Compare commits

...

No commits in common. "master" and "3bb8c38050cb8f0265cc0f2b5c87f635e45369e6" have entirely different histories.

21 changed files with 1187 additions and 1272 deletions

View File

@ -1,9 +0,0 @@
FROM python:3.10
WORKDIR /app
COPY . /app/
RUN pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir
RUN pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-cache-dir
CMD ["python3", "run.py"]

View File

@ -1,19 +0,0 @@
pv_product.xlsx
含有光伏组件设备信息,例如设备名称、组件尺寸、最大功率、组件效率等
倾角_峰值小时数.xlsx
照城市简称确定安装角度即倾角、峰值日照时数较之前做了变动增加了一些城市和市级的json相匹配一部分没添加数值
中国_市.geojson
市一级别行政json图
PV_total.py
通过城市找倾角和峰值日照时数对比与PV_total3.py的区别
PV_total2.py
通过nasa的api接口获取10年-23年平均峰值日照时数
倾角 = 纬度(弧度) × 0.86 + 24
主要修改47-97行部分。
!注意!:需要挂梯子;计算的倾角在高纬度地区较之前较小,峰值日照时数较大。详细对照最后的结果
PV_total3.py
思路通过经纬度查找市json图对应的所在市区再通过”倾角_峰值小时数.xlsx“表格查找倾角和峰值日照时数
主要修改51-10行部分。
【Photovoltaic Panel Evaluation System v2.zip】为韩耀朋做的最新一版。

View File

@ -0,0 +1,583 @@
import pandas as pd
import math
import numpy as np
import requests
from scipy.optimize import fsolve
from tabulate import tabulate
# 默认文件路径
PV_EXCEL_PATH = r"./pv_product.xlsx" # 请确保此文件存在或更改为正确路径
# 地形类型与复杂性因子范围
TERRAIN_COMPLEXITY_RANGES = {
"distributed": {
"耕地": (1.0, 1.2), "裸地": (1.0, 1.2), "草地": (1.1, 1.3),
"灌木": (1.3, 1.5), "湿地": (1.5, 1.8), "林地": (1.5, 1.8), "建筑": (1.2, 1.5)
},
"centralized": {
"耕地": (1.0, 1.2), "裸地": (1.0, 1.2), "草地": (1.1, 1.3),
"灌木": (1.3, 1.6), "湿地": (1.5, 1.8), "林地": (1.6, 2.0)
},
"floating": {"水域": (1.2, 1.5)}
}
# 地形类型与土地可用性、发电效率的映射
TERRAIN_ADJUSTMENTS = {
"耕地": {"land_availability": 0.85, "K": 0.8}, "裸地": {"land_availability": 0.85, "K": 0.8},
"草地": {"land_availability": 0.85, "K": 0.8}, "灌木": {"land_availability": 0.75, "K": 0.75},
"湿地": {"land_availability": 0.65, "K": 0.75}, "水域": {"land_availability": 0.85, "K": 0.8},
"林地": {"land_availability": 0.65, "K": 0.7}, "建筑": {"land_availability": 0.6, "K": 0.75}
}
# 光伏类型的装机容量上限 (MW/平方千米)
CAPACITY_LIMITS = {
"distributed": 25.0, "centralized": 50.0, "floating": 25.0
}
# 实际面板间距系数
PANEL_SPACING_FACTORS = {
"distributed": 1.5, "centralized": 1.2, "floating": 1.3
}
def calculate_psh_average(lat, lon, start_year=2010, end_year=2023):
"""
NASA POWER API 获取峰值日照小时数PSH
返回平均 PSH小时/失败时返回默认值 4.0
"""
print("DEBUG: Starting calculate_psh_average (version 2025-04-28)")
url = "https://power.larc.nasa.gov/api/temporal/monthly/point"
params = {
"parameters": "ALLSKY_SFC_SW_DWN",
"community": "RE",
"longitude": lon,
"latitude": lat,
"format": "JSON",
"start": str(start_year),
"end": str(end_year)
}
try:
print(f"DEBUG: Requesting NASA POWER API for lat={lat}, lon={lon}")
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
print("DEBUG: API response received")
data = response.json()
print("DEBUG: Validating API data")
if "properties" not in data or "parameter" not in data["properties"]:
print("ERROR: NASA POWER API returned invalid data format")
return 4.0
ghi_data = data["properties"]["parameter"].get("ALLSKY_SFC_SW_DWN", {})
if not ghi_data:
print("ERROR: No GHI data found in API response")
return 4.0
print("DEBUG: Filtering GHI data")
print(f"DEBUG: Raw GHI data keys: {list(ghi_data.keys())}")
ghi_data = {k: v for k, v in ghi_data.items() if not k.endswith("13")}
if not ghi_data:
print("ERROR: No valid GHI data after filtering")
return 4.0
print(f"DEBUG: Filtered GHI data keys: {list(ghi_data.keys())}")
print("DEBUG: Creating DataFrame")
df = pd.DataFrame.from_dict(ghi_data, orient="index", columns=["GHI (kWh/m²/day)"])
print(f"DEBUG: Original DataFrame index: {list(df.index)}")
print("DEBUG: Reformatting DataFrame index")
new_index = []
for k in df.index:
try:
# 验证索引格式
if not (isinstance(k, str) and len(k) == 6 and k.isdigit()):
print(f"ERROR: Invalid index format for {k}")
return 4.0
year = k[:4]
month = k[-2:]
formatted_index = f"{year}-{month:0>2}" # 使用 :0>2 确保两位数字
print(f"DEBUG: Formatting index {k} -> {formatted_index}")
new_index.append(formatted_index)
except Exception as e:
print(f"ERROR: Failed to format index {k}: {e}")
return 4.0
df.index = new_index
print(f"DEBUG: Reformatted DataFrame index: {list(df.index)}")
if df.empty:
print("ERROR: DataFrame is empty")
return 4.0
print("DEBUG: Calculating PSH")
df["PSH (hours/day)"] = df["GHI (kWh/m²/day)"]
if df["PSH (hours/day)"].isna().any():
print("ERROR: PSH data contains invalid values")
return 4.0
print("DEBUG: Grouping by year")
df['Year'] = df.index.str[:4]
print(f"DEBUG: Year column: {list(df['Year'])}")
annual_avg = df.groupby('Year')['PSH (hours/day)'].mean()
print(f"DEBUG: Annual averages: {annual_avg.to_dict()}")
if annual_avg.empty:
print("ERROR: Annual average PSH data is empty")
return 4.0
print("DEBUG: Calculating final PSH")
psh = annual_avg.mean()
if math.isnan(psh):
print("ERROR: PSH calculation resulted in NaN")
return 4.0
print(f"DEBUG: PSH calculated successfully, value={psh:.2f}")
print(f"获取成功平均PSH: {psh:.2f} 小时/天")
return psh
except requests.exceptions.RequestException as e:
print(f"ERROR: NASA POWER API request failed: {e}")
return 4.0
except Exception as e:
print(f"ERROR: Error processing API data: {e}")
return 4.0
def calculate_optimal_tilt(lat):
"""根据纬度计算最佳倾角(单位:度)"""
try:
lat_abs = abs(lat)
if lat_abs < 25:
optimal_tilt = lat_abs * 0.87
elif lat_abs <= 50:
optimal_tilt = lat_abs * 0.76 + 3.1
else:
optimal_tilt = lat_abs * 0.5 + 16.3
return optimal_tilt
except ValueError as e:
raise Exception(f"倾角计算错误: {e}")
def pv_area(panel_capacity, slope_deg, shading_factor=0.1, land_compactness=1.0, terrain_complexity=1.0):
"""计算单块光伏组件占地面积"""
base_area = panel_capacity * 6
slope_factor = 1 + (slope_deg / 50) if slope_deg <= 15 else 1.5
shade_factor = 1 + shading_factor * 2
compact_factor = 1 / land_compactness if land_compactness > 0 else 1.5
terrain_factor = terrain_complexity
return base_area * slope_factor * shade_factor * compact_factor * terrain_factor
def calculate_pv_potential(available_area_sq_km, component_name, longitude, latitude, slope_deg=10,
shading_factor=0.1, land_compactness=0.8, terrain_complexity=1.2,
terrain_type="耕地", pv_type="centralized", land_availability=0.85,
min_irradiance=800, max_slope=25, electricity_price=0.65, q=0.02,
is_fixed=True, optimize=True, peak_load_hour=16, cost_per_kw=3.4,
E_S=1.0, K=0.8, project_lifetime=25, discount_rate=0.06):
"""计算最小和最大组件数量的光伏系统潜力"""
# 输入验证
if available_area_sq_km <= 0:
raise ValueError("可用面积必须大于0")
if slope_deg < 0 or slope_deg > max_slope:
raise ValueError(f"坡度必须在0-{max_slope}度之间")
# 转换为公顷
available_area_hectares = available_area_sq_km * 100
# 验证光伏类型与地形类型
valid_terrains = TERRAIN_COMPLEXITY_RANGES.get(pv_type, {})
if terrain_type not in valid_terrains:
raise ValueError(f"{pv_type} 光伏不支持 {terrain_type} 地形。可选地形:{list(valid_terrains.keys())}")
# 获取地形调整参数
terrain_adjustments = TERRAIN_ADJUSTMENTS.get(terrain_type, {"land_availability": 0.85, "K": 0.8})
adjusted_land_availability = terrain_adjustments["land_availability"] / max(1.0, terrain_complexity)
adjusted_K = terrain_adjustments["K"] / max(1.0, terrain_complexity)
# 获取组件信息
pv_info = get_pv_product_info(component_name)
single_panel_capacity = pv_info["max_power"] / 1000 # kWp
pv_size = pv_info["pv_size"].split("×")
panel_length = float(pv_size[0]) / 1000 # 米
panel_width = float(pv_size[1]) / 1000 # 米
panel_area_sqm = panel_length * panel_width
# 获取阵列间距
tilt, azimuth = get_tilt_and_azimuth(is_fixed, optimize, longitude, latitude, peak_load_hour)
array_distance = calculate_array_distance(panel_width * 1.1, tilt, latitude)
spacing_factor = PANEL_SPACING_FACTORS.get(pv_type, 1.2)
adjusted_array_distance = array_distance * spacing_factor
# 计算有效面积
effective_area_hectares = available_area_hectares * adjusted_land_availability
effective_area_sqm = effective_area_hectares * 10000
# 计算每MW占地面积
area_per_mw = 10000 * (1 + slope_deg / 50 if slope_deg <= 15 else 1.5) * (
1 + shading_factor * 2) * terrain_complexity * spacing_factor
# 容量密度限制 (kW/m²)
capacity_density_limit = CAPACITY_LIMITS.get(pv_type, 5.0) / 1000
max_capacity_by_density = effective_area_sqm * capacity_density_limit
# 计算单块组件占地面积
row_spacing = panel_length * math.sin(math.radians(tilt)) + adjusted_array_distance
effective_panel_area = panel_area_sqm * (row_spacing / panel_length) * 1.2
# 调整 min/max 布局以确保差异
min_area_per_panel = effective_panel_area * 0.8 # 密集布局
max_area_per_panel = effective_panel_area * 1.5 # 稀疏布局
max_panels = math.floor(effective_area_sqm / min_area_per_panel)
min_panels = math.floor(effective_area_sqm / max_area_per_panel)
# 计算装机容量
max_capacity_raw = calculate_installed_capacity(pv_info["max_power"], max_panels)
min_capacity_raw = calculate_installed_capacity(pv_info["max_power"], min_panels)
# 应用容量密度限制
max_capacity = min(max_capacity_raw, max_capacity_by_density)
min_capacity = min(min_capacity_raw, max_capacity_by_density * 0.8) # 稀疏布局取80%
# 检查理论上限
theoretical_max_capacity_mw = available_area_sq_km * CAPACITY_LIMITS.get(pv_type, 5.0)
if max_capacity / 1000 > theoretical_max_capacity_mw:
max_capacity = theoretical_max_capacity_mw * 1000
max_panels = math.floor(max_capacity * 1000 / pv_info["max_power"])
if min_capacity / 1000 > theoretical_max_capacity_mw * 0.8:
min_capacity = theoretical_max_capacity_mw * 1000 * 0.8
min_panels = math.floor(min_capacity * 1000 / pv_info["max_power"])
# 计算指标
min_metrics = calculate_pv_metrics(
component_name=component_name, electricity_price=electricity_price, pv_number=min_panels,
q=q, longitude=longitude, latitude=latitude, is_fixed=is_fixed, optimize=optimize,
peak_load_hour=peak_load_hour, cost_per_kw=cost_per_kw * terrain_complexity, E_S=E_S, K=adjusted_K,
override_capacity=min_capacity
)
min_lcoe = calculate_lcoe(
capacity=min_metrics["capacity"], annual_energy=min_metrics["annual_energy"],
cost_per_kw=cost_per_kw * terrain_complexity, q=q, project_lifetime=project_lifetime,
discount_rate=discount_rate
)
max_metrics = calculate_pv_metrics(
component_name=component_name, electricity_price=electricity_price, pv_number=max_panels,
q=q, longitude=longitude, latitude=latitude, is_fixed=is_fixed, optimize=optimize,
peak_load_hour=peak_load_hour, cost_per_kw=cost_per_kw * terrain_complexity, E_S=E_S, K=adjusted_K,
override_capacity=max_capacity
)
max_lcoe = calculate_lcoe(
capacity=max_metrics["capacity"], annual_energy=max_metrics["annual_energy"],
cost_per_kw=cost_per_kw * terrain_complexity, q=q, project_lifetime=project_lifetime,
discount_rate=discount_rate
)
# 警告
if min_panels == max_panels:
print(f"警告:最小和最大组件数量相同 ({min_panels}),请检查地形复杂性或面积是否过小")
if min_panels == 0 or max_panels == 0:
print(f"警告组件数量为0请检查输入参数")
# 返回结果
return {
"min_case": {
**min_metrics, "lcoe": min_lcoe, "actual_panels": min_panels,
"available_area_sq_km": available_area_sq_km, "available_area_hectares": available_area_hectares,
"effective_area_hectares": effective_area_hectares, "panel_area_sqm": max_area_per_panel,
"terrain_type": terrain_type, "pv_type": pv_type, "theoretical_max_capacity_mw": theoretical_max_capacity_mw
},
"max_case": {
**max_metrics, "lcoe": max_lcoe, "actual_panels": max_panels,
"available_area_sq_km": available_area_sq_km, "available_area_hectares": available_area_hectares,
"effective_area_hectares": effective_area_hectares, "panel_area_sqm": min_area_per_panel,
"terrain_type": terrain_type, "pv_type": pv_type, "theoretical_max_capacity_mw": theoretical_max_capacity_mw
}
}
def calculate_lcoe(capacity, annual_energy, cost_per_kw, q, project_lifetime=25, discount_rate=0.06):
"""计算平准化度电成本(LCOE)"""
total_investment = capacity * cost_per_kw * 1000
annual_om_cost = total_investment * q
discount_factors = [(1 + discount_rate) ** -t for t in range(1, project_lifetime + 1)]
discounted_energy = sum(annual_energy * discount_factors[t] for t in range(project_lifetime))
discounted_costs = total_investment + sum(annual_om_cost * discount_factors[t] for t in range(project_lifetime))
if discounted_energy == 0:
return float('inf')
return discounted_costs / discounted_energy
def get_pv_product_info(component_name, excel_path=PV_EXCEL_PATH):
"""从Excel获取光伏组件信息"""
try:
df = pd.read_excel(excel_path)
if len(df.columns) < 10:
raise ValueError("Excel文件需包含至少10列组件名称、尺寸、功率等")
row = df[df.iloc[:, 1] == component_name]
if row.empty:
raise ValueError(f"未找到组件:{component_name}")
return {
"component_name": component_name,
"max_power": row.iloc[0, 5],
"efficiency": row.iloc[0, 9],
"pv_size": row.iloc[0, 3]
}
except FileNotFoundError:
raise FileNotFoundError(f"未找到Excel文件{excel_path}")
except Exception as e:
raise Exception(f"读取Excel出错{e}")
def get_tilt_and_azimuth(is_fixed=True, optimize=True, longitude=116, latitude=None, peak_load_hour=16):
"""计算光伏系统的倾角和方位角"""
if optimize and latitude is None:
raise ValueError("优化模式下需提供纬度")
if is_fixed:
if optimize:
tilt = calculate_optimal_tilt(latitude)
azimuth = (peak_load_hour - 12) * 15 + (longitude - 116)
azimuth = azimuth % 360 if azimuth >= 0 else azimuth + 360
else:
print("倾角0°(水平)-90°(垂直) | 方位角0°(正北)-180°(正南),顺时针")
tilt = float(input("请输入倾角(度)"))
azimuth = float(input("请输入方位角(度)"))
if not (0 <= tilt <= 90) or not (0 <= azimuth <= 360):
raise ValueError("倾角需在0-90°方位角需在0-360°")
else:
azimuth = 180
if optimize:
tilt = calculate_optimal_tilt(latitude)
else:
print("倾角0°(水平)-90°(垂直)")
tilt = float(input("请输入倾角(度)"))
if not (0 <= tilt <= 90):
raise ValueError("倾角需在0-90°")
return tilt, azimuth
def calculate_array_distance(L, tilt, latitude):
"""计算阵列间距"""
beta_rad = math.radians(tilt)
phi_rad = math.radians(latitude)
return (L * math.cos(beta_rad) +
L * math.sin(beta_rad) * 0.707 * math.tan(phi_rad) +
0.4338 * math.tan(phi_rad))
def calculate_equivalent_hours(P, P_r):
"""计算等效小时数"""
if P_r == 0:
raise ValueError("额定功率不能为 0")
return P / P_r
def calculate_installed_capacity(max_power, num_components):
"""计算装机容量"""
if max_power < 0 or num_components < 0 or not isinstance(num_components, int):
raise ValueError("功率和数量需为非负数,数量需为整数")
return (max_power * num_components) / 1000 # 单位kW
def calculate_annual_energy(peak_hours, capacity, E_S=1.0, K=0.8):
"""计算年发电量"""
if any(x < 0 for x in [peak_hours, capacity]) or E_S <= 0 or not 0 <= K <= 1:
raise ValueError("输入参数需满足辐射量、容量≥0E_S>0K∈[0,1]")
return peak_hours * 365 * (capacity / E_S) * K # 单位kWh
def calculate_environmental_benefits(E_p_million_kwh):
"""计算环境收益"""
if E_p_million_kwh < 0:
raise ValueError("年发电量需≥0")
return {
"coal_reduction": E_p_million_kwh * 0.404 * 10,
"CO2_reduction": E_p_million_kwh * 0.977 * 10,
"SO2_reduction": E_p_million_kwh * 0.03 * 10,
"NOX_reduction": E_p_million_kwh * 0.015 * 10
}
def calculate_reference_yield(E_p, electricity_price, IC, q, n=25):
"""计算净现值(NPV)和内部收益率(IRR)"""
if E_p < 0 or electricity_price < 0 or IC <= 0 or not 0 <= q <= 1:
raise ValueError("发电量、电价≥0投资成本>0回收比例∈[0,1]")
def npv_equation(irr, p, w, ic, q_val, n=n):
term1 = (1 + irr) ** (-1)
term2 = irr * (1 + irr) ** (-1) if irr != 0 else float('inf')
pv_revenue = p * w * (term1 / term2) * (1 - (1 + irr) ** (-n))
pv_salvage = q_val * ic * (term1 / term2) * (1 - (1 + irr) ** (-n))
return pv_revenue - ic + pv_salvage
irr_guess = 0.1
irr = float(fsolve(npv_equation, irr_guess, args=(E_p, electricity_price, IC, q))[0])
if not 0 <= irr <= 1:
raise ValueError(f"IRR计算结果{irr:.4f}不合理,请检查输入")
npv = npv_equation(irr, E_p, electricity_price, IC, q)
return {"NPV": npv, "IRR": irr * 100}
def calculate_pv_metrics(component_name, electricity_price, pv_number, q, longitude, latitude,
is_fixed=True, optimize=True, peak_load_hour=16, cost_per_kw=3.4, E_S=1.0, K=0.8,
override_capacity=None):
"""计算光伏项目的各项指标"""
try:
tilt, azimuth = get_tilt_and_azimuth(is_fixed, optimize, longitude, latitude, peak_load_hour)
pv_info = get_pv_product_info(component_name)
width_mm = float(pv_info["pv_size"].split("×")[1])
L = (width_mm / 1000) * 1.1
array_distance = calculate_array_distance(L, tilt, latitude)
max_power = pv_info["max_power"]
# 使用提供的容量或计算容量
if override_capacity is not None:
capacity = override_capacity
else:
capacity = calculate_installed_capacity(max_power, pv_number)
# 使用NASA API获取峰值日照小时数
peak_hours = calculate_psh_average(latitude, longitude)
single_daily_energy = peak_hours * (capacity / pv_number) * K if pv_number > 0 else 0
E_p = calculate_annual_energy(peak_hours, capacity, E_S, K)
h = calculate_equivalent_hours(E_p, capacity) if capacity > 0 else 0
E_p_million_kwh = E_p / 1000000
env_benefits = calculate_environmental_benefits(E_p_million_kwh)
IC = capacity * cost_per_kw * 1000
ref_yield = calculate_reference_yield(E_p, electricity_price, IC, q)
return {
"longitude": longitude,
"latitude": latitude,
"component_name": component_name,
"tilt": tilt,
"azimuth": azimuth,
"array_distance": array_distance,
"max_power": max_power,
"capacity": capacity,
"peak_sunshine_hours": peak_hours,
"single_daily_energy": single_daily_energy,
"annual_energy": E_p,
"equivalent_hours": h,
"coal_reduction": env_benefits["coal_reduction"],
"CO2_reduction": env_benefits["CO2_reduction"],
"SO2_reduction": env_benefits["SO2_reduction"],
"NOX_reduction": env_benefits["NOX_reduction"],
"IRR": ref_yield["IRR"]
}
except Exception as e:
raise Exception(f"计算过程中发生错误: {str(e)}")
def print_result(min_case, max_case):
"""优化输出格式,使用表格展示结果"""
headers = ["指标", "最小组件数量", "最大组件数量"]
table_data = [
["经度", f"{min_case['longitude']:.2f}", f"{max_case['longitude']:.2f}"],
["纬度", f"{min_case['latitude']:.2f}", f"{max_case['latitude']:.2f}"],
["光伏类型", min_case["pv_type"], max_case["pv_type"]],
["地形类型", min_case["terrain_type"], max_case["terrain_type"]],
["组件型号", min_case["component_name"], max_case["component_name"]],
["识别面积 (平方千米)", f"{min_case['available_area_sq_km']:.2f}", f"{max_case['available_area_sq_km']:.2f}"],
["识别面积 (公顷)", f"{min_case['available_area_hectares']:.2f}", f"{max_case['available_area_hectares']:.2f}"],
["有效面积 (公顷)", f"{min_case['effective_area_hectares']:.2f}", f"{max_case['effective_area_hectares']:.2f}"],
["理论最大容量 (MW)", f"{min_case['theoretical_max_capacity_mw']:.2f}",
f"{max_case['theoretical_max_capacity_mw']:.2f}"],
["单块组件占地 (m²)", f"{min_case['panel_area_sqm']:.2f}", f"{max_case['panel_area_sqm']:.2f}"],
["组件数量", f"{min_case['actual_panels']:,}", f"{max_case['actual_panels']:,}"],
["倾角 (度)", f"{min_case['tilt']:.2f}", f"{max_case['tilt']:.2f}"],
["方位角 (度)", f"{min_case['azimuth']:.2f}", f"{max_case['azimuth']:.2f}"],
["阵列间距 (m)", f"{min_case['array_distance']:.2f}", f"{max_case['array_distance']:.2f}"],
["单块功率 (Wp)", f"{min_case['max_power']}", f"{max_case['max_power']}"],
["装机容量 (MW)", f"{min_case['capacity'] / 1000:.2f}", f"{max_case['capacity'] / 1000:.2f}"],
["峰值日照 (小时/天)", f"{min_case['peak_sunshine_hours']:.2f}", f"{max_case['peak_sunshine_hours']:.2f}"],
["年发电量 (kWh)", f"{min_case['annual_energy']:,.0f}", f"{max_case['annual_energy']:,.0f}"],
["等效小时数", f"{min_case['equivalent_hours']:.2f}", f"{max_case['equivalent_hours']:.2f}"],
["LCOE (元/kWh)", f"{min_case['lcoe']:.4f}", f"{max_case['lcoe']:.4f}"],
["标准煤减排 (kg)", f"{min_case['coal_reduction']:,.0f}", f"{max_case['coal_reduction']:,.0f}"],
["CO₂减排 (kg)", f"{min_case['CO2_reduction']:,.0f}", f"{max_case['CO2_reduction']:,.0f}"],
["SO₂减排 (kg)", f"{min_case['SO2_reduction']:,.0f}", f"{max_case['SO2_reduction']:,.0f}"],
["NOx减排 (kg)", f"{min_case['NOX_reduction']:,.0f}", f"{max_case['NOX_reduction']:,.0f}"],
["IRR (%)", f"{min_case['IRR']:.2f}", f"{max_case['IRR']:.2f}"]
]
print("\n===== 光伏系统潜力评估结果 =====")
print(tabulate(table_data, headers=headers, tablefmt="grid"))
# 主程序
if __name__ == "__main__":
while True:
try:
# 输入参数
print("\n======= 光伏系统潜力评估 =======")
print("请输入以下必要参数:")
# 输入经纬度
latitude = float(input("请输入纬度(-90到90例如39.9"))
if not -90 <= latitude <= 90:
raise ValueError("纬度必须在-90到90之间")
longitude = float(input("请输入经度(-180到180例如116.4"))
if not -180 <= longitude <= 180:
raise ValueError("经度必须在-180到180之间")
# 输入可用面积
available_area_sq_km = float(input("请输入识别面积平方千米例如10"))
if available_area_sq_km <= 0:
raise ValueError("识别面积必须大于0")
# 输入光伏类型
pv_type = input("请输入光伏类型distributed, centralized, floating").lower()
if pv_type not in ["distributed", "centralized", "floating"]:
raise ValueError("光伏类型必须是 distributed, centralized 或 floating")
# 输入地形类型
valid_terrains = list(TERRAIN_COMPLEXITY_RANGES.get(pv_type, {}).keys())
print(f"支持的地形类型:{valid_terrains}")
terrain_type = input("请输入地形类型:")
if terrain_type not in valid_terrains:
raise ValueError(f"不支持的地形类型:{terrain_type}")
# 输入组件型号
component_name = input("请输入光伏组件型号需在Excel中存在例如M10-72H")
# 输入其他参数
slope_deg = float(input("请输入地形坡度0-25例如10"))
if not 0 <= slope_deg <= 25:
raise ValueError("坡度必须在0-25度之间")
terrain_complexity = float(input("请输入地形复杂性因子参考范围1.0-2.0例如1.2"))
min_complexity, max_complexity = TERRAIN_COMPLEXITY_RANGES[pv_type][terrain_type]
if not min_complexity <= terrain_complexity <= max_complexity:
raise ValueError(f"地形复杂性因子必须在 {min_complexity}-{max_complexity} 之间")
electricity_price = float(input("请输入电价(元/kWh例如0.65"))
if electricity_price < 0:
raise ValueError("电价必须非负")
# 计算光伏潜力
result = calculate_pv_potential(
available_area_sq_km=available_area_sq_km,
component_name=component_name,
longitude=longitude,
latitude=latitude,
slope_deg=slope_deg,
terrain_complexity=terrain_complexity,
terrain_type=terrain_type,
pv_type=pv_type,
electricity_price=electricity_price
)
# 输出结果
print_result(result["min_case"], result["max_case"])
# 询问是否继续
if input("\n是否继续评估?(y/n)").lower() != 'y':
break
except ValueError as ve:
print(f"输入错误:{ve}")
except FileNotFoundError as fe:
print(f"文件错误:{fe}")
except Exception as e:
print(f"发生错误:{e}")
print("请重新输入参数或检查错误。\n")

View File

@ -0,0 +1,19 @@
目的:修改之前代码,其中输入经纬度进行倾角和峰值日照时数的查询(不通过城市)。
【1】文件夹
pv_product.xlsx
为组件,相较之前没有改变
倾角_峰值小时数.xlsx
为通过城市查的倾角和峰值时数做了变动增加了一些城市和市级的json相匹配一部分没添加数值
中国_市.geojson
市一级别行政json图
PV_total3.py
思路通过经纬度查找市json图对应的所在市区再通过”倾角_峰值小时数.xlsx“表格查找倾角和峰值日照时数
主要修改51-10行部分。
【2】文件夹
PV_total2.py
通过nasa的api接口获取10年-23年平均峰值日照时数
倾角 = 纬度(弧度) × 0.86 + 24
主要修改47-97行部分。
!注意!:需要挂梯子;计算的倾角在高纬度地区较之前较小,峰值日照时数较大。详细对照最后的结果

View File

View File

@ -1,12 +0,0 @@
{
"default_terrain_complexity": {
"耕地": 1.1,
"裸地": 1.1,
"草地": 1.2,
"灌木": 1.4,
"湿地": 1.65,
"林地": 1.65,
"建筑": 1.35,
"水域": 1.35
}
}

102
readme.md
View File

@ -1,102 +0,0 @@
# 文件夹说明
### 【PV文件夹】
- 分为了**两个运行代码**pv_total2.py和pv_total3.py查看说明.txt文件。
#### **pv_total2.py**
- **输入参数**
- 请输入纬度(-90 到 90例如 39.904239
- 请输入经度(-180 到 180例如 116.4074116
- 组件名称TWMND-72HD580
- 电价0.6 元/kWh
- 光伏支架:固定式
- 是否优化倾角和方位角:是
- **输出结果**
- 组件名称TWMND-72HD580
- 倾角24.59° | 方位角60.00°
- 阵列间距5.56 米
- 单个组件最大功率Wp580
- 装机容量696.00 kW
- 峰值日照小时数3.99 小时/天
- 一天单个组件发电量2 kWh
- 年发电量810,000 kWh
- 等效小时数1164 小时
- **环境收益**
- 标准煤减排量3 kg
- CO₂减排量8 kg
- SO₂减排量0 kg
- NOx减排量0 kg
- 内部收益率 IRR22.39%
#### **pv_total3.py**
- **输入参数**
- 请输入纬度(-90 到 90例如 39.904239
- 请输入经度(-180 到 180例如 116.4074116
- 组件名称TWMND-72HD580
- 电价0.6 元/kWh
- 光伏支架:固定式
- 是否优化倾角和方位角:是
- **输出结果**
- 组件名称TWMND-72HD580
- 倾角32.00° | 方位角60.00°
- 阵列间距5.57 米
- 单个组件最大功率Wp580
- 装机容量696.00 kW
- 峰值日照小时数4.10 小时/天
- 一天单个组件发电量2 kWh
- 年发电量33,251 kWh
- 等效小时数1197 小时
- **环境收益**
- 标准煤减排量3 kg
- CO₂减排量8 kg
- SO₂减排量0 kg
- NOx减排量0 kg
- 内部收益率 IRR23.00%
- **解释说明**
-两个代码执行看文件夹中的说明(根据需要使用)。倾角和峰值日照时数不同。
- 组件名称:从 `pv_product.xlsx` 中获取
- 光伏支架:分为固定式和跟踪式
- 是否优化:如果优化,则按照 `倾角_峰值小时数.xlsx` 中的数据
- 固定式/跟踪式 + 优化/不优化可以随意组合
- 光伏个数:暂时按照默认值 1200区域内可安装光伏个数后续韩耀朋优化
---
### 【Wind文件夹】
#### **temperature.txt**
- 某地区12个月份的平均气温后续需要替换为实际温度
#### **wind_product.xlsx**
- 含有风机设备信息,例如设备名称、额定功率、叶轮直径、扫风面积和轮毂高度等
#### **wind_speed.txt**
- 某地区12个月的平均风速后续需要替换为实际风速
#### **wind_total.py**
- **风机相关封装函数**
- **注意**
- 需要输入:设备名称、风电场面积(后续可替换为预测值)、当地电价
- **示例**
- 输入:
- 请输入设备名称: GWH191-4.0
- 请输入风电场面积(平方公里): 10
- 请输入电价(元/kWh: 0.6
- 输出:
- 找到设备 'GWH191-4.0',额定功率: 4.0 MW, 扫风面积: 28652 m², 叶片直径: 191 米
- 单台风机占地面积: 1,824,050 平方米 (横向间距: 955 米, 纵向间距: 1910 米)
- 估算风机数量: 5 台
- 设备: GWH191-4.0
- 额定功率: 4.00 MW
- 扫风面积: 28652.00 m^2
- 叶片直径: 191.00 m
- 风机数量: 5 台
- 平均空气密度: 1.205 kg/m^3
- 风功率密度: 63.93 W/m^2
- 项目装机容量: 20.00 MW
- 年发电量: 2888.404 万 kWh
- 等效小时数: 7221.01 小时
- 内部收益率 IRR: 18.70%

View File

@ -1,9 +0,0 @@
numpy==1.22.0
pandas==1.5.3
scikit_learn==1.2.1
xlrd==2.0.1
logzero==1.7.0
scipy==1.11.4
flask==3.1.0
requests==2.31.0
openpyxl==3.1.2

90
run.py
View File

@ -1,90 +0,0 @@
# -*-coding:utf-8-*-
import os
import json
from flask import Flask, request, make_response, jsonify
from logzero import logger
current_path = os.path.dirname(os.path.abspath(__file__)) # for local
wind_product_path = f"{current_path}/wind/wind_product.xlsx"
# current_path = "/app" # for docker
logger.info(f"{current_path}")
app = Flask(__name__)
from pv.eva_pv import calculate_pv_potential, get_slope_from_api
from wind.wind_total import wind_farm_analysis
terrain_config = {
"耕地": 1.1, "裸地": 1.1, "草地": 1.2, "灌木": 1.4,
"湿地": 1.65, "林地": 1.65, "建筑": 1.35, "水域": 1.35
}
@app.route('/pv_power/', methods=["POST"])
def get_pv_potential():
resp_info = dict()
if request.method == "POST":
logger.info(request.get_json())
latitude = request.json.get('latitude')
longitude = request.json.get('longitude')
available_area_sq_km = float(request.json.get('available_area_sq_km'))
pv_type = request.json.get('pv_type')
terrain_type = request.json.get('terrain_type')
component_name = request.json.get('component_name')
electricity_price = float(request.json.get('electricity_price'))
terrain_complexity = terrain_config.get(terrain_type)
try:
# 通过 API 获取坡度
slope_deg = get_slope_from_api(latitude, longitude)
logger.info(f"使用参数:坡度={slope_deg:.2f}°,地形复杂性因子={terrain_complexity}")
pv_potential = calculate_pv_potential(
available_area_sq_km=available_area_sq_km,
component_name=component_name,
longitude=longitude,
latitude=latitude,
slope_deg=slope_deg,
terrain_complexity=terrain_complexity,
pv_type=pv_type,
terrain_type=terrain_type,
electricity_price=electricity_price
)
resp_info["code"] = 200
resp_info["data"] = pv_potential
except Exception as e:
logger.info(e)
resp_info["code"] = 406
resp_info["data"] = str(e)
resp = make_response(json.dumps(resp_info))
resp.status_code = 200
return resp
@app.route('/wind_power/', methods=["POST"])
def get_wind_potential():
resp_info = dict()
if request.method == "POST":
area_km2 = float(request.json.get('available_area_sq_km'))
device_name = request.json.get('component_name')
electricity_price = float(request.json.get('electricity_price'))
v_avg = float(request.json.get("velocity_avg"))
t_avg = float(request.json.get("temp_avg"))
try:
wind_potential = wind_farm_analysis(
device_name=device_name,
area_km2=area_km2,
electricity_price=electricity_price,
file_path=wind_product_path,
velocity_avg=v_avg,
T_avg=t_avg
)
resp_info["code"] = 200
resp_info["data"] = wind_potential
except Exception as e:
logger.info(e)
resp_info["code"] = 406
resp_info["data"] = str(e)
resp = make_response(json.dumps(resp_info))
resp.status_code = 200
return resp
if __name__ == '__main__':
app.run(port=12123, host="0.0.0.0", debug=False)

View File

View File

@ -1,254 +0,0 @@
import pandas as pd
import math
def wind_farm_analysis(device_name, area_km2, file_path, avg_temp, avg_wind_speed,
lateral_spacing_factor=5, longitudinal_spacing_factor=10, altitude=11,
hub_height=100, Cp=0.45, eta=0.8):
"""
封装函数分析风电场的风机数量及各项经济和技术指标直接输入年平均气温和年平均风速
参数
device_name (str): 风力发电机型号名称
area_km2 (float): 风电场面积平方公里
file_path (str): 包含风机参数的Excel文件路径
avg_temp (float): 年平均气温摄氏度
avg_wind_speed (float): 年平均风速m/s
lateral_spacing_factor (float): 横向间距因子默认为5倍叶片直径5D
longitudinal_spacing_factor (float): 纵向间距因子默认为10倍叶片直径10D
altitude (float): 海拔高度m默认11m
hub_height (float): 轮毂高度m默认100m
Cp (float): 风能利用系数功率系数默认0.45反映风能转换效率
eta (float): 总系统效率包括机械和电气效率默认0.8
返回
dict: 包含风电场分析结果的字典包括装机容量发电量环境效益等
"""
def estimate_wind_turbine_count(area_km2, blade_diameter):
"""
估算风电场可容纳的风机数量基于面积和风机间距
参数
area_km2 (float): 风电场面积平方公里
blade_diameter (float): 风机叶片直径m
返回
int: 估算的风机数量
"""
# 将面积从平方公里转换为平方米
area_m2 = area_km2 * 1_000_000
# 计算横向和纵向间距(以叶片直径为单位)
lateral_spacing = lateral_spacing_factor * blade_diameter
longitudinal_spacing = longitudinal_spacing_factor * blade_diameter
# 单台风机占地面积 = 横向间距 * 纵向间距
turbine_area = lateral_spacing * longitudinal_spacing
# 风机数量 = 总面积 / 单台风机占地面积(取整数)
turbine_count = int(area_m2 / turbine_area)
print(f"单台风机占地面积: {turbine_area:,} 平方米 "
f"(横向间距: {lateral_spacing} 米, 纵向间距: {longitudinal_spacing} 米)")
print(f"估算风机数量: {turbine_count}")
return turbine_count
def get_wind_turbine_specs(device_name, file_path):
"""
从Excel文件中获取指定风机的参数
参数
device_name (str): 风机型号名称
file_path (str): Excel文件路径
返回
tuple: 额定功率kW扫风面积叶片直径m
"""
try:
# 读取Excel文件
df = pd.read_excel(file_path)
# 查找匹配的设备名称
match = df[df.iloc[:, 0] == device_name]
if not match.empty:
rated_power = match.iloc[0, 1] # 额定功率kW
swept_area = match.iloc[0, 7] # 扫风面积
blade_diameter = match.iloc[0, 6] # 叶片直径m
print(f"找到设备 '{device_name}',额定功率: {rated_power} KW, "
f"扫风面积: {swept_area} m², 叶片直径: {blade_diameter}")
return rated_power, swept_area, blade_diameter
else:
raise ValueError(f"未找到设备名称: {device_name}")
except FileNotFoundError:
raise FileNotFoundError(f"文件未找到: {file_path}")
except Exception as e:
raise Exception(f"发生错误: {str(e)}")
def air_density(altitude, hub_height, T0):
"""
计算空气密度考虑海拔和轮毂高度的影响
参数
altitude (float): 海拔高度m
hub_height (float): 轮毂高度m
T0 (float): 地面平均气温摄氏度
返回
float: 空气密度kg/
公式
ρ = (353.05 / T) * exp(-0.034 * (z / T))
其中 T = T0 - LR * z + 273.15T0为地面温度LR为温度递减率z为总高度
"""
# 计算总高度(海拔 + 轮毂高度)
z = altitude + hub_height
# 温度递减率lapse rate每升高1米温度降低0.0065°C
LR = 0.0065
# 计算绝对温度K考虑高度引起的温度变化
T = T0 - LR * z + 273.15
# 计算空气密度
return (353.05 / T) * math.exp(-0.034 * (z / T))
def wind_power_density(density, velocity_avg):
"""
计算风功率密度单位面积的风能功率
参数
density (float): 空气密度kg/
velocity_avg (float): 平均风速m/s
返回
float: 风功率密度W/
公式
P = 0.5 * ρ * 按照年平均风速来算
"""
return 0.5 * density * velocity_avg**3
def estimated_wind_power(num_turbines, rated_power):
"""
计算风电场总装机容量
参数
num_turbines (int): 风机数量
rated_power (float): 单台风机额定功率kW
返回
float: 总装机容量kW
"""
if not isinstance(num_turbines, int) or num_turbines < 0:
raise ValueError("风机数量必须为非负整数")
return rated_power * num_turbines
def calculate_power_output(S, w, Cp, eta, num_turbines):
"""
计算风电场年发电量
参数
S (float): 扫风面积
w (float): 风功率密度W/
Cp (float): 风能利用系数
eta (float): 系统效率
num_turbines (int): 风机数量
返回
float: 年发电量Wh
公式
E = w * S * Cp * 8760 * η * N (N为风机个数
其中 8760 为一年小时数
"""
return w * S * Cp * 8760 * eta * num_turbines
def calculate_equivalent_hours(P, P_r):
"""
计算等效满负荷小时数
参数
P (float): 年发电量Wh
P_r (float): 单台风机额定功率kW
返回
float: 等效小时数小时
"""
if P_r == 0:
raise ValueError("额定功率不能为 0")
return (P / 1000) / P_r
def calculate_environmental_benefits(E_p_million_kwh):
"""
计算环境效益减排量
参数
E_p_million_kwh (float): 年发电量万kWh
返回
dict: 包含标准煤CO₂SO₂NOx减排量的字典
假设
每万kWh可节约标准煤0.404减排CO₂ 0.977SO₂ 0.03NOx 0.015
"""
if E_p_million_kwh < 0:
raise ValueError("年发电量需≥0")
return {
"coal_reduction": E_p_million_kwh * 0.404 * 10, # kg
"CO2_reduction": E_p_million_kwh * 0.977 * 10, # kg
"SO2_reduction": E_p_million_kwh * 0.03 * 10, # kg
"NOX_reduction": E_p_million_kwh * 0.015 * 10 # kg
}
# 获取风机参数
rated_power, swept_area, blade_diameter = get_wind_turbine_specs(device_name, file_path)
# 估算风机数量
num_turbines = estimate_wind_turbine_count(area_km2, blade_diameter)
# 计算空气密度
avg_density = air_density(altitude, hub_height, avg_temp)
# 计算风功率密度W/m²
wpd = wind_power_density(avg_density, avg_wind_speed)
# 计算总装机容量kW
total_power = estimated_wind_power(num_turbines, rated_power)
# 计算年发电量Wh
P_test = calculate_power_output(swept_area, wpd, Cp, eta, num_turbines)
# 计算等效满负荷小时数
h = calculate_equivalent_hours(P_test, rated_power)
# 转换为万kWh以计算环境效益
E_p_million_kwh = P_test / 10000000
env_benefits = calculate_environmental_benefits(E_p_million_kwh)
# 返回结果字典
return {
"device": device_name,
"rated_power": rated_power,
"swept_area": swept_area,
"blade_diameter": blade_diameter,
"num_turbines": num_turbines,
"avg_density": avg_density,
"wpd": wpd,
"total_power": total_power / 1000, # 转换为MW
"annual_power_output": P_test / 10000000, # 转换为万kWh
"equivalent_hours": h,
"coal_reduction": env_benefits["coal_reduction"],
"CO2_reduction": env_benefits["CO2_reduction"],
"SO2_reduction": env_benefits["SO2_reduction"],
"NOX_reduction": env_benefits["NOX_reduction"]
}
# 主程序
if __name__ == "__main__":
# 定义输入参数
file_path = r".\wind_product.xlsx" # 风机参数文件路径
device_name = 'GW165-4.0' # 风机型号
area_km2 = 10 # 风电场面积(平方公里)
avg_temp = 13.0 # 年平均气温(摄氏度)
avg_wind_speed = 6 # 年平均风速m/s
# 调用风电场分析函数
result = wind_farm_analysis(
device_name=device_name,
area_km2=area_km2,
file_path=file_path,
avg_temp=avg_temp,
avg_wind_speed=avg_wind_speed
)
# 输出结果
print(f"\n设备: {result['device']}")
print(f"额定功率: {result['rated_power']:.2f} KW")
print(f"扫风面积: {result['swept_area']:.2f} m^2")
print(f"叶片直径: {result['blade_diameter']:.2f} m")
print(f"风机数量: {result['num_turbines']}")
print(f"平均空气密度: {result['avg_density']:.3f} kg/m^3")
print(f"风功率密度: {result['wpd']:.2f} W/m^2")
print(f"项目装机容量: {result['total_power']:.2f} MW")
print(f"年发电量: {result['annual_power_output']:.3f} 万 kWh")
print(f"等效小时数: {result['equivalent_hours']:.2f} 小时")
print(f"标准煤减排量:{result['coal_reduction']:,.0f} kg")
print(f"CO₂减排量{result['CO2_reduction']:,.0f} kg")
print(f"SO₂减排量{result['SO2_reduction']:,.0f} kg")
print(f"NOx减排量{result['NOX_reduction']:,.0f} kg")

Binary file not shown.

View File

@ -1,204 +0,0 @@
import pandas as pd
import math
from scipy.optimize import fsolve
import os
import sys
# 获取当前文件的绝对路径
current_dir = os.path.dirname(os.path.abspath(__file__))
print(current_dir)
# 添加当前目录到sys.path
sys.path.append(current_dir)
def wind_farm_analysis(device_name, area_km2, electricity_price, file_path, velocity_avg, T_avg,
lateral_spacing_factor=5, longitudinal_spacing_factor=10, q=0.02, altitude=11,
hub_height=100, Cp=0.45, eta=0.8, cost_per_mw=5000):
"""
封装函数分析风电场的风机数量及各项经济和技术指标
参数
device_name (str): 设备名称
area_km2 (float): 风电场面积平方公里
electricity_price (float): 电价/kWh
file_path (str): 风机参数 Excel 文件路径
velocity_avg (float): 全年平均风速
T_path (str): 全年平均温度
lateral_spacing_factor (float): 横向间距因子默认为 5D
longitudinal_spacing_factor (float): 纵向间距因子默认为 10D
q (float): 运维成本占初始投资成本的比例默认 0.02 表示 2%
altitude (float): 海拔高度m默认 11m
hub_height (float): 轮毂高度m默认 100m
Cp (float): 风能利用系数默认 0.45
eta (float): 总系统效率默认 0.8
cost_per_mw (float): MW 投资成本万元/MW默认 5000 万元/MW
返回
dict: 包含风电场分析结果的字典
"""
def estimate_wind_turbine_count(area_km2, blade_diameter):
area_m2 = area_km2 * 1_000_000
lateral_spacing = lateral_spacing_factor * blade_diameter
longitudinal_spacing = longitudinal_spacing_factor * blade_diameter
turbine_area = lateral_spacing * longitudinal_spacing
turbine_count = int(area_m2 / turbine_area)
print(f"单台风机占地面积: {turbine_area:,} 平方米 "
f"(横向间距: {lateral_spacing} 米, 纵向间距: {longitudinal_spacing} 米)")
print(f"估算风机数量: {turbine_count}")
return turbine_count
def get_wind_turbine_specs(device_name, file_path):
try:
df = pd.read_excel(file_path)
match = df[df.iloc[:, 0] == device_name]
if not match.empty:
rated_power = match.iloc[0, 1]
swept_area = match.iloc[0, 7] # 扫风面积
blade_diameter = match.iloc[0, 6] # 叶片直径
print(f"找到设备 '{device_name}',额定功率: {rated_power} kW, "
f"扫风面积: {swept_area} m², 叶片直径: {blade_diameter}")
return rated_power, swept_area, blade_diameter
else:
raise ValueError(f"未找到设备名称: {device_name}")
except FileNotFoundError:
raise FileNotFoundError(f"文件未找到: {file_path}")
except Exception as e:
raise Exception(f"发生错误: {str(e)}")
def air_density(altitude, hub_height, T0):
z = altitude + hub_height
LR = 0.0065
T = T0 - LR * z + 273.15
return (353.05 / T) * math.exp(-0.034 * (z / T))
def wind_power_density(densities, velocity_avg):
rho_v3 = densities * velocity_avg
return 0.5 * rho_v3
def estimated_wind_power(num_turbines, rated_power):
if not isinstance(num_turbines, int) or num_turbines < 0:
raise ValueError("风机数量必须为非负整数")
return rated_power * num_turbines
def calculate_power_output(S, w, Cp, eta):
# 瓦时
return w * S * Cp * 8760 * eta
def calculate_equivalent_hours(P, P_r):
if P_r == 0:
raise ValueError("额定功率不能为 0")
return (P / 1000) / P_r
def calculate_environmental_benefits(E_p_million_kwh):
"""计算环境收益"""
if E_p_million_kwh < 0:
raise ValueError("年发电量需≥0")
return {
"coal_reduction": E_p_million_kwh * 0.404 * 10,
"CO2_reduction": E_p_million_kwh * 0.977 * 10,
"SO2_reduction": E_p_million_kwh * 0.03 * 10,
"NOX_reduction": E_p_million_kwh * 0.015 * 10
}
def calculate_reference_yield(E_p, electricity_price, IC, q, n=20):
def npv_equation(irr, p, w, ic, q_val, n=n):
term1 = (1 + irr) ** (-1)
term2 = irr * (1 + irr) ** (-1) if irr != 0 else float('inf')
pv_revenue = p * w * (term1 / term2) * (1 - (1 + irr) ** (-n))
pv_salvage = q_val * ic * (term1 / term2) * (1 - (1 + irr) ** (-n))
return pv_revenue - ic + pv_salvage
irr_guess = 0.1
irr = float(fsolve(npv_equation, irr_guess, args=(E_p, electricity_price, IC, q))[0])
if not 0 <= irr <= 1:
raise ValueError(f"IRR计算结果{irr:.4f}不合理")
return irr * 100
# 获取设备信息
rated_power, swept_area, blade_diameter = get_wind_turbine_specs(device_name, file_path)
# 估算风机数量
num_turbines = estimate_wind_turbine_count(area_km2, blade_diameter)
# 读取温度数据并计算空气密度
avg_density = air_density(altitude, hub_height, T_avg)
# 计算风功率密度
wpd = wind_power_density(avg_density, velocity_avg)
# 计算装机容量
total_power = estimated_wind_power(num_turbines, rated_power)
# 计算初始投资成本
IC = total_power * cost_per_mw * 1000000
# 计算年发电量 kwh
P_test = calculate_power_output(swept_area, wpd, Cp, eta) * num_turbines
# 计算等效小时数
h = calculate_equivalent_hours(P_test, rated_power)
# 计算 IRR
P_test_IRR = P_test/1000
irr = calculate_reference_yield(P_test_IRR, electricity_price, IC, q)
env_benefits = calculate_environmental_benefits((P_test / 10000000))
# 返回结果
out = {
"device": device_name,
"rated_power": rated_power,
"swept_area": swept_area,
"blade_diameter": blade_diameter,
"num_turbines": num_turbines,
"avg_density": avg_density,
"wpd": wpd,
"total_power": total_power,
"annual_power_output": P_test / 10000000, # 万 kWh
"equivalent_hours": h,
"IRR": irr
}
out.update(env_benefits)
return out
# 主程序
if __name__ == "__main__":
file_path = f"{current_dir}/wind_product.xlsx"
v_avg = 4.2
tavg = 15
device_name = "GW165-5.2"
area_km2 = 23.2
electricity_price = 0.45
result = wind_farm_analysis(
device_name=device_name,
area_km2=area_km2,
electricity_price=electricity_price,
file_path=file_path,
velocity_avg=v_avg,
T_avg=tavg
)
print(result)
"""
{
"code": 200,
"data": {
"device": "GW165-5.2",
"rated_power": 5.2,
"swept_area": 21382,
"blade_diameter": 165,
"num_turbines": 23,
"avg_density": 1.2118668826686871,
"wpd": 1.9995803564033336,
"total_power": 119.60000000000001,
"annual_power_output": 310.11418354861905,
"equivalent_hours": 596.3734299011904,
"IRR": 9.985793133871693,
"coal_reduction": 12528.61301536421,
"CO2_reduction": 30298.155732700077,
"SO2_reduction": 930.342550645857,
"NOX_reduction": 465.1712753229285
}
}
"""