏组件信息"""
try:
df = pd.read_excel(excel_path)
if len(df.columns) < 10:
raise ValueError("Excel文件需包含至少10列组件名称、尺寸、功率等")
row = df[df.iloc[:, 1] == component_name]
if row.empty:
raise ValueError(f"未找到组件:{component_name}")
return {
"component_name": component_name,
"max_power": row.iloc[0, 5],
"efficiency": row.iloc[0, 9],
"pv_size": row.iloc[0, 3]
}
except FileNotFoundError:
raise FileNotFoundError(f"未找到Excel文件{excel_path}")
except Exception as e:
raise Exception(f"读取Excel出错{e}")
def get_tilt_and_azimuth(is_fixed=True, optimize=True, longitude=116, latitude=None, peak_load_hour=16):
"""计算光伏系统的倾角和方位角"""
if optimize and latitude is None:
raise ValueError("优化模式下需提供纬度")
if is_fixed:
if optimize:
tilt = calculate_optimal_tilt(latitude)
azimuth = (peak_load_hour - 12) * 15 + (longitude - 116)
azimuth = azimuth % 360 if azimuth >= 0 else azimuth + 360
else:
print("倾角0°(水平)-90°(垂直) | 方位角0°(正北)-180°(正南),顺时针")
tilt = float(input("请输入倾角(度)"))
azimuth = float(input("请输入方位角(度)"))
if not (0 <= tilt <= 90) or not (0 <= azimuth <= 360):
raise ValueError("倾角需在0-90°方位角需在0-360°")
else:
azimuth = 180
if optimize:
tilt = calculate_optimal_tilt(latitude)
else:
print("倾角0°(水平)-90°(垂直)")
tilt = float(input("请输入倾角(度)"))
if not (0 <= tilt <= 90):
raise ValueError("倾角需在0-90°")
return tilt, azimuth
def calculate_array_distance(L, tilt, latitude):
"""计算阵列间距"""
beta_rad = math.radians(tilt)
phi_rad = math.radians(latitude)
return (L * math.cos(beta_rad) +
L * math.sin(beta_rad) * 0.707 * math.tan(phi_rad) +
0.4338 * math.tan(phi_rad))
def calculate_equivalent_hours(P, P_r):
"""计算等效小时数"""
if P_r == 0:
raise ValueError("额定功率不能为 0")
return P / P_r
def calculate_installed_capacity(max_power, num_components):
"""计算装机容量"""
if max_power < 0 or num_components < 0 or not isinstance(num_components, int):
raise ValueError("功率和数量需为非负数,数量需为整数")
return (max_power * num_components) / 1000 # 单位kW
def calculate_annual_energy(peak_hours, capacity, E_S=1.0, K=0.8):
"""计算年发电量"""
if any(x < 0 for x in [peak_hours, capacity]) or E_S <= 0 or not 0 <= K <= 1:
raise ValueError("输入参数需满足辐射量、容量≥0E_S>0K∈[0,1]")
return peak_hours * 365 * (capacity / E_S) * K # 单位kWh
def calculate_environmental_benefits(E_p_million_kwh):
"""计算环境收益"""
if E_p_million_kwh < 0:
raise ValueError("年发电量需≥0")
return {
"coal_reduction": E_p_million_kwh * 0.404 * 10,
"CO2_reduction": E_p_million_kwh * 0.977 * 10,
"SO2_reduction": E_p_million_kwh * 0.03 * 10,
"NOX_reduction": E_p_million_kwh * 0.015 * 10
}
def calculate_reference_yield(E_p, electricity_price, IC, q, n=25):
"""计算净现值(NPV)和内部收益率(IRR)"""
if E_p < 0 or electricity_price < 0 or IC <= 0 or not 0 <= q <= 1:
raise ValueError("发电量、电价≥0投资成本>0回收比例∈[0,1]")
def npv_equation(irr, p, w, ic, q_val, n=n):
term1 = (1 + irr) ** (-1)
term2 = irr * (1 + irr) ** (-1) if irr != 0 else float('inf')
pv_revenue = p * w * (term1 / term2) * (1 - (1 + irr) ** (-n))
pv_salvage = q_val * ic * (term1 / term2) * (1 - (1 + irr) ** (-n))
return pv_revenue - ic + pv_salvage
irr_guess = 0.1
irr = float(fsolve(npv_equation, irr_guess, args=(E_p, electricity_price, IC, q))[0])
if not 0 <= irr <= 1:
raise ValueError(f"IRR计算结果{irr:.4f}不合理,请检查输入")
npv = npv_equation(irr, E_p, electricity_price, IC, q)
return {"NPV": npv, "IRR": irr * 100}
def calculate_pv_metrics(component_name, electricity_price, pv_number, q, longitude, latitude,
is_fixed=True, optimize=True, peak_load_hour=16, cost_per_kw=3.4, E_S=1.0, K=0.8,
override_capacity=None):
"""计算光伏项目的各项指标"""
try:
tilt, azimuth = get_tilt_and_azimuth(is_fixed, optimize, longitude, latitude, peak_load_hour)
pv_info = get_pv_product_info(component_name)
width_mm = float(pv_info["pv_size"].split("×")[1])
L = (width_mm / 1000) * 1.1
array_distance = calculate_array_distance(L, tilt, latitude)
max_power = pv_info["max_power"]
# 使用提供的容量或计算容量
if override_capacity is not None:
capacity = override_capacity
else:
capacity = calculate_installed_capacity(max_power, pv_number)
# 使用NASA API获取峰值日照小时数
peak_hours = calculate_psh_average(latitude, longitude)
single_daily_energy = peak_hours * (capacity / pv_number) * K if pv_number > 0 else 0
E_p = calculate_annual_energy(peak_hours, capacity, E_S, K)
h = calculate_equivalent_hours(E_p, capacity) if capacity > 0 else 0
E_p_million_kwh = E_p / 1000000
env_benefits = calculate_environmental_benefits(E_p_million_kwh)
IC = capacity * cost_per_kw * 1000
ref_yield = calculate_reference_yield(E_p, electricity_price, IC, q)
return {
"longitude": longitude,
"latitude": latitude,
"component_name": component_name,
"tilt": tilt,
"azimuth": azimuth,
"array_distance": array_distance,
"max_power": max_power,
"capacity": capacity,
"peak_sunshine_hours": peak_hours,
"single_daily_energy": single_daily_energy,
"annual_energy": E_p,
"equivalent_hours": h,
"coal_reduction": env_benefits["coal_reduction"],
"CO2_reduction": env_benefits["CO2_reduction"],
"SO2_reduction": env_benefits["SO2_reduction"],
"NOX_reduction": env_benefits["NOX_reduction"],
"IRR": ref_yield["IRR"]
}
except Exception as e:
raise Exception(f"计算过程中发生错误: {str(e)}")
def print_result(min_case, max_case):
"""优化输出格式,使用表格展示结果"""
headers = ["指标", "最小组件数量", "最大组件数量"]
table_data = [
["经度", f"{min_case['longitude']:.2f}", f"{max_case['longitude']:.2f}"],
["纬度", f"{min_case['latitude']:.2f}", f"{max_case['latitude']:.2f}"],
["光伏类型", min_case["pv_type"], max_case["pv_type"]],
["地形类型", min_case["terrain_type"], max_case["terrain_type"]],
["组件型号", min_case["component_name"], max_case["component_name"]],
["识别面积 (平方千米)", f"{min_case['available_area_sq_km']:.2f}", f"{max_case['available_area_sq_km']:.2f}"],
["识别面积 (公顷)", f"{min_case['available_area_hectares']:.2f}", f"{max_case['available_area_hectares']:.2f}"],
["有效面积 (公顷)", f"{min_case['effective_area_hectares']:.2f}", f"{max_case['effective_area_hectares']:.2f}"],
["理论最大容量 (MW)", f"{min_case['theoretical_max_capacity_mw']:.2f}",
f"{max_case['theoretical_max_capacity_mw']:.2f}"],
["单块组件占地 (m²)", f"{min_case['panel_area_sqm']:.2f}", f"{max_case['panel_area_sqm']:.2f}"],
["组件数量", f"{min_case['actual_panels']:,}", f"{max_case['actual_panels']:,}"],
["倾角 (度)", f"{min_case['tilt']:.2f}", f"{max_case['tilt']:.2f}"],
["方位角 (度)", f"{min_case['azimuth']:.2f}", f"{max_case['azimuth']:.2f}"],
["阵列间距 (m)", f"{min_case['array_distance']:.2f}", f"{max_case['array_distance']:.2f}"],
["单块功率 (Wp)", f"{min_case['max_power']}", f"{max_case['max_power']}"],
["装机容量 (MW)", f"{min_case['capacity'] / 1000:.2f}", f"{max_case['capacity'] / 1000:.2f}"],
["峰值日照 (小时/天)", f"{min_case['peak_sunshine_hours']:.2f}", f"{max_case['peak_sunshine_hours']:.2f}"],
["年发电量 (kWh)", f"{min_case['annual_energy']:,.0f}", f"{max_case['annual_energy']:,.0f}"],
["等效小时数", f"{min_case['equivalent_hours']:.2f}", f"{max_case['equivalent_hours']:.2f}"],
["LCOE (元/kWh)", f"{min_case['lcoe']:.4f}", f"{max_case['lcoe']:.4f}"],
["标准煤减排 (kg)", f"{min_case['coal_reduction']:,.0f}", f"{max_case['coal_reduction']:,.0f}"],
["CO₂减排 (kg)", f"{min_case['CO2_reduction']:,.0f}", f"{max_case['CO2_reduction']:,.0f}"],
["SO₂减排 (kg)", f"{min_case['SO2_reduction']:,.0f}", f"{max_case['SO2_reduction']:,.0f}"],
["NOx减排 (kg)", f"{min_case['NOX_reduction']:,.0f}", f"{max_case['NOX_reduction']:,.0f}"],
["IRR (%)", f"{min_case['IRR']:.2f}", f"{max_case['IRR']:.2f}"]
]
print("\n===== 光伏系统潜力评估结果 =====")
print(tabulate(table_data, headers=headers, tablefmt="grid"))
# 主程序
if __name__ == "__main__":
while True:
try:
# 输入参数
print("\n======= 光伏系统潜力评估 =======")
print("请输入以下必要参数:")
# 输入经纬度
latitude = float(input("请输入纬度(-90到90例如39.9"))
if not -90 <= latitude <= 90:
raise ValueError("纬度必须在-90到90之间")
longitude = float(input("请输入经度(-180到180例如116.4"))
if not -180 <= longitude <= 180:
raise ValueError("经度必须在-180到180之间")
# 输入可用面积
available_area_sq_km = float(input("请输入识别面积平方千米例如10"))
if available_area_sq_km <= 0:
raise ValueError("识别面积必须大于0")
# 输入光伏类型
pv_type = input("请输入光伏类型distributed, centralized, floating").lower()
if pv_type not in ["distributed", "centralized", "floating"]:
raise ValueError("光伏类型必须是 distributed, centralized 或 floating")
# 输入地形类型
valid_terrains = list(TERRAIN_COMPLEXITY_RANGES.get(pv_type, {}).keys())
print(f"支持的地形类型:{valid_terrains}")
terrain_type = input("请输入地形类型:")
if terrain_type not in valid_terrains:
raise ValueError(f"不支持的地形类型:{terrain_type}")
# 输入组件型号
component_name = input("请输入光伏组件型号需在Excel中存在例如M10-72H")
# 输入其他参数
slope_deg = float(input("请输入地形坡度0-25例如10"))
if not 0 <= slope_deg <= 25:
raise ValueError("坡度必须在0-25度之间")
terrain_complexity = float(input("请输入地形复杂性因子参考范围1.0-2.0例如1.2"))
min_complexity, max_complexity = TERRAIN_COMPLEXITY_RANGES[pv_type][terrain_type]
if not min_complexity <= terrain_complexity <= max_complexity:
raise ValueError(f"地形复杂性因子必须在 {min_complexity}-{max_complexity} 之间")
electricity_price = float(input("请输入电价(元/kWh例如0.65"))
if electricity_price < 0:
raise ValueError("电价必须非负")
# 计算光伏潜力
result = calculate_pv_potential(
available_area_sq_km=available_area_sq_km,
component_name=component_name,
longitude=longitude,
latitude=latitude,
slope_deg=slope_deg,
terrain_complexity=terrain_complexity,
terrain_type=terrain_type,
pv_type=pv_type,
electricity_price=electricity_price
)
# 输出结果
print_result(result["min_case"], result["max_case"])
# 询问是否继续
if input("\n是否继续评估?(y/n)").lower() != 'y':
break
except ValueError as ve:
print(f"输入错误:{ve}")
except FileNotFoundError as fe:
print(f"文件错误:{fe}")
except Exception as e:
print(f"发生错误:{e}")
print("请重新输入参数或检查错误。\n")