LCA-LLM/LCA_RAG/补充答案.py

42 lines
1.6 KiB
Python
Raw Normal View History

2024-12-29 17:33:02 +08:00
import os
import qianfan
from qianfan.resources.console.data import Data
import pandas as pd
import re
# 使用安全认证AK/SK鉴权通过环境变量方式初始化替换下列示例中参数安全认证Access Key替换your_iam_akSecret Key替换your_iam_sk
os.environ["QIANFAN_ACCESS_KEY"] = "ALTAK8Mo2gY80BAW8RjEtHX3SS"
os.environ["QIANFAN_SECRET_KEY"] = "95f6ac794fcb45b7805d5780bec589dc"
chat_comp = qianfan.ChatCompletion()
question = []
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/split/question/ques0.txt","r",encoding="utf-8") as file:
for line in file.readlines():
question.append(line.strip())
answers = []
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/split/answer/ans0.txt","r",encoding="utf-8") as file:
for line in file.readlines():
answers.append(line.strip())
answer_new = []
for ques,ans in zip(question,answers):
# 指定特定模型
content = f"你是生命周期领域富有经验和知识的专家。我会为你提供一个问题和对应的答案,根据你所掌握的知识简要补充答案内容。不要列出几点来回答,不需要换行。问题是:“{ques}”。答案是:“{ans}"
resp = chat_comp.do(model="ERNIE-4.0-8K", messages=[
{
"role": "user",
"content": content
}])
ans = resp["body"]["result"]
line = re.sub(r'\s+', '', ans)
print("问题:",ques)
print(line)
answer_new.append(line)
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/filters/answer_100.txt","w",encoding="utf-8") as file:
for ans in answer_new:
file.write(ans+"\n")