更新 wind/wind2.py
This commit is contained in:
parent
100838dee4
commit
5c1146225c
270
wind/wind2.py
270
wind/wind2.py
|
@ -1,40 +1,44 @@
|
|||
import pandas as pd
|
||||
import math
|
||||
from scipy.optimize import fsolve
|
||||
import requests
|
||||
import json
|
||||
import os
|
||||
|
||||
def wind_farm_analysis(device_name, area_km2, electricity_price, file_path, latitude, longitude,
|
||||
lateral_spacing_factor=5, longitudinal_spacing_factor=10, q=0.02, altitude=11,
|
||||
hub_height=100, Cp=0.45, eta=0.8, cost_per_kw=5):
|
||||
def wind_farm_analysis(device_name, area_km2, file_path, avg_temp, avg_wind_speed,
|
||||
lateral_spacing_factor=5, longitudinal_spacing_factor=10, altitude=11,
|
||||
hub_height=100, Cp=0.45, eta=0.8):
|
||||
"""
|
||||
封装函数:分析风电场的风机数量及各项经济和技术指标,使用 NASA POWER API 获取风速和温度数据
|
||||
|
||||
封装函数:分析风电场的风机数量及各项经济和技术指标,直接输入年平均气温和年平均风速
|
||||
参数:
|
||||
device_name (str): 设备名称
|
||||
device_name (str): 风力发电机型号名称
|
||||
area_km2 (float): 风电场面积(平方公里)
|
||||
electricity_price (float): 电价(元/kWh)
|
||||
file_path (str): 风机参数 Excel 文件路径
|
||||
latitude (float): 目标地点的纬度(度)
|
||||
longitude (float): 目标地点的经度(度)
|
||||
lateral_spacing_factor (float): 横向间距因子(默认为 5D)
|
||||
longitudinal_spacing_factor (float): 纵向间距因子(默认为 10D)
|
||||
q (float): 运维成本占初始投资成本的比例(默认 0.02 表示 2%)
|
||||
altitude (float): 海拔高度(m),默认 11m
|
||||
hub_height (float): 轮毂高度(m),默认 100m
|
||||
Cp (float): 风能利用系数,默认 0.45
|
||||
eta (float): 总系统效率,默认 0.8
|
||||
cost_per_mw (float): 每 MW 投资成本(万元/MW),默认 5000 万元/MW
|
||||
|
||||
file_path (str): 包含风机参数的Excel文件路径
|
||||
avg_temp (float): 年平均气温(摄氏度)
|
||||
avg_wind_speed (float): 年平均风速(m/s)
|
||||
lateral_spacing_factor (float): 横向间距因子(默认为5倍叶片直径,5D)
|
||||
longitudinal_spacing_factor (float): 纵向间距因子(默认为10倍叶片直径,10D)
|
||||
altitude (float): 海拔高度(m),默认11m
|
||||
hub_height (float): 轮毂高度(m),默认100m
|
||||
Cp (float): 风能利用系数(功率系数),默认0.45,反映风能转换效率
|
||||
eta (float): 总系统效率(包括机械和电气效率),默认0.8
|
||||
返回:
|
||||
dict: 包含风电场分析结果的字典
|
||||
dict: 包含风电场分析结果的字典,包括装机容量、发电量、环境效益等
|
||||
"""
|
||||
def estimate_wind_turbine_count(area_km2, blade_diameter):
|
||||
"""
|
||||
估算风电场可容纳的风机数量,基于面积和风机间距
|
||||
参数:
|
||||
area_km2 (float): 风电场面积(平方公里)
|
||||
blade_diameter (float): 风机叶片直径(m)
|
||||
|
||||
返回:
|
||||
int: 估算的风机数量
|
||||
"""
|
||||
# 将面积从平方公里转换为平方米
|
||||
area_m2 = area_km2 * 1_000_000
|
||||
# 计算横向和纵向间距(以叶片直径为单位)
|
||||
lateral_spacing = lateral_spacing_factor * blade_diameter
|
||||
longitudinal_spacing = longitudinal_spacing_factor * blade_diameter
|
||||
# 单台风机占地面积 = 横向间距 * 纵向间距
|
||||
turbine_area = lateral_spacing * longitudinal_spacing
|
||||
# 风机数量 = 总面积 / 单台风机占地面积(取整数)
|
||||
turbine_count = int(area_m2 / turbine_area)
|
||||
print(f"单台风机占地面积: {turbine_area:,} 平方米 "
|
||||
f"(横向间距: {lateral_spacing} 米, 纵向间距: {longitudinal_spacing} 米)")
|
||||
|
@ -42,13 +46,23 @@ def wind_farm_analysis(device_name, area_km2, electricity_price, file_path, lati
|
|||
return turbine_count
|
||||
|
||||
def get_wind_turbine_specs(device_name, file_path):
|
||||
"""
|
||||
从Excel文件中获取指定风机的参数
|
||||
参数:
|
||||
device_name (str): 风机型号名称
|
||||
file_path (str): Excel文件路径
|
||||
返回:
|
||||
tuple: 额定功率(kW)、扫风面积(m²)、叶片直径(m)
|
||||
"""
|
||||
try:
|
||||
# 读取Excel文件
|
||||
df = pd.read_excel(file_path)
|
||||
# 查找匹配的设备名称
|
||||
match = df[df.iloc[:, 0] == device_name]
|
||||
if not match.empty:
|
||||
rated_power = match.iloc[0, 1]
|
||||
swept_area = match.iloc[0, 7] # 扫风面积
|
||||
blade_diameter = match.iloc[0, 6] # 叶片直径
|
||||
rated_power = match.iloc[0, 1] # 额定功率(kW)
|
||||
swept_area = match.iloc[0, 7] # 扫风面积(m²)
|
||||
blade_diameter = match.iloc[0, 6] # 叶片直径(m)
|
||||
print(f"找到设备 '{device_name}',额定功率: {rated_power} KW, "
|
||||
f"扫风面积: {swept_area} m², 叶片直径: {blade_diameter} 米")
|
||||
return rated_power, swept_area, blade_diameter
|
||||
|
@ -59,123 +73,135 @@ def wind_farm_analysis(device_name, area_km2, electricity_price, file_path, lati
|
|||
except Exception as e:
|
||||
raise Exception(f"发生错误: {str(e)}")
|
||||
|
||||
def fetch_nasa_data(latitude, longitude, start_year="2023", end_year="2023"):
|
||||
"""
|
||||
从 NASA POWER API 获取 12 个月的平均气温和风速数据,不保存缓存
|
||||
"""
|
||||
try:
|
||||
url = (f"https://power.larc.nasa.gov/api/temporal/monthly/point?"
|
||||
f"parameters=T2M,WS10M&community=RE&longitude={longitude}&latitude={latitude}&"
|
||||
f"start={start_year}&end={end_year}&format=JSON")
|
||||
response = requests.get(url)
|
||||
response.raise_for_status() # 检查请求是否成功
|
||||
data = response.json()
|
||||
|
||||
# 提取气温和风速数据
|
||||
year = start_year
|
||||
temperatures = [data["properties"]["parameter"]["T2M"][f"{year}{str(i).zfill(2)}"] for i in range(1, 13)]
|
||||
wind_speeds = [data["properties"]["parameter"]["WS10M"][f"{year}{str(i).zfill(2)}"] for i in range(1, 13)]
|
||||
|
||||
# 检查数据完整性
|
||||
if len(temperatures) != 12 or len(wind_speeds) != 12:
|
||||
raise ValueError("NASA 数据不完整,未包含 12 个月的数据")
|
||||
|
||||
return temperatures, wind_speeds
|
||||
except requests.exceptions.HTTPError as http_err:
|
||||
raise Exception(f"HTTP 错误: {str(http_err)}\n响应内容: {response.text}")
|
||||
except Exception as e:
|
||||
raise Exception(f"从 NASA POWER API 获取数据时出错: {str(e)}")
|
||||
|
||||
def adjust_wind_speed(v_10m, h_ref=10, h_hub=100, alpha=0.143):
|
||||
"""根据风切变公式调整风速:v_hub = v_ref * (h_hub/h_ref)^alpha"""
|
||||
return v_10m * (h_hub / h_ref) ** alpha
|
||||
|
||||
def air_density(altitude, hub_height, T0):
|
||||
"""
|
||||
计算空气密度,考虑海拔和轮毂高度的影响
|
||||
参数:
|
||||
altitude (float): 海拔高度(m)
|
||||
hub_height (float): 轮毂高度(m)
|
||||
T0 (float): 地面平均气温(摄氏度)
|
||||
|
||||
返回:
|
||||
float: 空气密度(kg/m³)
|
||||
公式:
|
||||
ρ = (353.05 / T) * exp(-0.034 * (z / T))
|
||||
其中 T = T0 - LR * z + 273.15(T0为地面温度,LR为温度递减率,z为总高度)
|
||||
"""
|
||||
# 计算总高度(海拔 + 轮毂高度)
|
||||
z = altitude + hub_height
|
||||
# 温度递减率(lapse rate),每升高1米温度降低0.0065°C
|
||||
LR = 0.0065
|
||||
# 计算绝对温度(K),考虑高度引起的温度变化
|
||||
T = T0 - LR * z + 273.15
|
||||
# 计算空气密度
|
||||
return (353.05 / T) * math.exp(-0.034 * (z / T))
|
||||
|
||||
def wind_power_density(densities, wind_speeds):
|
||||
sum_rho_v3 = sum(rho * (v ** 3) for rho, v in zip(densities, wind_speeds))
|
||||
return (1 / (2 * 12)) * sum_rho_v3
|
||||
def wind_power_density(density, velocity_avg):
|
||||
"""
|
||||
计算风功率密度(单位面积的风能功率)
|
||||
参数:
|
||||
density (float): 空气密度(kg/m³)
|
||||
velocity_avg (float): 平均风速(m/s)
|
||||
返回:
|
||||
float: 风功率密度(W/m²)
|
||||
公式:
|
||||
P = 0.5 * ρ * v³(按照年平均风速来算)
|
||||
"""
|
||||
return 0.5 * density * velocity_avg**3
|
||||
|
||||
def estimated_wind_power(num_turbines, rated_power):
|
||||
"""
|
||||
计算风电场总装机容量
|
||||
|
||||
参数:
|
||||
num_turbines (int): 风机数量
|
||||
rated_power (float): 单台风机额定功率(kW)
|
||||
返回:
|
||||
float: 总装机容量(kW)
|
||||
"""
|
||||
if not isinstance(num_turbines, int) or num_turbines < 0:
|
||||
raise ValueError("风机数量必须为非负整数")
|
||||
return rated_power * num_turbines
|
||||
|
||||
def calculate_power_output(S, w, Cp, eta,num_turbines):
|
||||
return w * S * Cp * 8760 * eta *num_turbines
|
||||
def calculate_power_output(S, w, Cp, eta, num_turbines):
|
||||
"""
|
||||
计算风电场年发电量
|
||||
|
||||
参数:
|
||||
S (float): 扫风面积(m²)
|
||||
w (float): 风功率密度(W/m²)
|
||||
Cp (float): 风能利用系数
|
||||
eta (float): 系统效率
|
||||
num_turbines (int): 风机数量
|
||||
返回:
|
||||
float: 年发电量(Wh)
|
||||
公式:
|
||||
E = w * S * Cp * 8760 * η * N (N为风机个数)
|
||||
其中 8760 为一年小时数
|
||||
"""
|
||||
return w * S * Cp * 8760 * eta * num_turbines
|
||||
|
||||
def calculate_equivalent_hours(P, P_r):
|
||||
"""
|
||||
计算等效满负荷小时数
|
||||
参数:
|
||||
P (float): 年发电量(Wh)
|
||||
P_r (float): 单台风机额定功率(kW)
|
||||
返回:
|
||||
float: 等效小时数(小时)
|
||||
"""
|
||||
if P_r == 0:
|
||||
raise ValueError("额定功率不能为 0")
|
||||
#传入的P(发电量)wh,P_r(额定功率)Kw
|
||||
return (P / 1000) / P_r
|
||||
|
||||
def calculate_environmental_benefits(E_p_million_kwh):
|
||||
"""
|
||||
计算环境效益(减排量)
|
||||
|
||||
参数:
|
||||
E_p_million_kwh (float): 年发电量(万kWh)
|
||||
|
||||
返回:
|
||||
dict: 包含标准煤、CO₂、SO₂、NOx减排量的字典
|
||||
|
||||
假设:
|
||||
每万kWh可节约标准煤0.404吨,减排CO₂ 0.977吨,SO₂ 0.03吨,NOx 0.015吨
|
||||
"""
|
||||
if E_p_million_kwh < 0:
|
||||
raise ValueError("年发电量需≥0")
|
||||
return {
|
||||
"coal_reduction": E_p_million_kwh * 0.404 * 10,
|
||||
"CO2_reduction": E_p_million_kwh * 0.977 * 10,
|
||||
"SO2_reduction": E_p_million_kwh * 0.03 * 10,
|
||||
"NOX_reduction": E_p_million_kwh * 0.015 * 10
|
||||
"coal_reduction": E_p_million_kwh * 0.404 * 10, # kg
|
||||
"CO2_reduction": E_p_million_kwh * 0.977 * 10, # kg
|
||||
"SO2_reduction": E_p_million_kwh * 0.03 * 10, # kg
|
||||
"NOX_reduction": E_p_million_kwh * 0.015 * 10 # kg
|
||||
}
|
||||
|
||||
def calculate_reference_yield(E_p, electricity_price, IC, q, n=20):
|
||||
def npv_equation(irr, p, w, ic, q_val, n=n):
|
||||
term1 = (1 + irr) ** (-1)
|
||||
term2 = irr * (1 + irr) ** (-1) if irr != 0 else float('inf')
|
||||
pv_revenue = p * w * (term1 / term2) * (1 - (1 + irr) ** (-n))
|
||||
pv_salvage = q_val * ic * (term1 / term2) * (1 - (1 + irr) ** (-n))
|
||||
return pv_revenue - ic + pv_salvage
|
||||
|
||||
irr_guess = 0.1
|
||||
irr = float(fsolve(npv_equation, irr_guess, args=(E_p, electricity_price, IC, q))[0])
|
||||
if not 0 <= irr <= 1:
|
||||
raise ValueError(f"IRR计算结果{irr:.4f}不合理")
|
||||
return irr * 100
|
||||
|
||||
# 获取设备信息
|
||||
# 获取风机参数
|
||||
rated_power, swept_area, blade_diameter = get_wind_turbine_specs(device_name, file_path)
|
||||
|
||||
# 估算风机数量
|
||||
num_turbines = estimate_wind_turbine_count(area_km2, blade_diameter)
|
||||
|
||||
# 从 NASA POWER API 获取气温和风速数据
|
||||
monthly_temps, wind_speeds = fetch_nasa_data(latitude, longitude, start_year="2023", end_year="2023")
|
||||
|
||||
# 调整风速到轮毂高度
|
||||
wind_speeds = [adjust_wind_speed(v) for v in wind_speeds]
|
||||
|
||||
# 计算空气密度
|
||||
densities = [air_density(altitude, hub_height, T0) for T0 in monthly_temps]
|
||||
avg_density = sum(densities) / len(densities)
|
||||
avg_density = air_density(altitude, hub_height, avg_temp)
|
||||
|
||||
# 计算风功率密度 w/m2
|
||||
wpd = wind_power_density(densities, wind_speeds)
|
||||
# 计算风功率密度(W/m²)
|
||||
wpd = wind_power_density(avg_density, avg_wind_speed)
|
||||
|
||||
# 计算装机容量 KW
|
||||
# 计算总装机容量(kW)
|
||||
total_power = estimated_wind_power(num_turbines, rated_power)
|
||||
|
||||
# 计算初始投资成本
|
||||
IC = total_power * cost_per_kw * 1000
|
||||
# 计算年发电量(Wh)
|
||||
P_test = calculate_power_output(swept_area, wpd, Cp, eta, num_turbines)
|
||||
|
||||
# 计算年发电量 Wh
|
||||
P_test = calculate_power_output(swept_area, wpd, Cp, eta,num_turbines)
|
||||
|
||||
# 计算等效小时数 年发电量(Wh)/额定功率(KW)
|
||||
# 计算等效满负荷小时数
|
||||
h = calculate_equivalent_hours(P_test, rated_power)
|
||||
# 计算环境收益(转换为万 kWh)
|
||||
E_p_million_kwh = P_test / 10000000 # 转换为 万 kWh
|
||||
env_benefits = calculate_environmental_benefits(E_p_million_kwh)
|
||||
# 计算 IRR
|
||||
P_test_IRR = P_test/1000
|
||||
irr = calculate_reference_yield(P_test_IRR, electricity_price, IC, q)
|
||||
|
||||
# 返回结果
|
||||
# 转换为万kWh以计算环境效益
|
||||
E_p_million_kwh = P_test / 10000000
|
||||
env_benefits = calculate_environmental_benefits(E_p_million_kwh)
|
||||
|
||||
# 返回结果字典
|
||||
return {
|
||||
"device": device_name,
|
||||
"rated_power": rated_power,
|
||||
|
@ -184,35 +210,34 @@ def wind_farm_analysis(device_name, area_km2, electricity_price, file_path, lati
|
|||
"num_turbines": num_turbines,
|
||||
"avg_density": avg_density,
|
||||
"wpd": wpd,
|
||||
"total_power": total_power /1000, #变为了MW
|
||||
"annual_power_output": P_test/10000000 , # 万 kWh
|
||||
"total_power": total_power / 1000, # 转换为MW
|
||||
"annual_power_output": P_test / 10000000, # 转换为万kWh
|
||||
"equivalent_hours": h,
|
||||
"coal_reduction": env_benefits["coal_reduction"],
|
||||
"CO2_reduction": env_benefits["CO2_reduction"],
|
||||
"SO2_reduction": env_benefits["SO2_reduction"],
|
||||
"NOX_reduction": env_benefits["NOX_reduction"],
|
||||
"IRR": irr
|
||||
"NOX_reduction": env_benefits["NOX_reduction"]
|
||||
}
|
||||
|
||||
# 主程序
|
||||
if __name__ == "__main__":
|
||||
file_path = r"/home/zhaojh/workspace/GreenTransPowerCalculate/wind/wind_product.xlsx"
|
||||
|
||||
device_name = 'GW165-4.0'
|
||||
area_km2 = 10
|
||||
electricity_price = 0.6
|
||||
latitude = 39
|
||||
longitude = 116
|
||||
# 定义输入参数
|
||||
file_path = r".\wind_product.xlsx" # 风机参数文件路径
|
||||
device_name = 'GW165-4.0' # 风机型号
|
||||
area_km2 = 10 # 风电场面积(平方公里)
|
||||
avg_temp = 13.0 # 年平均气温(摄氏度)
|
||||
avg_wind_speed = 6 # 年平均风速(m/s)
|
||||
|
||||
# 调用风电场分析函数
|
||||
result = wind_farm_analysis(
|
||||
device_name=device_name,
|
||||
area_km2=area_km2,
|
||||
electricity_price=electricity_price,
|
||||
file_path=file_path,
|
||||
latitude=latitude,
|
||||
longitude=longitude
|
||||
avg_temp=avg_temp,
|
||||
avg_wind_speed=avg_wind_speed
|
||||
)
|
||||
|
||||
# 输出结果
|
||||
print(f"\n设备: {result['device']}")
|
||||
print(f"额定功率: {result['rated_power']:.2f} KW")
|
||||
print(f"扫风面积: {result['swept_area']:.2f} m^2")
|
||||
|
@ -223,8 +248,7 @@ if __name__ == "__main__":
|
|||
print(f"项目装机容量: {result['total_power']:.2f} MW")
|
||||
print(f"年发电量: {result['annual_power_output']:.3f} 万 kWh")
|
||||
print(f"等效小时数: {result['equivalent_hours']:.2f} 小时")
|
||||
print(f"标准煤减排量:{result['coal_reduction']:,.0f} kg")
|
||||
print(f"CO₂减排量:{result['CO2_reduction']:,.0f} kg")
|
||||
print(f"SO₂减排量:{result['SO2_reduction']:,.0f} kg")
|
||||
print(f"NOx减排量:{result['NOX_reduction']:,.0f} kg")
|
||||
print(f"内部收益率 IRR: {result['IRR']:.2f}%")
|
||||
|
||||
|
|
Loading…
Reference in New Issue