Compare commits

...

2 Commits

Author SHA1 Message Date
zhangxiaojun 91f072f22d 修改分支 2025-02-06 16:10:41 +08:00
zhangxiaojun bf87f14398 问答,数据分析和报告生成 2025-02-06 09:24:19 +08:00
130 changed files with 31785 additions and 0 deletions

40
DataAnalysis/SplitData.py Normal file
View File

@ -0,0 +1,40 @@
import os
import shutil
# 原始文件夹路径
original_folder = '/home/zhangxj/WorkFile/LCA-GPT/LCAdata'
# 新文件夹的基础路径
base_new_folder = '/home/zhangxj/WorkFile/LCA-GPT/split_LCAdata'
# 获取原始文件夹中的所有PDF文件
pdf_files = [f for f in os.listdir(original_folder) if f.endswith('.pdf')]
# 计算每组文件的数量和剩余文件数量
files_per_group, remainder = divmod(len(pdf_files), 6)
# 创建并分配文件到各个组
groups = []
for i in range(6):
group = []
if i < remainder:
group = pdf_files[i * (files_per_group + 1):(i + 1) * (files_per_group + 1)]
else:
group = pdf_files[i * files_per_group + remainder:(i + 1) * files_per_group + remainder]
groups.append(group)
# 确保每组文件数量正确
for group in groups:
assert len(group) in (files_per_group, files_per_group + 1), "每组文件数量不正确"
# 分组并复制文件
for i, group in enumerate(groups):
# 创建新文件夹
new_folder = os.path.join(base_new_folder, f'folder{i+1}')
os.makedirs(new_folder, exist_ok=True)
# 复制文件到新文件夹
for j, file_name in enumerate(group):
file_path = os.path.join(original_folder, file_name)
shutil.copy(file_path, new_folder)
print("文件分组和复制完成。")

Binary file not shown.

44
DataAnalysis/debug.py Normal file
View File

@ -0,0 +1,44 @@
import os
import re
import gradio as gr
from PIL import Image
from pprint import pprint
from qwen_agent.agents import Assistant
import sys
os.chdir(sys.path[0])
# os.environ['TMPDIR'] = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp"
llm_cfg = {
'model': 'qwen1.5-72b-chat',
'model_server': 'dashscope',
'api_key': "sk-c5f441f863f44094b0ddb96c831b5002",
}
system_instruction = '''你是一位专注在生命周期领域做数据分析的助手,在数据分析之后,
如果有可视化要求请使用 `plt.show()` 显示图像,并将图像进行保存
最后请对数据分析结果结合生命周期评价领域知识进行解释'''
tools = ['code_interpreter'] # `code_interpreter` is a built-in tool for executing code.
messages = [] # This stores the chat history.
files = ["/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/tmp/2021beijing.csv"]
bot = Assistant(llm=llm_cfg,
system_message=system_instruction,
function_list=tools,
files=files
)
# print("user input>")
user_input = '''2021beijing.csv给出了2021年北京不同行业的碳排放量数据首先分析数据的每一行和每一列代表的含义
绘制不同排放行业的碳排放量占比的饼图要求美观字体清晰给出可视化结果和结果分析'''
messages.append({'role': 'user', 'content': user_input})
# Get response from bot
response = []
for response in bot.run(messages=messages):
continue
pprint(response)
messages.extend(response)

106
DataAnalysis/main.py Normal file
View File

@ -0,0 +1,106 @@
import os
import re
import gradio as gr
from PIL import Image
from pprint import pprint
from qwen_agent.agents import Assistant
'''
数据分析助手问答
不知道为什么在服务器上跑就出现
PermissionError: [Errno 13] Permission denied: '/tmp/gradio/872ec5dfa2067f6f2cafe865d734a9e4ab00234b'
但是在自己机器上跑就没有问题应该是权限问题吧 i think
'''
# 重置了临时路径 也还是不行。
os.environ['TMPDIR'] = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp"
llm_cfg = {
'model': 'qwen1.5-72b-chat',
'model_server': 'dashscope',
'api_key': "sk-c5f441f863f44094b0ddb96c831b5002",
}
system_instruction = '''你是一位专注在生命周期领域做数据分析的助手,在数据分析之后,
如果有可视化要求请使用 `plt.show()` 显示图像,并将图像进行保存
最后请对数据分析结果结合生命周期评价领域知识进行解释'''
tools = ['code_interpreter'] # `code_interpreter` is a built-in tool for executing code.
messages = [] # This stores the chat history.
# Function to extract image path from response
def getImage(response):
pattern = r'workspace.*?\.png'
path = None
for res in response:
content = str(res['content'])
matches = re.findall(pattern, content)
# print("*********",res['content'])
if len(matches):
path = matches[0]
print("###### path #####,", path)
return path
# Function to handle user input and generate chatbot response
def chatbot_interface(user_input, uploaded_file_path):
bot = Assistant(llm=llm_cfg,
system_message=system_instruction,
function_list=tools,
files=[uploaded_file_path])
# Add user input to messages
messages.append({'role': 'user', 'content': user_input})
# Get response from bot
response = []
for response in bot.run(messages=messages):
continue
pprint(response)
messages.extend(response)
# Convert bot response to string
res_str = ""
for res in response:
res_str += res['content']
# Get image path from response
tmp_path = getImage(response)
image_path = None
if tmp_path:
image_path = os.path.join("/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp", tmp_path)
print("image path", image_path)
# Check if image path exists and open image
if image_path and os.path.exists(image_path):
image = Image.open(image_path)
return res_str, image
else:
return res_str, None
# Function to handle file upload
def upload_file(file):
return f"文件上传成功{file}"
# Creating the Gradio interface
with gr.Blocks() as demo:
with gr.Column():
with gr.Row():
chatbot_input = gr.Textbox(label="LCA-Data-Assistant", placeholder="Enter your message here...")
with gr.Row():
with gr.Column():
chatbot_output_markdown = gr.Markdown()
chatbot_output_image = gr.Image(type="pil")
with gr.Row():
file_input = gr.File(label="Upload a file")
file_input.GRADIO_CACHE = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp"
# Handle user input and file upload events
def update_output(user_input, uploaded_file_path):
response_str, image = chatbot_interface(user_input, uploaded_file_path)
markdown_output = response_str
image_output = image if image else None
return markdown_output, image_output
chatbot_input.submit(fn=update_output, inputs=[chatbot_input, file_input],
outputs=[chatbot_output_markdown, chatbot_output_image])
file_input.change(fn=upload_file, inputs=file_input, outputs=[])
# Launch the Gradio app
demo.launch()

53
DataAnalysis/report.py Normal file
View File

@ -0,0 +1,53 @@
import os
import re
import gradio as gr
from PIL import Image
from pprint import pprint
from qwen_agent.agents import Assistant
import sys
os.chdir(sys.path[0])
os.environ['TMPDIR'] = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp"
llm_cfg = {
'model': 'qwen1.5-72b-chat',
'model_server': 'dashscope',
'api_key': "sk-c5f441f863f44094b0ddb96c831b5002",
}
system_instruction = '''你是一位专注在生命周期领域做数据分析的助手,在数据分析之后,
如果有可视化要求请使用 `plt.show()` 显示图像,并将图像进行保存
最后请对数据分析结果结合生命周期评价领域知识进行解释'''
tools = ['code_interpreter'] # `code_interpreter` is a built-in tool for executing code.
messages = [] # This stores the chat history.
files = ["/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/tmp/2021北京.csv","/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/报告案例1.md"]
user_input = '''首先分析上传的2021北京.csv的碳排放数据并处理分析数据和可视化分析
请按照报告案例1作为模板用你掌握的信息进行填充并且将可视化得到的图像结果插入到报告中并加以分析以markdown格式输出填充数据信息之后的报告'''
messages.append({'role': 'user', 'content': user_input})
bot = Assistant(llm=llm_cfg,
system_message=system_instruction,
function_list=tools,
files=files)
# Get response from bot
response = []
for response in bot.run(messages=messages):
continue
pprint(response)
messages.extend(response)
# Convert bot response to string
res_str = ""
for res in response:
res_str += res['content']
try:
with open("./result.md", "w", encoding="utf-8") as f:
f.write(res_str)
except IOError as e:
print(f"An error occurred: {e}")
print(res_str)

85
DataAnalysis/result.md Normal file
View File

@ -0,0 +1,85 @@
```markdown
# 2021年北京市主要行业碳排放研究报告
## 基本信息
- 报告标题2021年北京市主要行业碳排放分析
- 数据来源2021北京.csv
- 分析机构EcoMetrics
- 日期2023年4月25日
## 一、概况
### 1. 数据覆盖范围
本报告基于2021年北京市各行业碳排放数据涵盖多个经济部门的碳足迹。
## 二、量化目的
评估并比较北京市不同行业在2021年的碳排放情况为政策制定和减排策略提供依据。
## 三、量化范围
### 1. 功能单位或声明单位
以万吨二氧化碳当量Mt CO2e为功能单位或声明单位。
### 2. 系统边界
- 综合能源生产和消费
- 各行业的直接和间接排放
### 3. 取舍准则
依据国际标准如IPCC指南和国家统计规定。
### 4. 时间范围
2021年。
## 四、清单分析
### 1. 数据来源说明
- 数据类型:官方统计数据
- 范围:北京市
### 2. 分配原则与程序
- 分配依据:行业活动水平
- 分配程序:按行业产值或能源消耗比例
### 3. 清单结果及计算
以下是部分行业的碳排放数据(以 Mt CO2e 计算):
| 行业分类 | 碳排放量 (Mt CO2e) |
| --- | --- |
| 石油和天然气开采 | 0.002702663 |
| 钢铁冶炼 | 0.00336137 |
| 食品加工 | 0.07873546 |
| 纺织业 | 0.009668288 |
| 造纸业 | 0.047495666 |
### 4. 数据质量评价
数据来源于官方统计,具有较高的可靠性和权威性。
## 五、影响评价
### 1. 影响类型和特征化因子选择
100年全球变暖潜势GWP100用于计算所有温室气体的影响。
### 2. 行业碳排放比较
![](image.png)
上图展示了2021年北京市主要行业碳排放的饼状图清晰地反映了不同行业的碳排放贡献比例。
## 六、结果解释
2021年北京市的总碳排放量为79.88 Mt CO2e。其中能源行业如石油和天然气开采以及高能耗产业如钢铁冶炼的碳排放相对较低而能源消费密集型的制造业如食品加工、纺织业和造纸业的碳排放显著。
### 1. 结果说明
从数据中可见,工业部门是北京市的主要碳排放源,尤其是能源密集型的制造业,这些行业需要采取减排措施以降低碳足迹。
### 2. 假设和局限性说明
报告假设所有数据准确无误,未考虑可能存在的统计误差或未报告排放。此外,由于数据不包含所有细分行业,可能低估了某些领域的实际排放。
### 3. 改进建议
- 促进能源结构转型,增加清洁能源使用比例
- 加强工业能效管理,提高能源利用效率
- 实施绿色制造技术,降低制造业的碳排放
- 推广低碳生活方式和消费模式,减少城市总体碳足迹
请注意上述报告中提到的图像“image.png”需要通过实际的数据可视化生成并保存。在实际操作中可以使用Python的matplotlib库绘制饼图来展示各行业碳排放的比例然后插入到报告中。
```
为了完成报告,我们需要使用提供的数据生成饼状图并保存。以下是代码示例来实现这一目标:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 假设df是已加载的2021北京.csv数据
# df['Industry'] 和 df['Emissions'] 是对应行业和排放量的列名
# 首先筛选出碳排放量大于0的行业
industries = df[df['Emissions'] > 0]['Industry']
emissions = df[df['Emissions'] > 0]['Emissions']
# 画饼图
fig, ax = plt.subplots()
ax.pie(emissions, labels=industries, autopct='%1.1f%%')
plt.title('2021年北京市主要行业碳排放')
plt.savefig('image.png') # 保存图像
plt.show() # 显示图像
```
运行这段代码将生成饼状图并保存为“image.png”然后将其插入到报告中替换“![](image.png)”的位置。

106
DataAnalysis/test.py Normal file
View File

@ -0,0 +1,106 @@
import os
import re
import gradio as gr
from PIL import Image
from pprint import pprint
from qwen_agent.agents import Assistant
'''
数据分析助手问答
不知道为什么在服务器上跑就出现
PermissionError: [Errno 13] Permission denied: '/tmp/gradio/872ec5dfa2067f6f2cafe865d734a9e4ab00234b'
但是在自己机器上跑就没有问题应该是权限问题吧 i think
'''
# 重置了临时路径 也还是不行。
os.environ['TMPDIR'] = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp"
llm_cfg = {
'model': 'qwen1.5-72b-chat',
'model_server': 'dashscope',
'api_key': "sk-c5f441f863f44094b0ddb96c831b5002",
}
system_instruction = '''你是一位专注在生命周期领域做数据分析的助手,在数据分析之后,
如果有可视化要求请使用 `plt.show()` 显示图像,并将图像进行保存
最后请对数据分析结果结合生命周期评价领域知识进行解释'''
tools = ['code_interpreter'] # `code_interpreter` is a built-in tool for executing code.
messages = [] # This stores the chat history.
# Function to extract image path from response
def getImage(response):
pattern = r'workspace.*?\.png'
path = None
for res in response:
content = str(res['content'])
matches = re.findall(pattern, content)
# print("*********",res['content'])
if len(matches):
path = matches[0]
print("###### path #####,", path)
return path
# Function to handle user input and generate chatbot response
def chatbot_interface(user_input, uploaded_file_path):
bot = Assistant(llm=llm_cfg,
system_message=system_instruction,
function_list=tools,
files=[uploaded_file_path])
# Add user input to messages
messages.append({'role': 'user', 'content': user_input})
# Get response from bot
response = []
for response in bot.run(messages=messages):
continue
pprint(response)
messages.extend(response)
# Convert bot response to string
res_str = ""
for res in response:
res_str += res['content']
# Get image path from response
tmp_path = getImage(response)
image_path = None
if tmp_path:
image_path = os.path.join("/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp", tmp_path)
print("image path", image_path)
# Check if image path exists and open image
if image_path and os.path.exists(image_path):
image = Image.open(image_path)
return res_str, image
else:
return res_str, None
# Function to handle file upload
def upload_file(file):
return f"文件上传成功{file}"
# Creating the Gradio interface
with gr.Blocks() as demo:
with gr.Column():
with gr.Row():
chatbot_input = gr.Textbox(label="LCA-Data-Assistant", placeholder="Enter your message here...")
with gr.Row():
with gr.Column():
chatbot_output_markdown = gr.Markdown()
chatbot_output_image = gr.Image(type="pil")
with gr.Row():
file_input = gr.File(label="Upload a file")
file_input.GRADIO_CACHE = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp"
# Handle user input and file upload events
def update_output(user_input, uploaded_file_path):
response_str, image = chatbot_interface(user_input, uploaded_file_path)
markdown_output = response_str
image_output = image if image else None
return markdown_output, image_output
chatbot_input.submit(fn=update_output, inputs=[chatbot_input, file_input],
outputs=[chatbot_output_markdown, chatbot_output_image])
file_input.change(fn=upload_file, inputs=file_input, outputs=[])
# Launch the Gradio app
demo.launch()

View File

@ -0,0 +1,50 @@
Emission_Inventory,Raw_Coal,CleanedCoal,Other_Washed_Coal,Briquettes,Coke,Coke_Oven_Gas,Other_Gas,Other_Coking_Products,Crude_Oil,Gasoline,Kerosene,Diesel_Oil,Fuel_Oil,LPG,Refinery_Gas,Other_Petroleum_Products,Natural_Gas,Scope_2_Heat,Scope_2_Electricity,Other_Energy,Process,Scope_1_Total
unit,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2
TotalEmissions,2.0021984744341097,0,0,0.17806516054927157,0.0028765890412809116,0,0,0,0,14.049258786117642,15.062812602799132,4.042693831830754,0.019326756197558977,1.3065082109211597,2.1464739602678615,0.32940324454750275,39.990772243150595,0,0,0,0.7500386,79.88042845985687
"Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy",0.027948058177255413,0,0,0,0,0,0,0,0,0.057656896045355,0,0.05228554814260331,0,0.0015654303988990653,0,0,0.0021607289951994053,0,0,0,0,0.14161666175931217
Coal Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Petroleum and Natural Gas Extraction,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.002702663186427796,0,0,0,0,0.002702663186427796
Ferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.0002926745992150001,0,0.00029799902117672207,0,0,0.002770695943414191,0,0,0,0,0,0,0.0033613695638059133
Nonferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Nonmetal Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Other Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.0008780237976450001,0,0.003873987275297386,0,0,0.00831208783024257,0,0,0,0,0,0,0.013064098903184957
Logging and Transport of Wood and Bamboo,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Food Processing,0,0,0,0,0,0,0,0,0,0.0058534919843000015,0,0.009833967698831828,0,0.00024680161522865106,0.05541391886828382,0,0.007387279376235978,0,0,0,0,0.07873545954288028
Food Production,0.0002166219449639238,0,0,0,1.3073027818946156e-06,0,0,0,0,0.006731515781945002,0,0.008641971614124938,0,0.0007404048456859532,0.0637260066985264,0,0.01279260574909157,0,0,0,0,0.09285043393711968
Beverage Production,0,0,0,0,0,0,0,0,0,0.003804769789795001,0,0.002979990211767221,0,0.00024680161522865106,0.03601904726438448,0,0.01585562402704307,0,0,0,0,0.05890623290821842
Tobacco Processing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0007207101830474124,0,0,0,0,0.0007207101830474124
Textile Industry,0,0,0,0,0,0,0,0,0,0.0008780237976450001,0,0.00029799902117672207,0,0,0.00831208783024257,0,0.0001801775457618531,0,0,0,0,0.009668288194826145
Garments and Other Fiber Products,0,0,0,0,0,0,0,0,0,0.005268142785870001,0,0.0005959980423534441,0,0,0.04987252698145543,0,0.001981953003380384,0,0,0,0,0.05771862081305926
"Leather, Furs, Down and Related Products",0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0,0,0,0.005541391886828382,0,0,0,0,0,0,0.006126741085258383
"Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products",0,0,0,0,0,0,0,0,0,0.0017560475952900002,0,0.0005959980423534441,0,0,0.01662417566048514,0,0,0,0,0,0,0.018976221298128586
Furniture Manufacturing,0,0,0,0,0,0,0,0,0,0.005268142785870001,0,0.0005959980423534441,0,0.00024680161522865106,0.04987252698145543,0,0.0007207101830474124,0,0,0,0,0.05670417960795494
Papermaking and Paper Products,0,0,0,0,0,0,0,0,0,0.004097444389010001,0,0.002085993148237055,0,0,0.03878974320779867,0,0.0025224856406659436,0,0,0,0,0.04749566638571166
Printing and Record Medium Reproduction,0,0,0,0,0,0,0,0,0,0.009658261774095003,0,0.00417198629647411,0,0.00024680161522865106,0.09143296613266833,0,0.0032431958237133557,0,0,0,0,0.10875321164217944
"Cultural, Educational and Sports Articles",0,0,0,0,0,0,0,0,0,0.0014633729960750004,0,0.00029799902117672207,0,0.00024680161522865106,0.013853479717070955,0,0.0003603550915237062,0,0,0,0,0.016222008441075034
Petroleum Processing and Coking,0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0.0005959980423534441,0,0.661921932043242,0.005541391886828382,0,0.03963906006760768,0,0,0,0,0.7082837312384614
Raw Chemical Materials and Chemical Products,0,0,0,0,0,0,0,0,0,0.009072912575665,0,0.008045973571771498,0,0.0007404048456859532,0.04593874768597067,0,0.0037837284609989153,0,0,0,0,0.06758176714009204
Medical and Pharmaceutical Products,0,0,0,0,0,0,0,0,0,0.009950936373310001,0,0.0023839921694137766,0,0.0004936032304573021,0.050384432945903314,0,0.025405033952421285,0,0,0,0,0.08861799867150567
Chemical Fiber,0,0,0,0,0,0,0,0,0,0.0002926745992150001,0,0,0,0,0.0014818950866442155,0,0.0007207101830474124,0,0,0,0,0.0024952798689066276
Rubber Products,0,0,0,0,0,0,0,0,0,0.0026340713929350005,0,0.0016389946164719713,0,0.0003702024228429766,0.013337055779797935,0,0.0003603550915237062,0,0,0,0,0.01834067930357159
Plastic Products,0,0,0,0,0,0,0,0,0,0.0026340713929350005,0,0.0016389946164719713,0,0.0003702024228429766,0.013337055779797935,0,0.0003603550915237062,0,0,0,0,0.01834067930357159
Nonmetal Mineral Products,0.14596733623893196,0,0,0,0.0007820285241293591,0,0,0,0,0.010828960170955,0,0.17641542053661946,0,0.0004936032304573021,0.10251574990632503,0,0.02414379113208831,0,0,0,0.7500386,1.2111854897395065
Smelting and Pressing of Ferrous Metals,0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0,0,0,0.005541391886828382,0,0.01585562402704307,0,0,0,0,0.021982365112301453
Smelting and Pressing of Nonferrous Metals,0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0,0,0,0.005541391886828382,0,0.0007207101830474124,0,0,0,0,0.006847451268305795
Metal Products,0,0,0,0,0,0,0,0,0,0.022535944139555,0.0015175719959296297,0.00834397259294822,0,0.0007404048456859532,0.21334358764289266,0,0.004864793735570033,0,0,0,0,0.2513462749525815
Ordinary Machinery,0,0,0,0,0,0,0,0,0,0.016682452155255004,0,0.002085993148237055,0,0.0019744129218292085,0.15792966877460887,0,0.003063018277951503,0,0,0,0,0.18173554527788163
Equipment for Special Purposes,0,0,0,0,0,0,0,0,0,0.018731174349760005,0,0.006555978465887885,0,0.00024680161522865106,0.17732454037850823,0,0.001981953003380384,0,0,0,0,0.20484044781276517
Transportation Equipment,0,0,0,0,0,0,0,0,0,0.016097102956825003,0,0.0336738893929696,0,0.00024680161522865106,0.1523882768877805,0,0.035314798969323206,0,0,0,0,0.23772086982212698
Electric Equipment and Machinery,0,0,0,0,0,0,0,0,0,0.014926404559965006,0,0.0017879941270603325,0,0.0004936032304573021,0.14130549311412374,0,0.0018017754576185308,0,0,0,0,0.16031527048922492
Electronic and Telecommunications Equipment,0,0,0,0,0,0,0,0,0,0.010828960170955,0,0.0008939970635301663,0,0,0.10251574990632503,0,0.0037837284609989153,0,0,0,0,0.11802243560180911
"Instruments, Meters, Cultural and Office Machinery",0,0,0,0,0,0,0,0,0,0.008487563377235,0,0.00029799902117672207,0,0,0.08035018235901153,0,0.0003603550915237062,0,0,0,0,0.08949609984894696
Other Manufacturing Industry,0,0,0,0,0,0,0,0,0,0.0014633729960750004,0,0.008641971614124938,0,0,0.013853479717070955,0,0.0001801775457618531,0,0,0,0,0.024139001873032747
Scrap and waste,0,0,0,0,0,0,0,0,0,0.0002926745992150001,0,0.00029799902117672207,0,0,0.002770695943414191,0,0.0001801775457618531,0,0,0,0,0.0035415471095677662
"Production and Supply of Electric Power, Steam and Hot Water",1.7584294721807978,0,0,0,0.002093253214369658,0,0,0,0,0.011706983968600003,0,0.036479049620716374,0.005069313100999075,0.14259084507648084,0.34572372722416206,0.32940324454750275,28.576712994550185,0,0,0,0,31.208208883483813
Production and Supply of Gas,0,0,0,0,0,0,0,0,0,0.004097444389010001,0,0.0005959980423534441,0,0,0.03878974320779867,0,0.0787375874979298,0,0,0,0,0.12222077313709193
Production and Supply of Tap Water,0,0,0,0,0,0,0,0,0,0.003804769789795001,0,0.0026819911905904977,0,0.0007404048456859532,0.03601904726438448,0,0.0009008877288092654,0,0,0,0,0.04414710081926519
Construction,0,0,0,0,0,0,0,0,0,0.21687187801831503,0,0.4523163987247695,0,0.013462701430531963,0,0,0.05185749588478573,0,0,0,0,0.7345084740584022
"Transportation, Storage, Post and Telecommunication Services",0.0005851847553963052,0,0,0,0,0,0,0,0,0.901730440181415,15.042780652452862,2.411941617276541,0.014257443096559902,0.052285375323228786,0,0,0.5531466227710478,0,0,0,0,18.976727335857053
"Wholesale, Retail Trade and Catering Services",0,0,0,0,0,0,0,0,0,0.51042450103096,0,0.12220586696052255,0,0.06011252731772412,0,0,1.1732758443932771,0,0,0,0,1.8660187397024839
Others,0,0,0,0,0,0,0,0,0,1.0509944857810651,0.01851437835034148,0.676618306437121,0,0.03757032957357757,0,0,5.548752059672073,0,0,0,0,7.332449559814178
Urban,0.06905180113676401,0,0,0,0,0,0,0,0,11.098220802232799,0,0,0,0.1865993035487686,0,0,3.3750586905014712,0,0,0,0,14.728930597419804
Rural,0,0,0,0.17806516054927157,0,0,0,0,0,0,0,0,0,0.1415149080604755,0,0,0.4191814250686847,0,0,0,0,0.7387614936784318
1 Emission_Inventory Raw_Coal CleanedCoal Other_Washed_Coal Briquettes Coke Coke_Oven_Gas Other_Gas Other_Coking_Products Crude_Oil Gasoline Kerosene Diesel_Oil Fuel_Oil LPG Refinery_Gas Other_Petroleum_Products Natural_Gas Scope_2_Heat Scope_2_Electricity Other_Energy Process Scope_1_Total
2 unit Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2
3 TotalEmissions 2.0021984744341097 0 0 0.17806516054927157 0.0028765890412809116 0 0 0 0 14.049258786117642 15.062812602799132 4.042693831830754 0.019326756197558977 1.3065082109211597 2.1464739602678615 0.32940324454750275 39.990772243150595 0 0 0 0.7500386 79.88042845985687
4 Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy 0.027948058177255413 0 0 0 0 0 0 0 0 0.057656896045355 0 0.05228554814260331 0 0.0015654303988990653 0 0 0.0021607289951994053 0 0 0 0 0.14161666175931217
5 Coal Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 Petroleum and Natural Gas Extraction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.002702663186427796 0 0 0 0 0.002702663186427796
7 Ferrous Metals Mining and Dressing 0 0 0 0 0 0 0 0 0 0.0002926745992150001 0 0.00029799902117672207 0 0 0.002770695943414191 0 0 0 0 0 0 0.0033613695638059133
8 Nonferrous Metals Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 Nonmetal Minerals Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Other Minerals Mining and Dressing 0 0 0 0 0 0 0 0 0 0.0008780237976450001 0 0.003873987275297386 0 0 0.00831208783024257 0 0 0 0 0 0 0.013064098903184957
11 Logging and Transport of Wood and Bamboo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Food Processing 0 0 0 0 0 0 0 0 0 0.0058534919843000015 0 0.009833967698831828 0 0.00024680161522865106 0.05541391886828382 0 0.007387279376235978 0 0 0 0 0.07873545954288028
13 Food Production 0.0002166219449639238 0 0 0 1.3073027818946156e-06 0 0 0 0 0.006731515781945002 0 0.008641971614124938 0 0.0007404048456859532 0.0637260066985264 0 0.01279260574909157 0 0 0 0 0.09285043393711968
14 Beverage Production 0 0 0 0 0 0 0 0 0 0.003804769789795001 0 0.002979990211767221 0 0.00024680161522865106 0.03601904726438448 0 0.01585562402704307 0 0 0 0 0.05890623290821842
15 Tobacco Processing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0007207101830474124 0 0 0 0 0.0007207101830474124
16 Textile Industry 0 0 0 0 0 0 0 0 0 0.0008780237976450001 0 0.00029799902117672207 0 0 0.00831208783024257 0 0.0001801775457618531 0 0 0 0 0.009668288194826145
17 Garments and Other Fiber Products 0 0 0 0 0 0 0 0 0 0.005268142785870001 0 0.0005959980423534441 0 0 0.04987252698145543 0 0.001981953003380384 0 0 0 0 0.05771862081305926
18 Leather, Furs, Down and Related Products 0 0 0 0 0 0 0 0 0 0.0005853491984300002 0 0 0 0 0.005541391886828382 0 0 0 0 0 0 0.006126741085258383
19 Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products 0 0 0 0 0 0 0 0 0 0.0017560475952900002 0 0.0005959980423534441 0 0 0.01662417566048514 0 0 0 0 0 0 0.018976221298128586
20 Furniture Manufacturing 0 0 0 0 0 0 0 0 0 0.005268142785870001 0 0.0005959980423534441 0 0.00024680161522865106 0.04987252698145543 0 0.0007207101830474124 0 0 0 0 0.05670417960795494
21 Papermaking and Paper Products 0 0 0 0 0 0 0 0 0 0.004097444389010001 0 0.002085993148237055 0 0 0.03878974320779867 0 0.0025224856406659436 0 0 0 0 0.04749566638571166
22 Printing and Record Medium Reproduction 0 0 0 0 0 0 0 0 0 0.009658261774095003 0 0.00417198629647411 0 0.00024680161522865106 0.09143296613266833 0 0.0032431958237133557 0 0 0 0 0.10875321164217944
23 Cultural, Educational and Sports Articles 0 0 0 0 0 0 0 0 0 0.0014633729960750004 0 0.00029799902117672207 0 0.00024680161522865106 0.013853479717070955 0 0.0003603550915237062 0 0 0 0 0.016222008441075034
24 Petroleum Processing and Coking 0 0 0 0 0 0 0 0 0 0.0005853491984300002 0 0.0005959980423534441 0 0.661921932043242 0.005541391886828382 0 0.03963906006760768 0 0 0 0 0.7082837312384614
25 Raw Chemical Materials and Chemical Products 0 0 0 0 0 0 0 0 0 0.009072912575665 0 0.008045973571771498 0 0.0007404048456859532 0.04593874768597067 0 0.0037837284609989153 0 0 0 0 0.06758176714009204
26 Medical and Pharmaceutical Products 0 0 0 0 0 0 0 0 0 0.009950936373310001 0 0.0023839921694137766 0 0.0004936032304573021 0.050384432945903314 0 0.025405033952421285 0 0 0 0 0.08861799867150567
27 Chemical Fiber 0 0 0 0 0 0 0 0 0 0.0002926745992150001 0 0 0 0 0.0014818950866442155 0 0.0007207101830474124 0 0 0 0 0.0024952798689066276
28 Rubber Products 0 0 0 0 0 0 0 0 0 0.0026340713929350005 0 0.0016389946164719713 0 0.0003702024228429766 0.013337055779797935 0 0.0003603550915237062 0 0 0 0 0.01834067930357159
29 Plastic Products 0 0 0 0 0 0 0 0 0 0.0026340713929350005 0 0.0016389946164719713 0 0.0003702024228429766 0.013337055779797935 0 0.0003603550915237062 0 0 0 0 0.01834067930357159
30 Nonmetal Mineral Products 0.14596733623893196 0 0 0 0.0007820285241293591 0 0 0 0 0.010828960170955 0 0.17641542053661946 0 0.0004936032304573021 0.10251574990632503 0 0.02414379113208831 0 0 0 0.7500386 1.2111854897395065
31 Smelting and Pressing of Ferrous Metals 0 0 0 0 0 0 0 0 0 0.0005853491984300002 0 0 0 0 0.005541391886828382 0 0.01585562402704307 0 0 0 0 0.021982365112301453
32 Smelting and Pressing of Nonferrous Metals 0 0 0 0 0 0 0 0 0 0.0005853491984300002 0 0 0 0 0.005541391886828382 0 0.0007207101830474124 0 0 0 0 0.006847451268305795
33 Metal Products 0 0 0 0 0 0 0 0 0 0.022535944139555 0.0015175719959296297 0.00834397259294822 0 0.0007404048456859532 0.21334358764289266 0 0.004864793735570033 0 0 0 0 0.2513462749525815
34 Ordinary Machinery 0 0 0 0 0 0 0 0 0 0.016682452155255004 0 0.002085993148237055 0 0.0019744129218292085 0.15792966877460887 0 0.003063018277951503 0 0 0 0 0.18173554527788163
35 Equipment for Special Purposes 0 0 0 0 0 0 0 0 0 0.018731174349760005 0 0.006555978465887885 0 0.00024680161522865106 0.17732454037850823 0 0.001981953003380384 0 0 0 0 0.20484044781276517
36 Transportation Equipment 0 0 0 0 0 0 0 0 0 0.016097102956825003 0 0.0336738893929696 0 0.00024680161522865106 0.1523882768877805 0 0.035314798969323206 0 0 0 0 0.23772086982212698
37 Electric Equipment and Machinery 0 0 0 0 0 0 0 0 0 0.014926404559965006 0 0.0017879941270603325 0 0.0004936032304573021 0.14130549311412374 0 0.0018017754576185308 0 0 0 0 0.16031527048922492
38 Electronic and Telecommunications Equipment 0 0 0 0 0 0 0 0 0 0.010828960170955 0 0.0008939970635301663 0 0 0.10251574990632503 0 0.0037837284609989153 0 0 0 0 0.11802243560180911
39 Instruments, Meters, Cultural and Office Machinery 0 0 0 0 0 0 0 0 0 0.008487563377235 0 0.00029799902117672207 0 0 0.08035018235901153 0 0.0003603550915237062 0 0 0 0 0.08949609984894696
40 Other Manufacturing Industry 0 0 0 0 0 0 0 0 0 0.0014633729960750004 0 0.008641971614124938 0 0 0.013853479717070955 0 0.0001801775457618531 0 0 0 0 0.024139001873032747
41 Scrap and waste 0 0 0 0 0 0 0 0 0 0.0002926745992150001 0 0.00029799902117672207 0 0 0.002770695943414191 0 0.0001801775457618531 0 0 0 0 0.0035415471095677662
42 Production and Supply of Electric Power, Steam and Hot Water 1.7584294721807978 0 0 0 0.002093253214369658 0 0 0 0 0.011706983968600003 0 0.036479049620716374 0.005069313100999075 0.14259084507648084 0.34572372722416206 0.32940324454750275 28.576712994550185 0 0 0 0 31.208208883483813
43 Production and Supply of Gas 0 0 0 0 0 0 0 0 0 0.004097444389010001 0 0.0005959980423534441 0 0 0.03878974320779867 0 0.0787375874979298 0 0 0 0 0.12222077313709193
44 Production and Supply of Tap Water 0 0 0 0 0 0 0 0 0 0.003804769789795001 0 0.0026819911905904977 0 0.0007404048456859532 0.03601904726438448 0 0.0009008877288092654 0 0 0 0 0.04414710081926519
45 Construction 0 0 0 0 0 0 0 0 0 0.21687187801831503 0 0.4523163987247695 0 0.013462701430531963 0 0 0.05185749588478573 0 0 0 0 0.7345084740584022
46 Transportation, Storage, Post and Telecommunication Services 0.0005851847553963052 0 0 0 0 0 0 0 0 0.901730440181415 15.042780652452862 2.411941617276541 0.014257443096559902 0.052285375323228786 0 0 0.5531466227710478 0 0 0 0 18.976727335857053
47 Wholesale, Retail Trade and Catering Services 0 0 0 0 0 0 0 0 0 0.51042450103096 0 0.12220586696052255 0 0.06011252731772412 0 0 1.1732758443932771 0 0 0 0 1.8660187397024839
48 Others 0 0 0 0 0 0 0 0 0 1.0509944857810651 0.01851437835034148 0.676618306437121 0 0.03757032957357757 0 0 5.548752059672073 0 0 0 0 7.332449559814178
49 Urban 0.06905180113676401 0 0 0 0 0 0 0 0 11.098220802232799 0 0 0 0.1865993035487686 0 0 3.3750586905014712 0 0 0 0 14.728930597419804
50 Rural 0 0 0 0.17806516054927157 0 0 0 0 0 0 0 0 0 0.1415149080604755 0 0 0.4191814250686847 0 0 0 0 0.7387614936784318

Binary file not shown.

View File

@ -0,0 +1,51 @@
Emission_Inventory,Raw_Coal,CleanedCoal,Other_Washed_Coal,Briquettes,Coke,Coke_Oven_Gas,Other_Gas,Other_Coking_Products,Crude_Oil,Gasoline,Kerosene,Diesel_Oil,Fuel_Oil,LPG,Refinery_Gas,Other_Petroleum_Products,Natural_Gas,Scope_2_Heat,Scope_2_Electricity,Other_Energy,Process,Scope_1_Total
unit,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2
,,,,,,,,,,,,,,,,,,,,,,
TotalEmissions,2.002198474,0,0,0.178065161,0.002876589,0,0,0,0,14.04925879,15.0628126,4.042693832,0.019326756,1.306508211,2.14647396,0.329403245,39.99077224,0,0,0,0.7500386,79.88042846
"Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy",0.027948058,0,0,0,0,0,0,0,0,0.057656896,0,0.052285548,0,0.00156543,0,0,0.002160729,0,0,0,0,0.141616662
Coal Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Petroleum and Natural Gas Extraction,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.002702663,0,0,0,0,0.002702663
Ferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.000292675,0,0.000297999,0,0,0.002770696,0,0,0,0,0,0,0.00336137
Nonferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Nonmetal Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Other Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.000878024,0,0.003873987,0,0,0.008312088,0,0,0,0,0,0,0.013064099
Logging and Transport of Wood and Bamboo,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Food Processing,0,0,0,0,0,0,0,0,0,0.005853492,0,0.009833968,0,0.000246802,0.055413919,0,0.007387279,0,0,0,0,0.07873546
Food Production,0.000216622,0,0,0,1.3073E-06,0,0,0,0,0.006731516,0,0.008641972,0,0.000740405,0.063726007,0,0.012792606,0,0,0,0,0.092850434
Beverage Production,0,0,0,0,0,0,0,0,0,0.00380477,0,0.00297999,0,0.000246802,0.036019047,0,0.015855624,0,0,0,0,0.058906233
Tobacco Processing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.00072071,0,0,0,0,0.00072071
Textile Industry,0,0,0,0,0,0,0,0,0,0.000878024,0,0.000297999,0,0,0.008312088,0,0.000180178,0,0,0,0,0.009668288
Garments and Other Fiber Products,0,0,0,0,0,0,0,0,0,0.005268143,0,0.000595998,0,0,0.049872527,0,0.001981953,0,0,0,0,0.057718621
"Leather, Furs, Down and Related Products",0,0,0,0,0,0,0,0,0,0.000585349,0,0,0,0,0.005541392,0,0,0,0,0,0,0.006126741
"Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products",0,0,0,0,0,0,0,0,0,0.001756048,0,0.000595998,0,0,0.016624176,0,0,0,0,0,0,0.018976221
Furniture Manufacturing,0,0,0,0,0,0,0,0,0,0.005268143,0,0.000595998,0,0.000246802,0.049872527,0,0.00072071,0,0,0,0,0.05670418
Papermaking and Paper Products,0,0,0,0,0,0,0,0,0,0.004097444,0,0.002085993,0,0,0.038789743,0,0.002522486,0,0,0,0,0.047495666
Printing and Record Medium Reproduction,0,0,0,0,0,0,0,0,0,0.009658262,0,0.004171986,0,0.000246802,0.091432966,0,0.003243196,0,0,0,0,0.108753212
"Cultural, Educational and Sports Articles",0,0,0,0,0,0,0,0,0,0.001463373,0,0.000297999,0,0.000246802,0.01385348,0,0.000360355,0,0,0,0,0.016222008
Petroleum Processing and Coking,0,0,0,0,0,0,0,0,0,0.000585349,0,0.000595998,0,0.661921932,0.005541392,0,0.03963906,0,0,0,0,0.708283731
Raw Chemical Materials and Chemical Products,0,0,0,0,0,0,0,0,0,0.009072913,0,0.008045974,0,0.000740405,0.045938748,0,0.003783728,0,0,0,0,0.067581767
Medical and Pharmaceutical Products,0,0,0,0,0,0,0,0,0,0.009950936,0,0.002383992,0,0.000493603,0.050384433,0,0.025405034,0,0,0,0,0.088617999
Chemical Fiber,0,0,0,0,0,0,0,0,0,0.000292675,0,0,0,0,0.001481895,0,0.00072071,0,0,0,0,0.00249528
Rubber Products,0,0,0,0,0,0,0,0,0,0.002634071,0,0.001638995,0,0.000370202,0.013337056,0,0.000360355,0,0,0,0,0.018340679
Plastic Products,0,0,0,0,0,0,0,0,0,0.002634071,0,0.001638995,0,0.000370202,0.013337056,0,0.000360355,0,0,0,0,0.018340679
Nonmetal Mineral Products,0.145967336,0,0,0,0.000782029,0,0,0,0,0.01082896,0,0.176415421,0,0.000493603,0.10251575,0,0.024143791,0,0,0,0.7500386,1.21118549
Smelting and Pressing of Ferrous Metals,0,0,0,0,0,0,0,0,0,0.000585349,0,0,0,0,0.005541392,0,0.015855624,0,0,0,0,0.021982365
Smelting and Pressing of Nonferrous Metals,0,0,0,0,0,0,0,0,0,0.000585349,0,0,0,0,0.005541392,0,0.00072071,0,0,0,0,0.006847451
Metal Products,0,0,0,0,0,0,0,0,0,0.022535944,0.001517572,0.008343973,0,0.000740405,0.213343588,0,0.004864794,0,0,0,0,0.251346275
Ordinary Machinery,0,0,0,0,0,0,0,0,0,0.016682452,0,0.002085993,0,0.001974413,0.157929669,0,0.003063018,0,0,0,0,0.181735545
Equipment for Special Purposes,0,0,0,0,0,0,0,0,0,0.018731174,0,0.006555978,0,0.000246802,0.17732454,0,0.001981953,0,0,0,0,0.204840448
Transportation Equipment,0,0,0,0,0,0,0,0,0,0.016097103,0,0.033673889,0,0.000246802,0.152388277,0,0.035314799,0,0,0,0,0.23772087
Electric Equipment and Machinery,0,0,0,0,0,0,0,0,0,0.014926405,0,0.001787994,0,0.000493603,0.141305493,0,0.001801775,0,0,0,0,0.16031527
Electronic and Telecommunications Equipment,0,0,0,0,0,0,0,0,0,0.01082896,0,0.000893997,0,0,0.10251575,0,0.003783728,0,0,0,0,0.118022436
"Instruments, Meters, Cultural and Office Machinery",0,0,0,0,0,0,0,0,0,0.008487563,0,0.000297999,0,0,0.080350182,0,0.000360355,0,0,0,0,0.0894961
Other Manufacturing Industry,0,0,0,0,0,0,0,0,0,0.001463373,0,0.008641972,0,0,0.01385348,0,0.000180178,0,0,0,0,0.024139002
Scrap and waste,0,0,0,0,0,0,0,0,0,0.000292675,0,0.000297999,0,0,0.002770696,0,0.000180178,0,0,0,0,0.003541547
"Production and Supply of Electric Power, Steam and Hot Water",1.758429472,0,0,0,0.002093253,0,0,0,0,0.011706984,0,0.03647905,0.005069313,0.142590845,0.345723727,0.329403245,28.57671299,0,0,0,0,31.20820888
Production and Supply of Gas,0,0,0,0,0,0,0,0,0,0.004097444,0,0.000595998,0,0,0.038789743,0,0.078737587,0,0,0,0,0.122220773
Production and Supply of Tap Water,0,0,0,0,0,0,0,0,0,0.00380477,0,0.002681991,0,0.000740405,0.036019047,0,0.000900888,0,0,0,0,0.044147101
Construction,0,0,0,0,0,0,0,0,0,0.216871878,0,0.452316399,0,0.013462701,0,0,0.051857496,0,0,0,0,0.734508474
"Transportation, Storage, Post and Telecommunication Services",0.000585185,0,0,0,0,0,0,0,0,0.90173044,15.04278065,2.411941617,0.014257443,0.052285375,0,0,0.553146623,0,0,0,0,18.97672734
"Wholesale, Retail Trade and Catering Services",0,0,0,0,0,0,0,0,0,0.510424501,0,0.122205867,0,0.060112527,0,0,1.173275844,0,0,0,0,1.86601874
Others,0,0,0,0,0,0,0,0,0,1.050994486,0.018514378,0.676618306,0,0.03757033,0,0,5.54875206,0,0,0,0,7.33244956
Urban,0.069051801,0,0,0,0,0,0,0,0,11.0982208,0,0,0,0.186599304,0,0,3.375058691,0,0,0,0,14.7289306
Rural,0,0,0,0.178065161,0,0,0,0,0,0,0,0,0,0.141514908,0,0,0.419181425,0,0,0,0,0.738761494
1 Emission_Inventory Raw_Coal CleanedCoal Other_Washed_Coal Briquettes Coke Coke_Oven_Gas Other_Gas Other_Coking_Products Crude_Oil Gasoline Kerosene Diesel_Oil Fuel_Oil LPG Refinery_Gas Other_Petroleum_Products Natural_Gas Scope_2_Heat Scope_2_Electricity Other_Energy Process Scope_1_Total
2 unit Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2
3
4 TotalEmissions 2.002198474 0 0 0.178065161 0.002876589 0 0 0 0 14.04925879 15.0628126 4.042693832 0.019326756 1.306508211 2.14647396 0.329403245 39.99077224 0 0 0 0.7500386 79.88042846
5 Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy 0.027948058 0 0 0 0 0 0 0 0 0.057656896 0 0.052285548 0 0.00156543 0 0 0.002160729 0 0 0 0 0.141616662
6 Coal Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Petroleum and Natural Gas Extraction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.002702663 0 0 0 0 0.002702663
8 Ferrous Metals Mining and Dressing 0 0 0 0 0 0 0 0 0 0.000292675 0 0.000297999 0 0 0.002770696 0 0 0 0 0 0 0.00336137
9 Nonferrous Metals Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Nonmetal Minerals Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Other Minerals Mining and Dressing 0 0 0 0 0 0 0 0 0 0.000878024 0 0.003873987 0 0 0.008312088 0 0 0 0 0 0 0.013064099
12 Logging and Transport of Wood and Bamboo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Food Processing 0 0 0 0 0 0 0 0 0 0.005853492 0 0.009833968 0 0.000246802 0.055413919 0 0.007387279 0 0 0 0 0.07873546
14 Food Production 0.000216622 0 0 0 1.3073E-06 0 0 0 0 0.006731516 0 0.008641972 0 0.000740405 0.063726007 0 0.012792606 0 0 0 0 0.092850434
15 Beverage Production 0 0 0 0 0 0 0 0 0 0.00380477 0 0.00297999 0 0.000246802 0.036019047 0 0.015855624 0 0 0 0 0.058906233
16 Tobacco Processing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00072071 0 0 0 0 0.00072071
17 Textile Industry 0 0 0 0 0 0 0 0 0 0.000878024 0 0.000297999 0 0 0.008312088 0 0.000180178 0 0 0 0 0.009668288
18 Garments and Other Fiber Products 0 0 0 0 0 0 0 0 0 0.005268143 0 0.000595998 0 0 0.049872527 0 0.001981953 0 0 0 0 0.057718621
19 Leather, Furs, Down and Related Products 0 0 0 0 0 0 0 0 0 0.000585349 0 0 0 0 0.005541392 0 0 0 0 0 0 0.006126741
20 Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products 0 0 0 0 0 0 0 0 0 0.001756048 0 0.000595998 0 0 0.016624176 0 0 0 0 0 0 0.018976221
21 Furniture Manufacturing 0 0 0 0 0 0 0 0 0 0.005268143 0 0.000595998 0 0.000246802 0.049872527 0 0.00072071 0 0 0 0 0.05670418
22 Papermaking and Paper Products 0 0 0 0 0 0 0 0 0 0.004097444 0 0.002085993 0 0 0.038789743 0 0.002522486 0 0 0 0 0.047495666
23 Printing and Record Medium Reproduction 0 0 0 0 0 0 0 0 0 0.009658262 0 0.004171986 0 0.000246802 0.091432966 0 0.003243196 0 0 0 0 0.108753212
24 Cultural, Educational and Sports Articles 0 0 0 0 0 0 0 0 0 0.001463373 0 0.000297999 0 0.000246802 0.01385348 0 0.000360355 0 0 0 0 0.016222008
25 Petroleum Processing and Coking 0 0 0 0 0 0 0 0 0 0.000585349 0 0.000595998 0 0.661921932 0.005541392 0 0.03963906 0 0 0 0 0.708283731
26 Raw Chemical Materials and Chemical Products 0 0 0 0 0 0 0 0 0 0.009072913 0 0.008045974 0 0.000740405 0.045938748 0 0.003783728 0 0 0 0 0.067581767
27 Medical and Pharmaceutical Products 0 0 0 0 0 0 0 0 0 0.009950936 0 0.002383992 0 0.000493603 0.050384433 0 0.025405034 0 0 0 0 0.088617999
28 Chemical Fiber 0 0 0 0 0 0 0 0 0 0.000292675 0 0 0 0 0.001481895 0 0.00072071 0 0 0 0 0.00249528
29 Rubber Products 0 0 0 0 0 0 0 0 0 0.002634071 0 0.001638995 0 0.000370202 0.013337056 0 0.000360355 0 0 0 0 0.018340679
30 Plastic Products 0 0 0 0 0 0 0 0 0 0.002634071 0 0.001638995 0 0.000370202 0.013337056 0 0.000360355 0 0 0 0 0.018340679
31 Nonmetal Mineral Products 0.145967336 0 0 0 0.000782029 0 0 0 0 0.01082896 0 0.176415421 0 0.000493603 0.10251575 0 0.024143791 0 0 0 0.7500386 1.21118549
32 Smelting and Pressing of Ferrous Metals 0 0 0 0 0 0 0 0 0 0.000585349 0 0 0 0 0.005541392 0 0.015855624 0 0 0 0 0.021982365
33 Smelting and Pressing of Nonferrous Metals 0 0 0 0 0 0 0 0 0 0.000585349 0 0 0 0 0.005541392 0 0.00072071 0 0 0 0 0.006847451
34 Metal Products 0 0 0 0 0 0 0 0 0 0.022535944 0.001517572 0.008343973 0 0.000740405 0.213343588 0 0.004864794 0 0 0 0 0.251346275
35 Ordinary Machinery 0 0 0 0 0 0 0 0 0 0.016682452 0 0.002085993 0 0.001974413 0.157929669 0 0.003063018 0 0 0 0 0.181735545
36 Equipment for Special Purposes 0 0 0 0 0 0 0 0 0 0.018731174 0 0.006555978 0 0.000246802 0.17732454 0 0.001981953 0 0 0 0 0.204840448
37 Transportation Equipment 0 0 0 0 0 0 0 0 0 0.016097103 0 0.033673889 0 0.000246802 0.152388277 0 0.035314799 0 0 0 0 0.23772087
38 Electric Equipment and Machinery 0 0 0 0 0 0 0 0 0 0.014926405 0 0.001787994 0 0.000493603 0.141305493 0 0.001801775 0 0 0 0 0.16031527
39 Electronic and Telecommunications Equipment 0 0 0 0 0 0 0 0 0 0.01082896 0 0.000893997 0 0 0.10251575 0 0.003783728 0 0 0 0 0.118022436
40 Instruments, Meters, Cultural and Office Machinery 0 0 0 0 0 0 0 0 0 0.008487563 0 0.000297999 0 0 0.080350182 0 0.000360355 0 0 0 0 0.0894961
41 Other Manufacturing Industry 0 0 0 0 0 0 0 0 0 0.001463373 0 0.008641972 0 0 0.01385348 0 0.000180178 0 0 0 0 0.024139002
42 Scrap and waste 0 0 0 0 0 0 0 0 0 0.000292675 0 0.000297999 0 0 0.002770696 0 0.000180178 0 0 0 0 0.003541547
43 Production and Supply of Electric Power, Steam and Hot Water 1.758429472 0 0 0 0.002093253 0 0 0 0 0.011706984 0 0.03647905 0.005069313 0.142590845 0.345723727 0.329403245 28.57671299 0 0 0 0 31.20820888
44 Production and Supply of Gas 0 0 0 0 0 0 0 0 0 0.004097444 0 0.000595998 0 0 0.038789743 0 0.078737587 0 0 0 0 0.122220773
45 Production and Supply of Tap Water 0 0 0 0 0 0 0 0 0 0.00380477 0 0.002681991 0 0.000740405 0.036019047 0 0.000900888 0 0 0 0 0.044147101
46 Construction 0 0 0 0 0 0 0 0 0 0.216871878 0 0.452316399 0 0.013462701 0 0 0.051857496 0 0 0 0 0.734508474
47 Transportation, Storage, Post and Telecommunication Services 0.000585185 0 0 0 0 0 0 0 0 0.90173044 15.04278065 2.411941617 0.014257443 0.052285375 0 0 0.553146623 0 0 0 0 18.97672734
48 Wholesale, Retail Trade and Catering Services 0 0 0 0 0 0 0 0 0 0.510424501 0 0.122205867 0 0.060112527 0 0 1.173275844 0 0 0 0 1.86601874
49 Others 0 0 0 0 0 0 0 0 0 1.050994486 0.018514378 0.676618306 0 0.03757033 0 0 5.54875206 0 0 0 0 7.33244956
50 Urban 0.069051801 0 0 0 0 0 0 0 0 11.0982208 0 0 0 0.186599304 0 0 3.375058691 0 0 0 0 14.7289306
51 Rural 0 0 0 0.178065161 0 0 0 0 0 0 0 0 0 0.141514908 0 0 0.419181425 0 0 0 0 0.738761494

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

View File

@ -0,0 +1,50 @@
Emission_Inventory,Raw_Coal,CleanedCoal,Other_Washed_Coal,Briquettes,Coke,Coke_Oven_Gas,Other_Gas,Other_Coking_Products,Crude_Oil,Gasoline,Kerosene,Diesel_Oil,Fuel_Oil,LPG,Refinery_Gas,Other_Petroleum_Products,Natural_Gas,Scope_2_Heat,Scope_2_Electricity,Other_Energy,Process,Scope_1_Total
unit,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2
TotalEmissions,2.0021984744341097,0,0,0.17806516054927157,0.0028765890412809116,0,0,0,0,14.049258786117642,15.062812602799132,4.042693831830754,0.019326756197558977,1.3065082109211597,2.1464739602678615,0.32940324454750275,39.990772243150595,0,0,0,0.7500386,79.88042845985687
"Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy",0.027948058177255413,0,0,0,0,0,0,0,0,0.057656896045355,0,0.05228554814260331,0,0.0015654303988990653,0,0,0.0021607289951994053,0,0,0,0,0.14161666175931217
Coal Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Petroleum and Natural Gas Extraction,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.002702663186427796,0,0,0,0,0.002702663186427796
Ferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.0002926745992150001,0,0.00029799902117672207,0,0,0.002770695943414191,0,0,0,0,0,0,0.0033613695638059133
Nonferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Nonmetal Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Other Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.0008780237976450001,0,0.003873987275297386,0,0,0.00831208783024257,0,0,0,0,0,0,0.013064098903184957
Logging and Transport of Wood and Bamboo,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Food Processing,0,0,0,0,0,0,0,0,0,0.0058534919843000015,0,0.009833967698831828,0,0.00024680161522865106,0.05541391886828382,0,0.007387279376235978,0,0,0,0,0.07873545954288028
Food Production,0.0002166219449639238,0,0,0,1.3073027818946156e-06,0,0,0,0,0.006731515781945002,0,0.008641971614124938,0,0.0007404048456859532,0.0637260066985264,0,0.01279260574909157,0,0,0,0,0.09285043393711968
Beverage Production,0,0,0,0,0,0,0,0,0,0.003804769789795001,0,0.002979990211767221,0,0.00024680161522865106,0.03601904726438448,0,0.01585562402704307,0,0,0,0,0.05890623290821842
Tobacco Processing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0007207101830474124,0,0,0,0,0.0007207101830474124
Textile Industry,0,0,0,0,0,0,0,0,0,0.0008780237976450001,0,0.00029799902117672207,0,0,0.00831208783024257,0,0.0001801775457618531,0,0,0,0,0.009668288194826145
Garments and Other Fiber Products,0,0,0,0,0,0,0,0,0,0.005268142785870001,0,0.0005959980423534441,0,0,0.04987252698145543,0,0.001981953003380384,0,0,0,0,0.05771862081305926
"Leather, Furs, Down and Related Products",0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0,0,0,0.005541391886828382,0,0,0,0,0,0,0.006126741085258383
"Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products",0,0,0,0,0,0,0,0,0,0.0017560475952900002,0,0.0005959980423534441,0,0,0.01662417566048514,0,0,0,0,0,0,0.018976221298128586
Furniture Manufacturing,0,0,0,0,0,0,0,0,0,0.005268142785870001,0,0.0005959980423534441,0,0.00024680161522865106,0.04987252698145543,0,0.0007207101830474124,0,0,0,0,0.05670417960795494
Papermaking and Paper Products,0,0,0,0,0,0,0,0,0,0.004097444389010001,0,0.002085993148237055,0,0,0.03878974320779867,0,0.0025224856406659436,0,0,0,0,0.04749566638571166
Printing and Record Medium Reproduction,0,0,0,0,0,0,0,0,0,0.009658261774095003,0,0.00417198629647411,0,0.00024680161522865106,0.09143296613266833,0,0.0032431958237133557,0,0,0,0,0.10875321164217944
"Cultural, Educational and Sports Articles",0,0,0,0,0,0,0,0,0,0.0014633729960750004,0,0.00029799902117672207,0,0.00024680161522865106,0.013853479717070955,0,0.0003603550915237062,0,0,0,0,0.016222008441075034
Petroleum Processing and Coking,0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0.0005959980423534441,0,0.661921932043242,0.005541391886828382,0,0.03963906006760768,0,0,0,0,0.7082837312384614
Raw Chemical Materials and Chemical Products,0,0,0,0,0,0,0,0,0,0.009072912575665,0,0.008045973571771498,0,0.0007404048456859532,0.04593874768597067,0,0.0037837284609989153,0,0,0,0,0.06758176714009204
Medical and Pharmaceutical Products,0,0,0,0,0,0,0,0,0,0.009950936373310001,0,0.0023839921694137766,0,0.0004936032304573021,0.050384432945903314,0,0.025405033952421285,0,0,0,0,0.08861799867150567
Chemical Fiber,0,0,0,0,0,0,0,0,0,0.0002926745992150001,0,0,0,0,0.0014818950866442155,0,0.0007207101830474124,0,0,0,0,0.0024952798689066276
Rubber Products,0,0,0,0,0,0,0,0,0,0.0026340713929350005,0,0.0016389946164719713,0,0.0003702024228429766,0.013337055779797935,0,0.0003603550915237062,0,0,0,0,0.01834067930357159
Plastic Products,0,0,0,0,0,0,0,0,0,0.0026340713929350005,0,0.0016389946164719713,0,0.0003702024228429766,0.013337055779797935,0,0.0003603550915237062,0,0,0,0,0.01834067930357159
Nonmetal Mineral Products,0.14596733623893196,0,0,0,0.0007820285241293591,0,0,0,0,0.010828960170955,0,0.17641542053661946,0,0.0004936032304573021,0.10251574990632503,0,0.02414379113208831,0,0,0,0.7500386,1.2111854897395065
Smelting and Pressing of Ferrous Metals,0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0,0,0,0.005541391886828382,0,0.01585562402704307,0,0,0,0,0.021982365112301453
Smelting and Pressing of Nonferrous Metals,0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0,0,0,0.005541391886828382,0,0.0007207101830474124,0,0,0,0,0.006847451268305795
Metal Products,0,0,0,0,0,0,0,0,0,0.022535944139555,0.0015175719959296297,0.00834397259294822,0,0.0007404048456859532,0.21334358764289266,0,0.004864793735570033,0,0,0,0,0.2513462749525815
Ordinary Machinery,0,0,0,0,0,0,0,0,0,0.016682452155255004,0,0.002085993148237055,0,0.0019744129218292085,0.15792966877460887,0,0.003063018277951503,0,0,0,0,0.18173554527788163
Equipment for Special Purposes,0,0,0,0,0,0,0,0,0,0.018731174349760005,0,0.006555978465887885,0,0.00024680161522865106,0.17732454037850823,0,0.001981953003380384,0,0,0,0,0.20484044781276517
Transportation Equipment,0,0,0,0,0,0,0,0,0,0.016097102956825003,0,0.0336738893929696,0,0.00024680161522865106,0.1523882768877805,0,0.035314798969323206,0,0,0,0,0.23772086982212698
Electric Equipment and Machinery,0,0,0,0,0,0,0,0,0,0.014926404559965006,0,0.0017879941270603325,0,0.0004936032304573021,0.14130549311412374,0,0.0018017754576185308,0,0,0,0,0.16031527048922492
Electronic and Telecommunications Equipment,0,0,0,0,0,0,0,0,0,0.010828960170955,0,0.0008939970635301663,0,0,0.10251574990632503,0,0.0037837284609989153,0,0,0,0,0.11802243560180911
"Instruments, Meters, Cultural and Office Machinery",0,0,0,0,0,0,0,0,0,0.008487563377235,0,0.00029799902117672207,0,0,0.08035018235901153,0,0.0003603550915237062,0,0,0,0,0.08949609984894696
Other Manufacturing Industry,0,0,0,0,0,0,0,0,0,0.0014633729960750004,0,0.008641971614124938,0,0,0.013853479717070955,0,0.0001801775457618531,0,0,0,0,0.024139001873032747
Scrap and waste,0,0,0,0,0,0,0,0,0,0.0002926745992150001,0,0.00029799902117672207,0,0,0.002770695943414191,0,0.0001801775457618531,0,0,0,0,0.0035415471095677662
"Production and Supply of Electric Power, Steam and Hot Water",1.7584294721807978,0,0,0,0.002093253214369658,0,0,0,0,0.011706983968600003,0,0.036479049620716374,0.005069313100999075,0.14259084507648084,0.34572372722416206,0.32940324454750275,28.576712994550185,0,0,0,0,31.208208883483813
Production and Supply of Gas,0,0,0,0,0,0,0,0,0,0.004097444389010001,0,0.0005959980423534441,0,0,0.03878974320779867,0,0.0787375874979298,0,0,0,0,0.12222077313709193
Production and Supply of Tap Water,0,0,0,0,0,0,0,0,0,0.003804769789795001,0,0.0026819911905904977,0,0.0007404048456859532,0.03601904726438448,0,0.0009008877288092654,0,0,0,0,0.04414710081926519
Construction,0,0,0,0,0,0,0,0,0,0.21687187801831503,0,0.4523163987247695,0,0.013462701430531963,0,0,0.05185749588478573,0,0,0,0,0.7345084740584022
"Transportation, Storage, Post and Telecommunication Services",0.0005851847553963052,0,0,0,0,0,0,0,0,0.901730440181415,15.042780652452862,2.411941617276541,0.014257443096559902,0.052285375323228786,0,0,0.5531466227710478,0,0,0,0,18.976727335857053
"Wholesale, Retail Trade and Catering Services",0,0,0,0,0,0,0,0,0,0.51042450103096,0,0.12220586696052255,0,0.06011252731772412,0,0,1.1732758443932771,0,0,0,0,1.8660187397024839
Others,0,0,0,0,0,0,0,0,0,1.0509944857810651,0.01851437835034148,0.676618306437121,0,0.03757032957357757,0,0,5.548752059672073,0,0,0,0,7.332449559814178
Urban,0.06905180113676401,0,0,0,0,0,0,0,0,11.098220802232799,0,0,0,0.1865993035487686,0,0,3.3750586905014712,0,0,0,0,14.728930597419804
Rural,0,0,0,0.17806516054927157,0,0,0,0,0,0,0,0,0,0.1415149080604755,0,0,0.4191814250686847,0,0,0,0,0.7387614936784318
1 Emission_Inventory Raw_Coal CleanedCoal Other_Washed_Coal Briquettes Coke Coke_Oven_Gas Other_Gas Other_Coking_Products Crude_Oil Gasoline Kerosene Diesel_Oil Fuel_Oil LPG Refinery_Gas Other_Petroleum_Products Natural_Gas Scope_2_Heat Scope_2_Electricity Other_Energy Process Scope_1_Total
2 unit Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2
3 TotalEmissions 2.0021984744341097 0 0 0.17806516054927157 0.0028765890412809116 0 0 0 0 14.049258786117642 15.062812602799132 4.042693831830754 0.019326756197558977 1.3065082109211597 2.1464739602678615 0.32940324454750275 39.990772243150595 0 0 0 0.7500386 79.88042845985687
4 Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy 0.027948058177255413 0 0 0 0 0 0 0 0 0.057656896045355 0 0.05228554814260331 0 0.0015654303988990653 0 0 0.0021607289951994053 0 0 0 0 0.14161666175931217
5 Coal Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 Petroleum and Natural Gas Extraction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.002702663186427796 0 0 0 0 0.002702663186427796
7 Ferrous Metals Mining and Dressing 0 0 0 0 0 0 0 0 0 0.0002926745992150001 0 0.00029799902117672207 0 0 0.002770695943414191 0 0 0 0 0 0 0.0033613695638059133
8 Nonferrous Metals Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 Nonmetal Minerals Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Other Minerals Mining and Dressing 0 0 0 0 0 0 0 0 0 0.0008780237976450001 0 0.003873987275297386 0 0 0.00831208783024257 0 0 0 0 0 0 0.013064098903184957
11 Logging and Transport of Wood and Bamboo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 Food Processing 0 0 0 0 0 0 0 0 0 0.0058534919843000015 0 0.009833967698831828 0 0.00024680161522865106 0.05541391886828382 0 0.007387279376235978 0 0 0 0 0.07873545954288028
13 Food Production 0.0002166219449639238 0 0 0 1.3073027818946156e-06 0 0 0 0 0.006731515781945002 0 0.008641971614124938 0 0.0007404048456859532 0.0637260066985264 0 0.01279260574909157 0 0 0 0 0.09285043393711968
14 Beverage Production 0 0 0 0 0 0 0 0 0 0.003804769789795001 0 0.002979990211767221 0 0.00024680161522865106 0.03601904726438448 0 0.01585562402704307 0 0 0 0 0.05890623290821842
15 Tobacco Processing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0007207101830474124 0 0 0 0 0.0007207101830474124
16 Textile Industry 0 0 0 0 0 0 0 0 0 0.0008780237976450001 0 0.00029799902117672207 0 0 0.00831208783024257 0 0.0001801775457618531 0 0 0 0 0.009668288194826145
17 Garments and Other Fiber Products 0 0 0 0 0 0 0 0 0 0.005268142785870001 0 0.0005959980423534441 0 0 0.04987252698145543 0 0.001981953003380384 0 0 0 0 0.05771862081305926
18 Leather, Furs, Down and Related Products 0 0 0 0 0 0 0 0 0 0.0005853491984300002 0 0 0 0 0.005541391886828382 0 0 0 0 0 0 0.006126741085258383
19 Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products 0 0 0 0 0 0 0 0 0 0.0017560475952900002 0 0.0005959980423534441 0 0 0.01662417566048514 0 0 0 0 0 0 0.018976221298128586
20 Furniture Manufacturing 0 0 0 0 0 0 0 0 0 0.005268142785870001 0 0.0005959980423534441 0 0.00024680161522865106 0.04987252698145543 0 0.0007207101830474124 0 0 0 0 0.05670417960795494
21 Papermaking and Paper Products 0 0 0 0 0 0 0 0 0 0.004097444389010001 0 0.002085993148237055 0 0 0.03878974320779867 0 0.0025224856406659436 0 0 0 0 0.04749566638571166
22 Printing and Record Medium Reproduction 0 0 0 0 0 0 0 0 0 0.009658261774095003 0 0.00417198629647411 0 0.00024680161522865106 0.09143296613266833 0 0.0032431958237133557 0 0 0 0 0.10875321164217944
23 Cultural, Educational and Sports Articles 0 0 0 0 0 0 0 0 0 0.0014633729960750004 0 0.00029799902117672207 0 0.00024680161522865106 0.013853479717070955 0 0.0003603550915237062 0 0 0 0 0.016222008441075034
24 Petroleum Processing and Coking 0 0 0 0 0 0 0 0 0 0.0005853491984300002 0 0.0005959980423534441 0 0.661921932043242 0.005541391886828382 0 0.03963906006760768 0 0 0 0 0.7082837312384614
25 Raw Chemical Materials and Chemical Products 0 0 0 0 0 0 0 0 0 0.009072912575665 0 0.008045973571771498 0 0.0007404048456859532 0.04593874768597067 0 0.0037837284609989153 0 0 0 0 0.06758176714009204
26 Medical and Pharmaceutical Products 0 0 0 0 0 0 0 0 0 0.009950936373310001 0 0.0023839921694137766 0 0.0004936032304573021 0.050384432945903314 0 0.025405033952421285 0 0 0 0 0.08861799867150567
27 Chemical Fiber 0 0 0 0 0 0 0 0 0 0.0002926745992150001 0 0 0 0 0.0014818950866442155 0 0.0007207101830474124 0 0 0 0 0.0024952798689066276
28 Rubber Products 0 0 0 0 0 0 0 0 0 0.0026340713929350005 0 0.0016389946164719713 0 0.0003702024228429766 0.013337055779797935 0 0.0003603550915237062 0 0 0 0 0.01834067930357159
29 Plastic Products 0 0 0 0 0 0 0 0 0 0.0026340713929350005 0 0.0016389946164719713 0 0.0003702024228429766 0.013337055779797935 0 0.0003603550915237062 0 0 0 0 0.01834067930357159
30 Nonmetal Mineral Products 0.14596733623893196 0 0 0 0.0007820285241293591 0 0 0 0 0.010828960170955 0 0.17641542053661946 0 0.0004936032304573021 0.10251574990632503 0 0.02414379113208831 0 0 0 0.7500386 1.2111854897395065
31 Smelting and Pressing of Ferrous Metals 0 0 0 0 0 0 0 0 0 0.0005853491984300002 0 0 0 0 0.005541391886828382 0 0.01585562402704307 0 0 0 0 0.021982365112301453
32 Smelting and Pressing of Nonferrous Metals 0 0 0 0 0 0 0 0 0 0.0005853491984300002 0 0 0 0 0.005541391886828382 0 0.0007207101830474124 0 0 0 0 0.006847451268305795
33 Metal Products 0 0 0 0 0 0 0 0 0 0.022535944139555 0.0015175719959296297 0.00834397259294822 0 0.0007404048456859532 0.21334358764289266 0 0.004864793735570033 0 0 0 0 0.2513462749525815
34 Ordinary Machinery 0 0 0 0 0 0 0 0 0 0.016682452155255004 0 0.002085993148237055 0 0.0019744129218292085 0.15792966877460887 0 0.003063018277951503 0 0 0 0 0.18173554527788163
35 Equipment for Special Purposes 0 0 0 0 0 0 0 0 0 0.018731174349760005 0 0.006555978465887885 0 0.00024680161522865106 0.17732454037850823 0 0.001981953003380384 0 0 0 0 0.20484044781276517
36 Transportation Equipment 0 0 0 0 0 0 0 0 0 0.016097102956825003 0 0.0336738893929696 0 0.00024680161522865106 0.1523882768877805 0 0.035314798969323206 0 0 0 0 0.23772086982212698
37 Electric Equipment and Machinery 0 0 0 0 0 0 0 0 0 0.014926404559965006 0 0.0017879941270603325 0 0.0004936032304573021 0.14130549311412374 0 0.0018017754576185308 0 0 0 0 0.16031527048922492
38 Electronic and Telecommunications Equipment 0 0 0 0 0 0 0 0 0 0.010828960170955 0 0.0008939970635301663 0 0 0.10251574990632503 0 0.0037837284609989153 0 0 0 0 0.11802243560180911
39 Instruments, Meters, Cultural and Office Machinery 0 0 0 0 0 0 0 0 0 0.008487563377235 0 0.00029799902117672207 0 0 0.08035018235901153 0 0.0003603550915237062 0 0 0 0 0.08949609984894696
40 Other Manufacturing Industry 0 0 0 0 0 0 0 0 0 0.0014633729960750004 0 0.008641971614124938 0 0 0.013853479717070955 0 0.0001801775457618531 0 0 0 0 0.024139001873032747
41 Scrap and waste 0 0 0 0 0 0 0 0 0 0.0002926745992150001 0 0.00029799902117672207 0 0 0.002770695943414191 0 0.0001801775457618531 0 0 0 0 0.0035415471095677662
42 Production and Supply of Electric Power, Steam and Hot Water 1.7584294721807978 0 0 0 0.002093253214369658 0 0 0 0 0.011706983968600003 0 0.036479049620716374 0.005069313100999075 0.14259084507648084 0.34572372722416206 0.32940324454750275 28.576712994550185 0 0 0 0 31.208208883483813
43 Production and Supply of Gas 0 0 0 0 0 0 0 0 0 0.004097444389010001 0 0.0005959980423534441 0 0 0.03878974320779867 0 0.0787375874979298 0 0 0 0 0.12222077313709193
44 Production and Supply of Tap Water 0 0 0 0 0 0 0 0 0 0.003804769789795001 0 0.0026819911905904977 0 0.0007404048456859532 0.03601904726438448 0 0.0009008877288092654 0 0 0 0 0.04414710081926519
45 Construction 0 0 0 0 0 0 0 0 0 0.21687187801831503 0 0.4523163987247695 0 0.013462701430531963 0 0 0.05185749588478573 0 0 0 0 0.7345084740584022
46 Transportation, Storage, Post and Telecommunication Services 0.0005851847553963052 0 0 0 0 0 0 0 0 0.901730440181415 15.042780652452862 2.411941617276541 0.014257443096559902 0.052285375323228786 0 0 0.5531466227710478 0 0 0 0 18.976727335857053
47 Wholesale, Retail Trade and Catering Services 0 0 0 0 0 0 0 0 0 0.51042450103096 0 0.12220586696052255 0 0.06011252731772412 0 0 1.1732758443932771 0 0 0 0 1.8660187397024839
48 Others 0 0 0 0 0 0 0 0 0 1.0509944857810651 0.01851437835034148 0.676618306437121 0 0.03757032957357757 0 0 5.548752059672073 0 0 0 0 7.332449559814178
49 Urban 0.06905180113676401 0 0 0 0 0 0 0 0 11.098220802232799 0 0 0 0.1865993035487686 0 0 3.3750586905014712 0 0 0 0 14.728930597419804
50 Rural 0 0 0 0.17806516054927157 0 0 0 0 0 0 0 0 0 0.1415149080604755 0 0 0.4191814250686847 0 0 0 0 0.7387614936784318

View File

@ -0,0 +1,51 @@
Emission_Inventory,Raw_Coal,CleanedCoal,Other_Washed_Coal,Briquettes,Coke,Coke_Oven_Gas,Other_Gas,Other_Coking_Products,Crude_Oil,Gasoline,Kerosene,Diesel_Oil,Fuel_Oil,LPG,Refinery_Gas,Other_Petroleum_Products,Natural_Gas,Scope_2_Heat,Scope_2_Electricity,Other_Energy,Process,Scope_1_Total
unit,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2
,,,,,,,,,,,,,,,,,,,,,,
TotalEmissions,2.002198474,0,0,0.178065161,0.002876589,0,0,0,0,14.04925879,15.0628126,4.042693832,0.019326756,1.306508211,2.14647396,0.329403245,39.99077224,0,0,0,0.7500386,79.88042846
"Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy",0.027948058,0,0,0,0,0,0,0,0,0.057656896,0,0.052285548,0,0.00156543,0,0,0.002160729,0,0,0,0,0.141616662
Coal Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Petroleum and Natural Gas Extraction,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.002702663,0,0,0,0,0.002702663
Ferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.000292675,0,0.000297999,0,0,0.002770696,0,0,0,0,0,0,0.00336137
Nonferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Nonmetal Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Other Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.000878024,0,0.003873987,0,0,0.008312088,0,0,0,0,0,0,0.013064099
Logging and Transport of Wood and Bamboo,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Food Processing,0,0,0,0,0,0,0,0,0,0.005853492,0,0.009833968,0,0.000246802,0.055413919,0,0.007387279,0,0,0,0,0.07873546
Food Production,0.000216622,0,0,0,1.3073E-06,0,0,0,0,0.006731516,0,0.008641972,0,0.000740405,0.063726007,0,0.012792606,0,0,0,0,0.092850434
Beverage Production,0,0,0,0,0,0,0,0,0,0.00380477,0,0.00297999,0,0.000246802,0.036019047,0,0.015855624,0,0,0,0,0.058906233
Tobacco Processing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.00072071,0,0,0,0,0.00072071
Textile Industry,0,0,0,0,0,0,0,0,0,0.000878024,0,0.000297999,0,0,0.008312088,0,0.000180178,0,0,0,0,0.009668288
Garments and Other Fiber Products,0,0,0,0,0,0,0,0,0,0.005268143,0,0.000595998,0,0,0.049872527,0,0.001981953,0,0,0,0,0.057718621
"Leather, Furs, Down and Related Products",0,0,0,0,0,0,0,0,0,0.000585349,0,0,0,0,0.005541392,0,0,0,0,0,0,0.006126741
"Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products",0,0,0,0,0,0,0,0,0,0.001756048,0,0.000595998,0,0,0.016624176,0,0,0,0,0,0,0.018976221
Furniture Manufacturing,0,0,0,0,0,0,0,0,0,0.005268143,0,0.000595998,0,0.000246802,0.049872527,0,0.00072071,0,0,0,0,0.05670418
Papermaking and Paper Products,0,0,0,0,0,0,0,0,0,0.004097444,0,0.002085993,0,0,0.038789743,0,0.002522486,0,0,0,0,0.047495666
Printing and Record Medium Reproduction,0,0,0,0,0,0,0,0,0,0.009658262,0,0.004171986,0,0.000246802,0.091432966,0,0.003243196,0,0,0,0,0.108753212
"Cultural, Educational and Sports Articles",0,0,0,0,0,0,0,0,0,0.001463373,0,0.000297999,0,0.000246802,0.01385348,0,0.000360355,0,0,0,0,0.016222008
Petroleum Processing and Coking,0,0,0,0,0,0,0,0,0,0.000585349,0,0.000595998,0,0.661921932,0.005541392,0,0.03963906,0,0,0,0,0.708283731
Raw Chemical Materials and Chemical Products,0,0,0,0,0,0,0,0,0,0.009072913,0,0.008045974,0,0.000740405,0.045938748,0,0.003783728,0,0,0,0,0.067581767
Medical and Pharmaceutical Products,0,0,0,0,0,0,0,0,0,0.009950936,0,0.002383992,0,0.000493603,0.050384433,0,0.025405034,0,0,0,0,0.088617999
Chemical Fiber,0,0,0,0,0,0,0,0,0,0.000292675,0,0,0,0,0.001481895,0,0.00072071,0,0,0,0,0.00249528
Rubber Products,0,0,0,0,0,0,0,0,0,0.002634071,0,0.001638995,0,0.000370202,0.013337056,0,0.000360355,0,0,0,0,0.018340679
Plastic Products,0,0,0,0,0,0,0,0,0,0.002634071,0,0.001638995,0,0.000370202,0.013337056,0,0.000360355,0,0,0,0,0.018340679
Nonmetal Mineral Products,0.145967336,0,0,0,0.000782029,0,0,0,0,0.01082896,0,0.176415421,0,0.000493603,0.10251575,0,0.024143791,0,0,0,0.7500386,1.21118549
Smelting and Pressing of Ferrous Metals,0,0,0,0,0,0,0,0,0,0.000585349,0,0,0,0,0.005541392,0,0.015855624,0,0,0,0,0.021982365
Smelting and Pressing of Nonferrous Metals,0,0,0,0,0,0,0,0,0,0.000585349,0,0,0,0,0.005541392,0,0.00072071,0,0,0,0,0.006847451
Metal Products,0,0,0,0,0,0,0,0,0,0.022535944,0.001517572,0.008343973,0,0.000740405,0.213343588,0,0.004864794,0,0,0,0,0.251346275
Ordinary Machinery,0,0,0,0,0,0,0,0,0,0.016682452,0,0.002085993,0,0.001974413,0.157929669,0,0.003063018,0,0,0,0,0.181735545
Equipment for Special Purposes,0,0,0,0,0,0,0,0,0,0.018731174,0,0.006555978,0,0.000246802,0.17732454,0,0.001981953,0,0,0,0,0.204840448
Transportation Equipment,0,0,0,0,0,0,0,0,0,0.016097103,0,0.033673889,0,0.000246802,0.152388277,0,0.035314799,0,0,0,0,0.23772087
Electric Equipment and Machinery,0,0,0,0,0,0,0,0,0,0.014926405,0,0.001787994,0,0.000493603,0.141305493,0,0.001801775,0,0,0,0,0.16031527
Electronic and Telecommunications Equipment,0,0,0,0,0,0,0,0,0,0.01082896,0,0.000893997,0,0,0.10251575,0,0.003783728,0,0,0,0,0.118022436
"Instruments, Meters, Cultural and Office Machinery",0,0,0,0,0,0,0,0,0,0.008487563,0,0.000297999,0,0,0.080350182,0,0.000360355,0,0,0,0,0.0894961
Other Manufacturing Industry,0,0,0,0,0,0,0,0,0,0.001463373,0,0.008641972,0,0,0.01385348,0,0.000180178,0,0,0,0,0.024139002
Scrap and waste,0,0,0,0,0,0,0,0,0,0.000292675,0,0.000297999,0,0,0.002770696,0,0.000180178,0,0,0,0,0.003541547
"Production and Supply of Electric Power, Steam and Hot Water",1.758429472,0,0,0,0.002093253,0,0,0,0,0.011706984,0,0.03647905,0.005069313,0.142590845,0.345723727,0.329403245,28.57671299,0,0,0,0,31.20820888
Production and Supply of Gas,0,0,0,0,0,0,0,0,0,0.004097444,0,0.000595998,0,0,0.038789743,0,0.078737587,0,0,0,0,0.122220773
Production and Supply of Tap Water,0,0,0,0,0,0,0,0,0,0.00380477,0,0.002681991,0,0.000740405,0.036019047,0,0.000900888,0,0,0,0,0.044147101
Construction,0,0,0,0,0,0,0,0,0,0.216871878,0,0.452316399,0,0.013462701,0,0,0.051857496,0,0,0,0,0.734508474
"Transportation, Storage, Post and Telecommunication Services",0.000585185,0,0,0,0,0,0,0,0,0.90173044,15.04278065,2.411941617,0.014257443,0.052285375,0,0,0.553146623,0,0,0,0,18.97672734
"Wholesale, Retail Trade and Catering Services",0,0,0,0,0,0,0,0,0,0.510424501,0,0.122205867,0,0.060112527,0,0,1.173275844,0,0,0,0,1.86601874
Others,0,0,0,0,0,0,0,0,0,1.050994486,0.018514378,0.676618306,0,0.03757033,0,0,5.54875206,0,0,0,0,7.33244956
Urban,0.069051801,0,0,0,0,0,0,0,0,11.0982208,0,0,0,0.186599304,0,0,3.375058691,0,0,0,0,14.7289306
Rural,0,0,0,0.178065161,0,0,0,0,0,0,0,0,0,0.141514908,0,0,0.419181425,0,0,0,0,0.738761494
1 Emission_Inventory Raw_Coal CleanedCoal Other_Washed_Coal Briquettes Coke Coke_Oven_Gas Other_Gas Other_Coking_Products Crude_Oil Gasoline Kerosene Diesel_Oil Fuel_Oil LPG Refinery_Gas Other_Petroleum_Products Natural_Gas Scope_2_Heat Scope_2_Electricity Other_Energy Process Scope_1_Total
2 unit Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2 Mt CO2
3
4 TotalEmissions 2.002198474 0 0 0.178065161 0.002876589 0 0 0 0 14.04925879 15.0628126 4.042693832 0.019326756 1.306508211 2.14647396 0.329403245 39.99077224 0 0 0 0.7500386 79.88042846
5 Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy 0.027948058 0 0 0 0 0 0 0 0 0.057656896 0 0.052285548 0 0.00156543 0 0 0.002160729 0 0 0 0 0.141616662
6 Coal Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 Petroleum and Natural Gas Extraction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.002702663 0 0 0 0 0.002702663
8 Ferrous Metals Mining and Dressing 0 0 0 0 0 0 0 0 0 0.000292675 0 0.000297999 0 0 0.002770696 0 0 0 0 0 0 0.00336137
9 Nonferrous Metals Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Nonmetal Minerals Mining and Dressing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 Other Minerals Mining and Dressing 0 0 0 0 0 0 0 0 0 0.000878024 0 0.003873987 0 0 0.008312088 0 0 0 0 0 0 0.013064099
12 Logging and Transport of Wood and Bamboo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 Food Processing 0 0 0 0 0 0 0 0 0 0.005853492 0 0.009833968 0 0.000246802 0.055413919 0 0.007387279 0 0 0 0 0.07873546
14 Food Production 0.000216622 0 0 0 1.3073E-06 0 0 0 0 0.006731516 0 0.008641972 0 0.000740405 0.063726007 0 0.012792606 0 0 0 0 0.092850434
15 Beverage Production 0 0 0 0 0 0 0 0 0 0.00380477 0 0.00297999 0 0.000246802 0.036019047 0 0.015855624 0 0 0 0 0.058906233
16 Tobacco Processing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00072071 0 0 0 0 0.00072071
17 Textile Industry 0 0 0 0 0 0 0 0 0 0.000878024 0 0.000297999 0 0 0.008312088 0 0.000180178 0 0 0 0 0.009668288
18 Garments and Other Fiber Products 0 0 0 0 0 0 0 0 0 0.005268143 0 0.000595998 0 0 0.049872527 0 0.001981953 0 0 0 0 0.057718621
19 Leather, Furs, Down and Related Products 0 0 0 0 0 0 0 0 0 0.000585349 0 0 0 0 0.005541392 0 0 0 0 0 0 0.006126741
20 Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products 0 0 0 0 0 0 0 0 0 0.001756048 0 0.000595998 0 0 0.016624176 0 0 0 0 0 0 0.018976221
21 Furniture Manufacturing 0 0 0 0 0 0 0 0 0 0.005268143 0 0.000595998 0 0.000246802 0.049872527 0 0.00072071 0 0 0 0 0.05670418
22 Papermaking and Paper Products 0 0 0 0 0 0 0 0 0 0.004097444 0 0.002085993 0 0 0.038789743 0 0.002522486 0 0 0 0 0.047495666
23 Printing and Record Medium Reproduction 0 0 0 0 0 0 0 0 0 0.009658262 0 0.004171986 0 0.000246802 0.091432966 0 0.003243196 0 0 0 0 0.108753212
24 Cultural, Educational and Sports Articles 0 0 0 0 0 0 0 0 0 0.001463373 0 0.000297999 0 0.000246802 0.01385348 0 0.000360355 0 0 0 0 0.016222008
25 Petroleum Processing and Coking 0 0 0 0 0 0 0 0 0 0.000585349 0 0.000595998 0 0.661921932 0.005541392 0 0.03963906 0 0 0 0 0.708283731
26 Raw Chemical Materials and Chemical Products 0 0 0 0 0 0 0 0 0 0.009072913 0 0.008045974 0 0.000740405 0.045938748 0 0.003783728 0 0 0 0 0.067581767
27 Medical and Pharmaceutical Products 0 0 0 0 0 0 0 0 0 0.009950936 0 0.002383992 0 0.000493603 0.050384433 0 0.025405034 0 0 0 0 0.088617999
28 Chemical Fiber 0 0 0 0 0 0 0 0 0 0.000292675 0 0 0 0 0.001481895 0 0.00072071 0 0 0 0 0.00249528
29 Rubber Products 0 0 0 0 0 0 0 0 0 0.002634071 0 0.001638995 0 0.000370202 0.013337056 0 0.000360355 0 0 0 0 0.018340679
30 Plastic Products 0 0 0 0 0 0 0 0 0 0.002634071 0 0.001638995 0 0.000370202 0.013337056 0 0.000360355 0 0 0 0 0.018340679
31 Nonmetal Mineral Products 0.145967336 0 0 0 0.000782029 0 0 0 0 0.01082896 0 0.176415421 0 0.000493603 0.10251575 0 0.024143791 0 0 0 0.7500386 1.21118549
32 Smelting and Pressing of Ferrous Metals 0 0 0 0 0 0 0 0 0 0.000585349 0 0 0 0 0.005541392 0 0.015855624 0 0 0 0 0.021982365
33 Smelting and Pressing of Nonferrous Metals 0 0 0 0 0 0 0 0 0 0.000585349 0 0 0 0 0.005541392 0 0.00072071 0 0 0 0 0.006847451
34 Metal Products 0 0 0 0 0 0 0 0 0 0.022535944 0.001517572 0.008343973 0 0.000740405 0.213343588 0 0.004864794 0 0 0 0 0.251346275
35 Ordinary Machinery 0 0 0 0 0 0 0 0 0 0.016682452 0 0.002085993 0 0.001974413 0.157929669 0 0.003063018 0 0 0 0 0.181735545
36 Equipment for Special Purposes 0 0 0 0 0 0 0 0 0 0.018731174 0 0.006555978 0 0.000246802 0.17732454 0 0.001981953 0 0 0 0 0.204840448
37 Transportation Equipment 0 0 0 0 0 0 0 0 0 0.016097103 0 0.033673889 0 0.000246802 0.152388277 0 0.035314799 0 0 0 0 0.23772087
38 Electric Equipment and Machinery 0 0 0 0 0 0 0 0 0 0.014926405 0 0.001787994 0 0.000493603 0.141305493 0 0.001801775 0 0 0 0 0.16031527
39 Electronic and Telecommunications Equipment 0 0 0 0 0 0 0 0 0 0.01082896 0 0.000893997 0 0 0.10251575 0 0.003783728 0 0 0 0 0.118022436
40 Instruments, Meters, Cultural and Office Machinery 0 0 0 0 0 0 0 0 0 0.008487563 0 0.000297999 0 0 0.080350182 0 0.000360355 0 0 0 0 0.0894961
41 Other Manufacturing Industry 0 0 0 0 0 0 0 0 0 0.001463373 0 0.008641972 0 0 0.01385348 0 0.000180178 0 0 0 0 0.024139002
42 Scrap and waste 0 0 0 0 0 0 0 0 0 0.000292675 0 0.000297999 0 0 0.002770696 0 0.000180178 0 0 0 0 0.003541547
43 Production and Supply of Electric Power, Steam and Hot Water 1.758429472 0 0 0 0.002093253 0 0 0 0 0.011706984 0 0.03647905 0.005069313 0.142590845 0.345723727 0.329403245 28.57671299 0 0 0 0 31.20820888
44 Production and Supply of Gas 0 0 0 0 0 0 0 0 0 0.004097444 0 0.000595998 0 0 0.038789743 0 0.078737587 0 0 0 0 0.122220773
45 Production and Supply of Tap Water 0 0 0 0 0 0 0 0 0 0.00380477 0 0.002681991 0 0.000740405 0.036019047 0 0.000900888 0 0 0 0 0.044147101
46 Construction 0 0 0 0 0 0 0 0 0 0.216871878 0 0.452316399 0 0.013462701 0 0 0.051857496 0 0 0 0 0.734508474
47 Transportation, Storage, Post and Telecommunication Services 0.000585185 0 0 0 0 0 0 0 0 0.90173044 15.04278065 2.411941617 0.014257443 0.052285375 0 0 0.553146623 0 0 0 0 18.97672734
48 Wholesale, Retail Trade and Catering Services 0 0 0 0 0 0 0 0 0 0.510424501 0 0.122205867 0 0.060112527 0 0 1.173275844 0 0 0 0 1.86601874
49 Others 0 0 0 0 0 0 0 0 0 1.050994486 0.018514378 0.676618306 0 0.03757033 0 0 5.54875206 0 0 0 0 7.33244956
50 Urban 0.069051801 0 0 0 0 0 0 0 0 11.0982208 0 0 0 0.186599304 0 0 3.375058691 0 0 0 0 14.7289306
51 Rural 0 0 0 0.178065161 0 0 0 0 0 0 0 0 0 0.141514908 0 0 0.419181425 0 0 0 0 0.738761494

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

View File

@ -0,0 +1,151 @@
ID,sepal_length,sepal_width,petal_length,petal_width,species
1,5.1,3.5,1.4,0.2,setosa
2,4.9,3,1.4,0.2,setosa
3,4.7,3.2,1.3,0.2,setosa
4,4.6,3.1,1.5,0.2,setosa
5,5,3.6,1.4,0.2,setosa
6,5.4,3.9,1.7,0.4,setosa
7,4.6,3.4,1.4,0.3,setosa
8,5,3.4,1.5,0.2,setosa
9,4.4,2.9,1.4,0.2,setosa
10,4.9,3.1,1.5,0.1,setosa
11,5.4,3.7,1.5,0.2,setosa
12,4.8,3.4,1.6,0.2,setosa
13,4.8,3,1.4,0.1,setosa
14,4.3,3,1.1,0.1,setosa
15,5.8,4,1.2,0.2,setosa
16,5.7,4.4,1.5,0.4,setosa
17,5.4,3.9,1.3,0.4,setosa
18,5.1,3.5,1.4,0.3,setosa
19,5.7,3.8,1.7,0.3,setosa
20,5.1,3.8,1.5,0.3,setosa
21,5.4,3.4,1.7,0.2,setosa
22,5.1,3.7,1.5,0.4,setosa
23,4.6,3.6,1,0.2,setosa
24,5.1,3.3,1.7,0.5,setosa
25,4.8,3.4,1.9,0.2,setosa
26,5,3,1.6,0.2,setosa
27,5,3.4,1.6,0.4,setosa
28,5.2,3.5,1.5,0.2,setosa
29,5.2,3.4,1.4,0.2,setosa
30,4.7,3.2,1.6,0.2,setosa
31,4.8,3.1,1.6,0.2,setosa
32,5.4,3.4,1.5,0.4,setosa
33,5.2,4.1,1.5,0.1,setosa
34,5.5,4.2,1.4,0.2,setosa
35,4.9,3.1,1.5,0.2,setosa
36,5,3.2,1.2,0.2,setosa
37,5.5,3.5,1.3,0.2,setosa
38,4.9,3.6,1.4,0.1,setosa
39,4.4,3,1.3,0.2,setosa
40,5.1,3.4,1.5,0.2,setosa
41,5,3.5,1.3,0.3,setosa
42,4.5,2.3,1.3,0.3,setosa
43,4.4,3.2,1.3,0.2,setosa
44,5,3.5,1.6,0.6,setosa
45,5.1,3.8,1.9,0.4,setosa
46,4.8,3,1.4,0.3,setosa
47,5.1,3.8,1.6,0.2,setosa
48,4.6,3.2,1.4,0.2,setosa
49,5.3,3.7,1.5,0.2,setosa
50,5,3.3,1.4,0.2,setosa
51,7,3.2,4.7,1.4,versicolor
52,6.4,3.2,4.5,1.5,versicolor
53,6.9,3.1,4.9,1.5,versicolor
54,5.5,2.3,4,1.3,versicolor
55,6.5,2.8,4.6,1.5,versicolor
56,5.7,2.8,4.5,1.3,versicolor
57,6.3,3.3,4.7,1.6,versicolor
58,4.9,2.4,3.3,1,versicolor
59,6.6,2.9,4.6,1.3,versicolor
60,5.2,2.7,3.9,1.4,versicolor
61,5,2,3.5,1,versicolor
62,5.9,3,4.2,1.5,versicolor
63,6,2.2,4,1,versicolor
64,6.1,2.9,4.7,1.4,versicolor
65,5.6,2.9,3.6,1.3,versicolor
66,6.7,3.1,4.4,1.4,versicolor
67,5.6,3,4.5,1.5,versicolor
68,5.8,2.7,4.1,1,versicolor
69,6.2,2.2,4.5,1.5,versicolor
70,5.6,2.5,3.9,1.1,versicolor
71,5.9,3.2,4.8,1.8,versicolor
72,6.1,2.8,4,1.3,versicolor
73,6.3,2.5,4.9,1.5,versicolor
74,6.1,2.8,4.7,1.2,versicolor
75,6.4,2.9,4.3,1.3,versicolor
76,6.6,3,4.4,1.4,versicolor
77,6.8,2.8,4.8,1.4,versicolor
78,6.7,3,5,1.7,versicolor
79,6,2.9,4.5,1.5,versicolor
80,5.7,2.6,3.5,1,versicolor
81,5.5,2.4,3.8,1.1,versicolor
82,5.5,2.4,3.7,1,versicolor
83,5.8,2.7,3.9,1.2,versicolor
84,6,2.7,5.1,1.6,versicolor
85,5.4,3,4.5,1.5,versicolor
86,6,3.4,4.5,1.6,versicolor
87,6.7,3.1,4.7,1.5,versicolor
88,6.3,2.3,4.4,1.3,versicolor
89,5.6,3,4.1,1.3,versicolor
90,5.5,2.5,4,1.3,versicolor
91,5.5,2.6,4.4,1.2,versicolor
92,6.1,3,4.6,1.4,versicolor
93,5.8,2.6,4,1.2,versicolor
94,5,2.3,3.3,1,versicolor
95,5.6,2.7,4.2,1.3,versicolor
96,5.7,3,4.2,1.2,versicolor
97,5.7,2.9,4.2,1.3,versicolor
98,6.2,2.9,4.3,1.3,versicolor
99,5.1,2.5,3,1.1,versicolor
100,5.7,2.8,4.1,1.3,versicolor
101,6.3,3.3,6,2.5,virginica
102,5.8,2.7,5.1,1.9,virginica
103,7.1,3,5.9,2.1,virginica
104,6.3,2.9,5.6,1.8,virginica
105,6.5,3,5.8,2.2,virginica
106,7.6,3,6.6,2.1,virginica
107,4.9,2.5,4.5,1.7,virginica
108,7.3,2.9,6.3,1.8,virginica
109,6.7,2.5,5.8,1.8,virginica
110,7.2,3.6,6.1,2.5,virginica
111,6.5,3.2,5.1,2,virginica
112,6.4,2.7,5.3,1.9,virginica
113,6.8,3,5.5,2.1,virginica
114,5.7,2.5,5,2,virginica
115,5.8,2.8,5.1,2.4,virginica
116,6.4,3.2,5.3,2.3,virginica
117,6.5,3,5.5,1.8,virginica
118,7.7,3.8,6.7,2.2,virginica
119,7.7,2.6,6.9,2.3,virginica
120,6,2.2,5,1.5,virginica
121,6.9,3.2,5.7,2.3,virginica
122,5.6,2.8,4.9,2,virginica
123,7.7,2.8,6.7,2,virginica
124,6.3,2.7,4.9,1.8,virginica
125,6.7,3.3,5.7,2.1,virginica
126,7.2,3.2,6,1.8,virginica
127,6.2,2.8,4.8,1.8,virginica
128,6.1,3,4.9,1.8,virginica
129,6.4,2.8,5.6,2.1,virginica
130,7.2,3,5.8,1.6,virginica
131,7.4,2.8,6.1,1.9,virginica
132,7.9,3.8,6.4,2,virginica
133,6.4,2.8,5.6,2.2,virginica
134,6.3,2.8,5.1,1.5,virginica
135,6.1,2.6,5.6,1.4,virginica
136,7.7,3,6.1,2.3,virginica
137,6.3,3.4,5.6,2.4,virginica
138,6.4,3.1,5.5,1.8,virginica
139,6,3,4.8,1.8,virginica
140,6.9,3.1,5.4,2.1,virginica
141,6.7,3.1,5.6,2.4,virginica
142,6.9,3.1,5.1,2.3,virginica
143,5.8,2.7,5.1,1.9,virginica
144,6.8,3.2,5.9,2.3,virginica
145,6.7,3.3,5.7,2.5,virginica
146,6.7,3,5.2,2.3,virginica
147,6.3,2.5,5,1.9,virginica
148,6.5,3,5.2,2,virginica
149,6.2,3.4,5.4,2.3,virginica
150,5.9,3,5.1,1.8,virginica
1 ID sepal_length sepal_width petal_length petal_width species
2 1 5.1 3.5 1.4 0.2 setosa
3 2 4.9 3 1.4 0.2 setosa
4 3 4.7 3.2 1.3 0.2 setosa
5 4 4.6 3.1 1.5 0.2 setosa
6 5 5 3.6 1.4 0.2 setosa
7 6 5.4 3.9 1.7 0.4 setosa
8 7 4.6 3.4 1.4 0.3 setosa
9 8 5 3.4 1.5 0.2 setosa
10 9 4.4 2.9 1.4 0.2 setosa
11 10 4.9 3.1 1.5 0.1 setosa
12 11 5.4 3.7 1.5 0.2 setosa
13 12 4.8 3.4 1.6 0.2 setosa
14 13 4.8 3 1.4 0.1 setosa
15 14 4.3 3 1.1 0.1 setosa
16 15 5.8 4 1.2 0.2 setosa
17 16 5.7 4.4 1.5 0.4 setosa
18 17 5.4 3.9 1.3 0.4 setosa
19 18 5.1 3.5 1.4 0.3 setosa
20 19 5.7 3.8 1.7 0.3 setosa
21 20 5.1 3.8 1.5 0.3 setosa
22 21 5.4 3.4 1.7 0.2 setosa
23 22 5.1 3.7 1.5 0.4 setosa
24 23 4.6 3.6 1 0.2 setosa
25 24 5.1 3.3 1.7 0.5 setosa
26 25 4.8 3.4 1.9 0.2 setosa
27 26 5 3 1.6 0.2 setosa
28 27 5 3.4 1.6 0.4 setosa
29 28 5.2 3.5 1.5 0.2 setosa
30 29 5.2 3.4 1.4 0.2 setosa
31 30 4.7 3.2 1.6 0.2 setosa
32 31 4.8 3.1 1.6 0.2 setosa
33 32 5.4 3.4 1.5 0.4 setosa
34 33 5.2 4.1 1.5 0.1 setosa
35 34 5.5 4.2 1.4 0.2 setosa
36 35 4.9 3.1 1.5 0.2 setosa
37 36 5 3.2 1.2 0.2 setosa
38 37 5.5 3.5 1.3 0.2 setosa
39 38 4.9 3.6 1.4 0.1 setosa
40 39 4.4 3 1.3 0.2 setosa
41 40 5.1 3.4 1.5 0.2 setosa
42 41 5 3.5 1.3 0.3 setosa
43 42 4.5 2.3 1.3 0.3 setosa
44 43 4.4 3.2 1.3 0.2 setosa
45 44 5 3.5 1.6 0.6 setosa
46 45 5.1 3.8 1.9 0.4 setosa
47 46 4.8 3 1.4 0.3 setosa
48 47 5.1 3.8 1.6 0.2 setosa
49 48 4.6 3.2 1.4 0.2 setosa
50 49 5.3 3.7 1.5 0.2 setosa
51 50 5 3.3 1.4 0.2 setosa
52 51 7 3.2 4.7 1.4 versicolor
53 52 6.4 3.2 4.5 1.5 versicolor
54 53 6.9 3.1 4.9 1.5 versicolor
55 54 5.5 2.3 4 1.3 versicolor
56 55 6.5 2.8 4.6 1.5 versicolor
57 56 5.7 2.8 4.5 1.3 versicolor
58 57 6.3 3.3 4.7 1.6 versicolor
59 58 4.9 2.4 3.3 1 versicolor
60 59 6.6 2.9 4.6 1.3 versicolor
61 60 5.2 2.7 3.9 1.4 versicolor
62 61 5 2 3.5 1 versicolor
63 62 5.9 3 4.2 1.5 versicolor
64 63 6 2.2 4 1 versicolor
65 64 6.1 2.9 4.7 1.4 versicolor
66 65 5.6 2.9 3.6 1.3 versicolor
67 66 6.7 3.1 4.4 1.4 versicolor
68 67 5.6 3 4.5 1.5 versicolor
69 68 5.8 2.7 4.1 1 versicolor
70 69 6.2 2.2 4.5 1.5 versicolor
71 70 5.6 2.5 3.9 1.1 versicolor
72 71 5.9 3.2 4.8 1.8 versicolor
73 72 6.1 2.8 4 1.3 versicolor
74 73 6.3 2.5 4.9 1.5 versicolor
75 74 6.1 2.8 4.7 1.2 versicolor
76 75 6.4 2.9 4.3 1.3 versicolor
77 76 6.6 3 4.4 1.4 versicolor
78 77 6.8 2.8 4.8 1.4 versicolor
79 78 6.7 3 5 1.7 versicolor
80 79 6 2.9 4.5 1.5 versicolor
81 80 5.7 2.6 3.5 1 versicolor
82 81 5.5 2.4 3.8 1.1 versicolor
83 82 5.5 2.4 3.7 1 versicolor
84 83 5.8 2.7 3.9 1.2 versicolor
85 84 6 2.7 5.1 1.6 versicolor
86 85 5.4 3 4.5 1.5 versicolor
87 86 6 3.4 4.5 1.6 versicolor
88 87 6.7 3.1 4.7 1.5 versicolor
89 88 6.3 2.3 4.4 1.3 versicolor
90 89 5.6 3 4.1 1.3 versicolor
91 90 5.5 2.5 4 1.3 versicolor
92 91 5.5 2.6 4.4 1.2 versicolor
93 92 6.1 3 4.6 1.4 versicolor
94 93 5.8 2.6 4 1.2 versicolor
95 94 5 2.3 3.3 1 versicolor
96 95 5.6 2.7 4.2 1.3 versicolor
97 96 5.7 3 4.2 1.2 versicolor
98 97 5.7 2.9 4.2 1.3 versicolor
99 98 6.2 2.9 4.3 1.3 versicolor
100 99 5.1 2.5 3 1.1 versicolor
101 100 5.7 2.8 4.1 1.3 versicolor
102 101 6.3 3.3 6 2.5 virginica
103 102 5.8 2.7 5.1 1.9 virginica
104 103 7.1 3 5.9 2.1 virginica
105 104 6.3 2.9 5.6 1.8 virginica
106 105 6.5 3 5.8 2.2 virginica
107 106 7.6 3 6.6 2.1 virginica
108 107 4.9 2.5 4.5 1.7 virginica
109 108 7.3 2.9 6.3 1.8 virginica
110 109 6.7 2.5 5.8 1.8 virginica
111 110 7.2 3.6 6.1 2.5 virginica
112 111 6.5 3.2 5.1 2 virginica
113 112 6.4 2.7 5.3 1.9 virginica
114 113 6.8 3 5.5 2.1 virginica
115 114 5.7 2.5 5 2 virginica
116 115 5.8 2.8 5.1 2.4 virginica
117 116 6.4 3.2 5.3 2.3 virginica
118 117 6.5 3 5.5 1.8 virginica
119 118 7.7 3.8 6.7 2.2 virginica
120 119 7.7 2.6 6.9 2.3 virginica
121 120 6 2.2 5 1.5 virginica
122 121 6.9 3.2 5.7 2.3 virginica
123 122 5.6 2.8 4.9 2 virginica
124 123 7.7 2.8 6.7 2 virginica
125 124 6.3 2.7 4.9 1.8 virginica
126 125 6.7 3.3 5.7 2.1 virginica
127 126 7.2 3.2 6 1.8 virginica
128 127 6.2 2.8 4.8 1.8 virginica
129 128 6.1 3 4.9 1.8 virginica
130 129 6.4 2.8 5.6 2.1 virginica
131 130 7.2 3 5.8 1.6 virginica
132 131 7.4 2.8 6.1 1.9 virginica
133 132 7.9 3.8 6.4 2 virginica
134 133 6.4 2.8 5.6 2.2 virginica
135 134 6.3 2.8 5.1 1.5 virginica
136 135 6.1 2.6 5.6 1.4 virginica
137 136 7.7 3 6.1 2.3 virginica
138 137 6.3 3.4 5.6 2.4 virginica
139 138 6.4 3.1 5.5 1.8 virginica
140 139 6 3 4.8 1.8 virginica
141 140 6.9 3.1 5.4 2.1 virginica
142 141 6.7 3.1 5.6 2.4 virginica
143 142 6.9 3.1 5.1 2.3 virginica
144 143 5.8 2.7 5.1 1.9 virginica
145 144 6.8 3.2 5.9 2.3 virginica
146 145 6.7 3.3 5.7 2.5 virginica
147 146 6.7 3 5.2 2.3 virginica
148 147 6.3 2.5 5 1.9 virginica
149 148 6.5 3 5.2 2 virginica
150 149 6.2 3.4 5.4 2.3 virginica
151 150 5.9 3 5.1 1.8 virginica

View File

@ -0,0 +1,12 @@
{
"shell_port": 35101,
"iopub_port": 39125,
"stdin_port": 39149,
"control_port": 33877,
"hb_port": 52787,
"ip": "127.0.0.1",
"key": "95a8e2df-2a38aca6ac0bb5a3ffc1ee12",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,12 @@
{
"shell_port": 45953,
"iopub_port": 43085,
"stdin_port": 44709,
"control_port": 46125,
"hb_port": 39039,
"ip": "127.0.0.1",
"key": "0d71fa67-d0d2bd93154520608812b7b6",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,12 @@
{
"shell_port": 42003,
"iopub_port": 46673,
"stdin_port": 34969,
"control_port": 43555,
"hb_port": 48413,
"ip": "127.0.0.1",
"key": "f0950c6f-683c876409820873097b3990",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,12 @@
{
"shell_port": 45811,
"iopub_port": 34683,
"stdin_port": 39231,
"control_port": 41597,
"hb_port": 58735,
"ip": "127.0.0.1",
"key": "ac6231d5-54d04554f32ccde5a55c18c9",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,12 @@
{
"shell_port": 34275,
"iopub_port": 45071,
"stdin_port": 46695,
"control_port": 46691,
"hb_port": 41381,
"ip": "127.0.0.1",
"key": "b16365ef-2514bf8b331bc5c0966a2503",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,12 @@
{
"shell_port": 35091,
"iopub_port": 42491,
"stdin_port": 36253,
"control_port": 35901,
"hb_port": 59605,
"ip": "127.0.0.1",
"key": "429fdd93-ec67d688cbbf1acd3390114a",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,12 @@
{
"shell_port": 44677,
"iopub_port": 45191,
"stdin_port": 36849,
"control_port": 39841,
"hb_port": 43331,
"ip": "127.0.0.1",
"key": "f9627f28-fb5d40a3f3a86401bb81f336",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,12 @@
{
"shell_port": 39619,
"iopub_port": 37541,
"stdin_port": 45601,
"control_port": 35353,
"hb_port": 37995,
"ip": "127.0.0.1",
"key": "9426ce11-701ca635a86530ebe1019bb2",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,12 @@
{
"shell_port": 46723,
"iopub_port": 36411,
"stdin_port": 45227,
"control_port": 36727,
"hb_port": 45241,
"ip": "127.0.0.1",
"key": "6832f6f3-70ae189c473c5eb3650804f2",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,12 @@
{
"shell_port": 45115,
"iopub_port": 46367,
"stdin_port": 43969,
"control_port": 34267,
"hb_port": 35721,
"ip": "127.0.0.1",
"key": "c8f5b8b7-e4eff814aa3b83dab96f8ac3",
"transport": "tcp",
"signature_scheme": "hmac-sha256",
"kernel_name": ""
}

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

View File

@ -0,0 +1,3 @@
from ipykernel import kernelapp as app
app.launch_new_instance()

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

View File

@ -0,0 +1,83 @@
# 产品碳足迹研究报告(示例)
## 基本信息
- 产品名称:智能节能灯泡
- 产品规格型号LED-E27-10W
- 生产者名称EcoTech Solutions
- 报告编号ECO-2023-CFP-01
- 出具报告机构EcoAnalytics
- 日期2023年4月15日
## 一、概况
### 1. 生产者信息
- 生产者名称EcoTech Solutions
- 地址123 Greenway St, EcoCity
- 法定代表人Jane Doe
- 产品名称:智能节能灯泡
- 产品功能:节能照明,支持远程控制
- 依据标准ISO 14040, ISO 14044
## 二、量化目的
评估并减少产品在其整个生命周期中的碳排放。
## 三、量化范围
### 1. 功能单位或声明单位
以个为功能单位或声明单位。
### 2. 系统边界
- 原材料获取阶段
- 生产阶段
- 分销阶段
- 使用阶段
- 生命末期阶段
- 系统边界图:(此处通常会有一个流程图,但我们将跳过此部分,因为它是图形内容)
### 3. 取舍准则
采用的取舍准则以ISO 14044为依据具体规则如下此处可以详细描述但我们将省略
### 4. 时间范围
2022年度。
## 四、清单分析
### 1. 数据来源说明
- 初级数据:内部记录
- 次级数据:行业平均值
### 2. 分配原则与程序
- 分配依据:按活动比例
- 分配程序:线性分配
- 具体分配情况:(略,通常会有一系列详细的计算)
### 3. 清单结果及计算
| 生命周期阶段 | 活动数据 (单位) | 排放因子 (kg CO2e/单位) | 碳足迹 (kg CO2e/功能单位) |
| --- | --- | --- | --- |
| 原材料获取 | 10 | 0.5 | 5 |
| 生产 | 20 | 1 | 20 |
| 分销 | 5 | 0.8 | 4 |
| 运输 | 15 | 0.6 | 9 |
| 仓库 | 3 | 0.7 | 2.1 |
| 使用 | | | 100 (假设) |
| 生命末期 | 2 | 1.2 | 2.4 |
| **总计** | | | 130.5 |
### 4. 数据质量评价
(略,通常涉及详细的质量评估标准)
## 五、影响评价
### 1. 影响类型和特征化因子选择
100年全球变暖潜势GWP100
### 2. 产品碳足迹结果计算
产品碳足迹总计为130.5 kg CO2e/个。
## 六、结果解释
### 1. 结果说明
EcoTech Solutions生产的LED-E27-10W智能节能灯泡从原材料获取到生命末期的生命周期碳足迹为130.5 kg CO2e/个。各生命周期阶段的温室气体排放情况如下表所示。
### 2. 假设和局限性说明
(此处可以添加关于数据估算和简化模型的说明)
### 3. 改进建议
- 优化原材料供应链以减少获取过程中的排放
- 提升生产效率,降低生产阶段的碳足迹
- 考虑使用更环保的分销方式
- 提供回收计划以减少生命末期的环境影响

View File

@ -0,0 +1 @@
{"url": "/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/报告案例1.md", "raw": [{"content": "# 产品碳足迹研究报告(示例)\n## 基本信息\n- 产品名称:智能节能灯泡\n- 产品规格型号LED-E27-10W\n- 生产者名称EcoTech Solutions\n- 报告编号ECO-2023-CFP-01\n- 出具报告机构EcoAnalytics\n- 日期2023年4月15日\n## 一、概况\n### 1. 生产者信息\n- 生产者名称EcoTech Solutions\n- 地址123 Greenway St, EcoCity\n- 法定代表人Jane Doe\n- 产品名称:智能节能灯泡\n- 产品功能:节能照明,支持远程控制\n- 依据标准ISO 14040, ISO 14044\n## 二、量化目的\n评估并减少产品在其整个生命周期中的碳排放。\n## 三、量化范围\n### 1. 功能单位或声明单位\n以个为功能单位或声明单位。\n### 2. 系统边界\n- 原材料获取阶段\n- 生产阶段\n- 分销阶段\n- 使用阶段\n- 生命末期阶段\n- 系统边界图:(此处通常会有一个流程图,但我们将跳过此部分,因为它是图形内容)\n### 3. 取舍准则\n采用的取舍准则以ISO 14044为依据具体规则如下此处可以详细描述但我们将省略\n### 4. 时间范围\n2022年度。\n## 四、清单分析\n### 1. 数据来源说明\n- 初级数据:内部记录\n- 次级数据:行业平均值\n### 2. 分配原则与程序\n- 分配依据:按活动比例\n- 分配程序:线性分配\n- 具体分配情况:(略,通常会有一系列详细的计算)\n### 3. 清单结果及计算\n| 生命周期阶段 | 活动数据 (单位) | 排放因子 (kg CO2e/单位) | 碳足迹 (kg CO2e/功能单位) |\n| --- | --- | --- | --- |\n| 原材料获取 | 10 | 0.5 | 5 |\n| 生产 | 20 | 1 | 20 |\n| 分销 | 5 | 0.8 | 4 |\n| 运输 | 15 | 0.6 | 9 |\n| 仓库 | 3 | 0.7 | 2.1 |\n| 使用 | | | 100 (假设) |\n| 生命末期 | 2 | 1.2 | 2.4 |\n| **总计** | | | 130.5 |\n### 4. 数据质量评价\n通常涉及详细的质量评估标准\n## 五、影响评价\n### 1. 影响类型和特征化因子选择\n100年全球变暖潜势GWP100\n### 2. 产品碳足迹结果计算\n产品碳足迹总计为130.5 kg CO2e/个。\n## 六、结果解释\n### 1. 结果说明\nEcoTech Solutions生产的LED-E27-10W智能节能灯泡从原材料获取到生命末期的生命周期碳足迹为130.5 kg CO2e/个。各生命周期阶段的温室气体排放情况如下表所示。\n### 2. 假设和局限性说明\n此处可以添加关于数据估算和简化模型的说明\n### 3. 改进建议\n- 优化原材料供应链以减少获取过程中的排放\n- 提升生产效率,降低生产阶段的碳足迹\n- 考虑使用更环保的分销方式\n- 提供回收计划以减少生命末期的环境影响", "metadata": {"source": "/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/报告案例1.md", "title": "报告案例1.md", "chunk_id": 0}, "token": 821}], "title": "报告案例1.md"}

View File

@ -0,0 +1 @@
{"url": "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/iris.csv", "raw": [{"content": "ID,sepal_length,sepal_width,petal_length,petal_width,species\n1,5.1,3.5,1.4,0.2,setosa\n2,4.9,3,1.4,0.2,setosa\n3,4.7,3.2,1.3,0.2,setosa\n4,4.6,3.1,1.5,0.2,setosa\n5,5,3.6,1.4,0.2,setosa\n6,5.4,3.9,1.7,0.4,setosa\n7,4.6,3.4,1.4,0.3,setosa\n8,5,3.4,1.5,0.2,setosa\n9,4.4,2.9,1.4,0.2,setosa\n10,4.9,3.1,1.5,0.1,setosa\n11,5.4,3.7,1.5,0.2,setosa\n12,4.8,3.4,1.6,0.2,setosa\n13,4.8,3,1.4,0.1,setosa\n14,4.3,3,1.1,0.1,setosa\n15,5.8,4,1.2,0.2,setosa\n16,5.7,4.4,1.5,0.4,setosa\n17,5.4,3.9,1.3,0.4,setosa\n18,5.1,3.5,1.4,0.3,setosa\n19,5.7,3.8,1.7,0.3,setosa\n20,5.1,3.8,1.5,0.3,setosa\n21,5.4,3.4,1.7,0.2,setosa\n22,5.1,3.7,1.5,0.4,setosa\n23,4.6,3.6,1,0.2,setosa\n24,5.1,3.3,1.7,0.5,setosa\n25,4.8,3.4,1.9,0.2,setosa\n26,5,3,1.6,0.2,setosa\n27,5,3.4,1.6,0.4,setosa\n28,5.2,3.5,1.5,0.2,setosa\n29,5.2,3.4,1.4,0.2,setosa\n30,4.7,3.2,1.6,0.2,setosa\n31,4.8,3.1,1.6,0.2,setosa\n32,5.4,3.4,1.5,0.4,setosa\n33,5.2,4.1,1.5,0.1,setosa\n34,5.5,4.2,1.4,0.2,setosa\n35,4.9,3.1,1.5,0.2,setosa\n36,5,3.2,1.2,0.2,setosa\n37,5.5,3.5,1.3,0.2,setosa\n38,4.9,3.6,1.4,0.1,setosa\n39,4.4,3,1.3,0.2,setosa\n40,5.1,3.4,1.5,0.2,setosa\n41,5,3.5,1.3,0.3,setosa\n42,4.5,2.3,1.3,0.3,setosa\n43,4.4,3.2,1.3,0.2,setosa\n44,5,3.5,1.6,0.6,setosa\n45,5.1,3.8,1.9,0.4,setosa\n46,4.8,3,1.4,0.3,setosa\n47,5.1,3.8,1.6,0.2,setosa\n48,4.6,3.2,1.4,0.2,setosa\n49,5.3,3.7,1.5,0.2,setosa\n50,5,3.3,1.4,0.2,setosa\n51,7,3.2,4.7,1.4,versicolor\n52,6.4,3.2,4.5,1.5,versicolor\n53,6.9,3.1,4.9,1.5,versicolor\n54,5.5,2.3,4,1.3,versicolor\n55,6.5,2.8,4.6,1.5,versicolor\n56,5.7,2.8,4.5,1.3,versicolor\n57,6.3,3.3,4.7,1.6,versicolor\n58,4.9,2.4,3.3,1,versicolor\n59,6.6,2.9,4.6,1.3,versicolor\n60,5.2,2.7,3.9,1.4,versicolor\n61,5,2,3.5,1,versicolor\n62,5.9,3,4.2,1.5,versicolor\n63,6,2.2,4,1,versicolor\n64,6.1,2.9,4.7,1.4,versicolor\n65,5.6,2.9,3.6,1.3,versicolor\n66,6.7,3.1,4.4,1.4,versicolor\n67,5.6,3,4.5,1.5,versicolor\n68,5.8,2.7,4.1,1,versicolor\n69,6.2,2.2,4.5,1.5,versicolor\n70,5.6,2.5,3.9,1.1,versicolor\n71,5.9,3.2,4.8,1.8,versicolor\n72,6.1,2.8,4,1.3,versicolor\n73,6.3,2.5,4.9,1.5,versicolor\n74,6.1,2.8,4.7,1.2,versicolor\n75,6.4,2.9,4.3,1.3,versicolor\n76,6.6,3,4.4,1.4,versicolor\n77,6.8,2.8,4.8,1.4,versicolor\n78,6.7,3,5,1.7,versicolor\n79,6,2.9,4.5,1.5,versicolor\n80,5.7,2.6,3.5,1,versicolor\n81,5.5,2.4,3.8,1.1,versicolor\n82,5.5,2.4,3.7,1,versicolor\n83,5.8,2.7,3.9,1.2,versicolor\n84,6,2.7,5.1,1.6,versicolor\n85,5.4,3,4.5,1.5,versicolor\n86,6,3.4,4.5,1.6,versicolor\n87,6.7,3.1,4.7,1.5,versicolor\n88,6.3,2.3,4.4,1.3,versicolor\n89,5.6,3,4.1,1.3,versicolor\n90,5.5,2.5,4,1.3,versicolor\n91,5.5,2.6,4.4,1.2,versicolor\n92,6.1,3,4.6,1.4,versicolor\n93,5.8,2.6,4,1.2,versicolor\n94,5,2.3,3.3,1,versicolor\n95,5.6,2.7,4.2,1.3,versicolor\n96,5.7,3,4.2,1.2,versicolor\n97,5.7,2.9,4.2,1.3,versicolor\n98,6.2,2.9,4.3,1.3,versicolor\n99,5.1,2.5,3,1.1,versicolor\n100,5.7,2.8,4.1,1.3,versicolor\n101,6.3,3.3,6,2.5,virginica\n102,5.8,2.7,5.1,1.9,virginica\n103,7.1,3,5.9,2.1,virginica\n104,6.3,2.9,5.6,1.8,virginica\n105,6.5,3,5.8,2.2,virginica\n106,7.6,3,6.6,2.1,virginica\n107,4.9,2.5,4.5,1.7,virginica\n108,7.3,2.9,6.3,1.8,virginica\n109,6.7,2.5,5.8,1.8,virginica\n110,7.2,3.6,6.1,2.5,virginica\n111,6.5,3.2,5.1,2,virginica\n112,6.4,2.7,5.3,1.9,virginica\n113,6.8,3,5.5,2.1,virginica\n114,5.7,2.5,5,2,virginica\n115,5.8,2.8,5.1,2.4,virginica\n116,6.4,3.2,5.3,2.3,virginica\n117,6.5,3,5.5,1.8,virginica\n118,7.7,3.8,6.7,2.2,virginica\n119,7.7,2.6,6.9,2.3,virginica\n120,6,2.2,5,1.5,virginica\n121,6.9,3.2,5.7,2.3,virginica\n122,5.6,2.8,4.9,2,virginica\n123,7.7,2.8,6.7,2,virginica\n124,6.3,2.7,4.9,1.8,virginica\n125,6.7,3.3,5.7,2.1,virginica\n126,7.2,3.2,6,1.8,virginica\n127,6.2,2.8,4.8,1.8,virginica\n128,6.1,3,4.9,1.8,virginica\n129,6.4,2.8,5.6,2.1,virginica\n130,7.2,3,5.8,1.6,virginica\n131,7.4,2.8,6.1,1.9,virginica\n132,7.9,3.8,6.4,2,virginica\n133,6.4,2.8,5.6,2.2,virginica\n134,6.3,2.8,5.1,1.5,virginica\n135,6.1,2.6,5.6,1.4,virginica\n136,7.7,3,6.1,2.3,virginica\n137,6.3,3.4,5.6,2.4,virginica\n138,6.4,3.1,5.5,1.8,virginica\n139,6,3,4.8,1.8,virginica\n140,6.9,3.1,5.4,2.1,virginica\n141,6.7,3.1,5.6,2.4,virginica\n142,6.9,3.1,5.1,2.3,virginica\n143,5.8,2.7,5.1,1.9,virginica\n144,6.8,3.2,5.9,2.3,virginica\n145,6.7,3.3,5.7,2.5,virginica\n146,6.7,3,5.2,2.3,virginica\n147,6.3,2.5,5,1.9,virginica\n148,6.5,3,5.2,2,virginica\n149,6.2,3.4,5.4,2.3,virginica\n150,5.9,3,5.1,1.8,virginica", "metadata": {"source": "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/iris.csv", "title": "iris.csv", "chunk_id": 0}, "token": 3069}], "title": "iris.csv"}

View File

@ -0,0 +1,279 @@
[
{
"page_num": 1,
"content": [
{
"text": "# 产品碳足迹研究报告(示例)",
"token": 10
},
{
"text": "## 基本信息",
"token": 6
},
{
"text": "- 产品名称:智能节能灯泡",
"token": 9
},
{
"text": "- 产品规格型号LED-E27-10W",
"token": 14
},
{
"text": "- 生产者名称EcoTech Solutions",
"token": 10
},
{
"text": "- 报告编号ECO-2023-CFP-01",
"token": 18
},
{
"text": "- 出具报告机构EcoAnalytics",
"token": 10
},
{
"text": "- 日期2023年4月15日",
"token": 14
},
{
"text": "## 一、概况",
"token": 5
},
{
"text": "### 1. 生产者信息",
"token": 8
},
{
"text": "- 生产者名称EcoTech Solutions",
"token": 10
},
{
"text": "- 地址123 Greenway St, EcoCity",
"token": 14
},
{
"text": "- 法定代表人Jane Doe",
"token": 9
},
{
"text": "- 产品名称:智能节能灯泡",
"token": 9
},
{
"text": "- 产品功能:节能照明,支持远程控制",
"token": 11
},
{
"text": "- 依据标准ISO 14040, ISO 14044",
"token": 20
},
{
"text": "## 二、量化目的",
"token": 6
},
{
"text": "评估并减少产品在其整个生命周期中的碳排放。",
"token": 11
},
{
"text": "## 三、量化范围",
"token": 6
},
{
"text": "### 1. 功能单位或声明单位",
"token": 10
},
{
"text": "以个为功能单位或声明单位。",
"token": 9
},
{
"text": "### 2. 系统边界",
"token": 8
},
{
"text": "- 原材料获取阶段",
"token": 7
},
{
"text": "- 生产阶段",
"token": 4
},
{
"text": "- 分销阶段",
"token": 4
},
{
"text": "- 使用阶段",
"token": 3
},
{
"text": "- 生命末期阶段",
"token": 6
},
{
"text": "- 系统边界图:(此处通常会有一个流程图,但我们将跳过此部分,因为它是图形内容)",
"token": 27
},
{
"text": "### 3. 取舍准则",
"token": 8
},
{
"text": "采用的取舍准则以ISO 14044为依据具体规则如下此处可以详细描述但我们将省略",
"token": 31
},
{
"text": "### 4. 时间范围",
"token": 6
},
{
"text": "2022年度。",
"token": 6
},
{
"text": "## 四、清单分析",
"token": 6
},
{
"text": "### 1. 数据来源说明",
"token": 7
},
{
"text": "- 初级数据:内部记录",
"token": 8
},
{
"text": "- 次级数据:行业平均值",
"token": 10
},
{
"text": "### 2. 分配原则与程序",
"token": 9
},
{
"text": "- 分配依据:按活动比例",
"token": 8
},
{
"text": "- 分配程序:线性分配",
"token": 8
},
{
"text": "- 具体分配情况:(略,通常会有一系列详细的计算)",
"token": 17
},
{
"text": "### 3. 清单结果及计算",
"token": 10
},
{
"text": "| 生命周期阶段 | 活动数据 (单位) | 排放因子 (kg CO2e/单位) | 碳足迹 (kg CO2e/功能单位) |",
"token": 40
},
{
"text": "| --- | --- | --- | --- |",
"token": 9
},
{
"text": "| 原材料获取 | 10 | 0.5 | 5 |",
"token": 19
},
{
"text": "| 生产 | 20 | 1 | 20 |",
"token": 15
},
{
"text": "| 分销 | 5 | 0.8 | 4 |",
"token": 15
},
{
"text": "| 运输 | 15 | 0.6 | 9 |",
"token": 17
},
{
"text": "| 仓库 | 3 | 0.7 | 2.1 |",
"token": 17
},
{
"text": "| 使用 | | | 100 (假设) |",
"token": 15
},
{
"text": "| 生命末期 | 2 | 1.2 | 2.4 |",
"token": 19
},
{
"text": "| **总计** | | | 130.5 |",
"token": 16
},
{
"text": "### 4. 数据质量评价",
"token": 7
},
{
"text": "(略,通常涉及详细的质量评估标准)",
"token": 10
},
{
"text": "## 五、影响评价",
"token": 6
},
{
"text": "### 1. 影响类型和特征化因子选择",
"token": 13
},
{
"text": "100年全球变暖潜势GWP100",
"token": 16
},
{
"text": "### 2. 产品碳足迹结果计算",
"token": 10
},
{
"text": "产品碳足迹总计为130.5 kg CO2e/个。",
"token": 17
},
{
"text": "## 六、结果解释",
"token": 6
},
{
"text": "### 1. 结果说明",
"token": 7
},
{
"text": "EcoTech Solutions生产的LED-E27-10W智能节能灯泡从原材料获取到生命末期的生命周期碳足迹为130.5 kg CO2e/个。各生命周期阶段的温室气体排放情况如下表所示。",
"token": 54
},
{
"text": "### 2. 假设和局限性说明",
"token": 12
},
{
"text": "(此处可以添加关于数据估算和简化模型的说明)",
"token": 13
},
{
"text": "### 3. 改进建议",
"token": 9
},
{
"text": "- 优化原材料供应链以减少获取过程中的排放",
"token": 11
},
{
"text": "- 提升生产效率,降低生产阶段的碳足迹",
"token": 12
},
{
"text": "- 考虑使用更环保的分销方式",
"token": 11
},
{
"text": "- 提供回收计划以减少生命末期的环境影响",
"token": 13
}
]
}
]

View File

@ -0,0 +1,211 @@
[
{
"page_num": 1,
"content": [
{
"text": "Emission_Inventory,Raw_Coal,CleanedCoal,Other_Washed_Coal,Briquettes,Coke,Coke_Oven_Gas,Other_Gas,Other_Coking_Products,Crude_Oil,Gasoline,Kerosene,Diesel_Oil,Fuel_Oil,LPG,Refinery_Gas,Other_Petroleum_Products,Natural_Gas,Scope_2_Heat,Scope_2_Electricity,Other_Energy,Process,Scope_1_Total",
"token": 103
},
{
"text": "unit,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2",
"token": 89
},
{
"text": ",,,,,,,,,,,,,,,,,,,,,,",
"token": 4
},
{
"text": "TotalEmissions,2.0021984744341097,0,0,0.17806516054927157,0.0028765890412809116,0,0,0,0,14.049258786117642,15.062812602799132,4.042693831830754,0.019326756197558977,1.3065082109211597,2.1464739602678615,0.32940324454750275,39.990772243150595,0,0,0,0.7500386,79.88042845985687",
"token": 264
},
{
"text": "\"Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy\",0.027948058177255413,0,0,0,0,0,0,0,0,0.057656896045355,0,0.05228554814260331,0,0.0015654303988990653,0,0,0.0021607289951994053,0,0,0,0,0.14161666175931217",
"token": 171
},
{
"text": "Coal Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0",
"token": 49
},
{
"text": "Petroleum and Natural Gas Extraction,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.002702663186427796,0,0,0,0,0.002702663186427796",
"token": 88
},
{
"text": "Ferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.0002926745992150001,0,0.00029799902117672207,0,0,0.002770695943414191,0,0,0,0,0,0,0.0033613695638059133",
"token": 132
},
{
"text": "Nonferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0",
"token": 52
},
{
"text": "Nonmetal Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0",
"token": 51
},
{
"text": "Other Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.0008780237976450001,0,0.003873987275297386,0,0,0.00831208783024257,0,0,0,0,0,0,0.013064098903184957",
"token": 126
},
{
"text": "Logging and Transport of Wood and Bamboo,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0",
"token": 51
},
{
"text": "Food Processing,0,0,0,0,0,0,0,0,0,0.0058534919843000015,0,0.009833967698831828,0,0.00024680161522865106,0.05541391886828382,0,0.007387279376235978,0,0,0,0,0.07873545954288028",
"token": 161
},
{
"text": "Food Production,0.0002166219449639238,0,0,0,1.3073027818946156e-06,0,0,0,0,0.006731515781945002,0,0.008641971614124938,0,0.0007404048456859532,0.0637260066985264,0,0.01279260574909157,0,0,0,0,0.09285043393711968",
"token": 198
},
{
"text": "Beverage Production,0,0,0,0,0,0,0,0,0,0.003804769789795001,0,0.002979990211767221,0,0.00024680161522865106,0.03601904726438448,0,0.01585562402704307,0,0,0,0,0.05890623290821842",
"token": 161
},
{
"text": "Tobacco Processing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0007207101830474124,0,0,0,0,0.0007207101830474124",
"token": 88
},
{
"text": "Textile Industry,0,0,0,0,0,0,0,0,0,0.0008780237976450001,0,0.00029799902117672207,0,0,0.00831208783024257,0,0.0001801775457618531,0,0,0,0,0.009668288194826145",
"token": 145
},
{
"text": "Garments and Other Fiber Products,0,0,0,0,0,0,0,0,0,0.005268142785870001,0,0.0005959980423534441,0,0,0.04987252698145543,0,0.001981953003380384,0,0,0,0,0.05771862081305926",
"token": 144
},
{
"text": "\"Leather, Furs, Down and Related Products\",0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0,0,0,0.005541391886828382,0,0,0,0,0,0,0.006126741085258383",
"token": 113
},
{
"text": "\"Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products\",0,0,0,0,0,0,0,0,0,0.0017560475952900002,0,0.0005959980423534441,0,0,0.01662417566048514,0,0,0,0,0,0,0.018976221298128586",
"token": 136
},
{
"text": "Furniture Manufacturing,0,0,0,0,0,0,0,0,0,0.005268142785870001,0,0.0005959980423534441,0,0.00024680161522865106,0.04987252698145543,0,0.0007207101830474124,0,0,0,0,0.05670417960795494",
"token": 163
},
{
"text": "Papermaking and Paper Products,0,0,0,0,0,0,0,0,0,0.004097444389010001,0,0.002085993148237055,0,0,0.03878974320779867,0,0.0025224856406659436,0,0,0,0,0.04749566638571166",
"token": 143
},
{
"text": "Printing and Record Medium Reproduction,0,0,0,0,0,0,0,0,0,0.009658261774095003,0,0.00417198629647411,0,0.00024680161522865106,0.09143296613266833,0,0.0032431958237133557,0,0,0,0,0.10875321164217944",
"token": 164
},
{
"text": "\"Cultural, Educational and Sports Articles\",0,0,0,0,0,0,0,0,0,0.0014633729960750004,0,0.00029799902117672207,0,0.00024680161522865106,0.013853479717070955,0,0.0003603550915237062,0,0,0,0,0.016222008441075034",
"token": 171
},
{
"text": "Petroleum Processing and Coking,0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0.0005959980423534441,0,0.661921932043242,0.005541391886828382,0,0.03963906006760768,0,0,0,0,0.7082837312384614",
"token": 160
},
{
"text": "Raw Chemical Materials and Chemical Products,0,0,0,0,0,0,0,0,0,0.009072912575665,0,0.008045973571771498,0,0.0007404048456859532,0.04593874768597067,0,0.0037837284609989153,0,0,0,0,0.06758176714009204",
"token": 161
},
{
"text": "Medical and Pharmaceutical Products,0,0,0,0,0,0,0,0,0,0.009950936373310001,0,0.0023839921694137766,0,0.0004936032304573021,0.050384432945903314,0,0.025405033952421285,0,0,0,0,0.08861799867150567",
"token": 163
},
{
"text": "Chemical Fiber,0,0,0,0,0,0,0,0,0,0.0002926745992150001,0,0,0,0,0.0014818950866442155,0,0.0007207101830474124,0,0,0,0,0.0024952798689066276",
"token": 127
},
{
"text": "Rubber Products,0,0,0,0,0,0,0,0,0,0.0026340713929350005,0,0.0016389946164719713,0,0.0003702024228429766,0.013337055779797935,0,0.0003603550915237062,0,0,0,0,0.01834067930357159",
"token": 164
},
{
"text": "Plastic Products,0,0,0,0,0,0,0,0,0,0.0026340713929350005,0,0.0016389946164719713,0,0.0003702024228429766,0.013337055779797935,0,0.0003603550915237062,0,0,0,0,0.01834067930357159",
"token": 164
},
{
"text": "Nonmetal Mineral Products,0.14596733623893196,0,0,0,0.0007820285241293591,0,0,0,0,0.010828960170955,0,0.17641542053661946,0,0.0004936032304573021,0.10251574990632503,0,0.02414379113208831,0,0,0,0.7500386,1.2111854897395065",
"token": 201
},
{
"text": "Smelting and Pressing of Ferrous Metals,0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0,0,0,0.005541391886828382,0,0.01585562402704307,0,0,0,0,0.021982365112301453",
"token": 130
},
{
"text": "Smelting and Pressing of Nonferrous Metals,0,0,0,0,0,0,0,0,0,0.0005853491984300002,0,0,0,0,0.005541391886828382,0,0.0007207101830474124,0,0,0,0,0.006847451268305795",
"token": 133
},
{
"text": "Metal Products,0,0,0,0,0,0,0,0,0,0.022535944139555,0.0015175719959296297,0.00834397259294822,0,0.0007404048456859532,0.21334358764289266,0,0.004864793735570033,0,0,0,0,0.2513462749525815",
"token": 174
},
{
"text": "Ordinary Machinery,0,0,0,0,0,0,0,0,0,0.016682452155255004,0,0.002085993148237055,0,0.0019744129218292085,0.15792966877460887,0,0.003063018277951503,0,0,0,0,0.18173554527788163",
"token": 160
},
{
"text": "Equipment for Special Purposes,0,0,0,0,0,0,0,0,0,0.018731174349760005,0,0.006555978465887885,0,0.00024680161522865106,0.17732454037850823,0,0.001981953003380384,0,0,0,0,0.20484044781276517",
"token": 163
},
{
"text": "Transportation Equipment,0,0,0,0,0,0,0,0,0,0.016097102956825003,0,0.0336738893929696,0,0.00024680161522865106,0.1523882768877805,0,0.035314798969323206,0,0,0,0,0.23772086982212698",
"token": 158
},
{
"text": "Electric Equipment and Machinery,0,0,0,0,0,0,0,0,0,0.014926404559965006,0,0.0017879941270603325,0,0.0004936032304573021,0.14130549311412374,0,0.0018017754576185308,0,0,0,0,0.16031527048922492",
"token": 163
},
{
"text": "Electronic and Telecommunications Equipment,0,0,0,0,0,0,0,0,0,0.010828960170955,0,0.0008939970635301663,0,0,0.10251574990632503,0,0.0037837284609989153,0,0,0,0,0.11802243560180911",
"token": 141
},
{
"text": "\"Instruments, Meters, Cultural and Office Machinery\",0,0,0,0,0,0,0,0,0,0.008487563377235,0,0.00029799902117672207,0,0,0.08035018235901153,0,0.0003603550915237062,0,0,0,0,0.08949609984894696",
"token": 147
},
{
"text": "Other Manufacturing Industry,0,0,0,0,0,0,0,0,0,0.0014633729960750004,0,0.008641971614124938,0,0,0.013853479717070955,0,0.0001801775457618531,0,0,0,0,0.024139001873032747",
"token": 144
},
{
"text": "Scrap and waste,0,0,0,0,0,0,0,0,0,0.0002926745992150001,0,0.00029799902117672207,0,0,0.002770695943414191,0,0.0001801775457618531,0,0,0,0,0.0035415471095677662",
"token": 148
},
{
"text": "\"Production and Supply of Electric Power, Steam and Hot Water\",1.7584294721807978,0,0,0,0.002093253214369658,0,0,0,0,0.011706983968600003,0,0.036479049620716374,0.005069313100999075,0.14259084507648084,0.34572372722416206,0.32940324454750275,28.576712994550185,0,0,0,0,31.208208883483813",
"token": 237
},
{
"text": "Production and Supply of Gas,0,0,0,0,0,0,0,0,0,0.004097444389010001,0,0.0005959980423534441,0,0,0.03878974320779867,0,0.0787375874979298,0,0,0,0,0.12222077313709193",
"token": 141
},
{
"text": "Production and Supply of Tap Water,0,0,0,0,0,0,0,0,0,0.003804769789795001,0,0.0026819911905904977,0,0.0007404048456859532,0.03601904726438448,0,0.0009008877288092654,0,0,0,0,0.04414710081926519",
"token": 165
},
{
"text": "Construction,0,0,0,0,0,0,0,0,0,0.21687187801831503,0,0.4523163987247695,0,0.013462701430531963,0,0,0.05185749588478573,0,0,0,0,0.7345084740584022",
"token": 134
},
{
"text": "\"Transportation, Storage, Post and Telecommunication Services\",0.0005851847553963052,0,0,0,0,0,0,0,0,0.901730440181415,15.042780652452862,2.411941617276541,0.014257443096559902,0.052285375323228786,0,0,0.5531466227710478,0,0,0,0,18.976727335857053",
"token": 196
},
{
"text": "\"Wholesale, Retail Trade and Catering Services\",0,0,0,0,0,0,0,0,0,0.51042450103096,0,0.12220586696052255,0,0.06011252731772412,0,0,1.1732758443932771,0,0,0,0,1.8660187397024839",
"token": 139
},
{
"text": "Others,0,0,0,0,0,0,0,0,0,1.0509944857810651,0.01851437835034148,0.676618306437121,0,0.03757032957357757,0,0,5.548752059672073,0,0,0,0,7.332449559814178",
"token": 146
},
{
"text": "Urban,0.06905180113676401,0,0,0,0,0,0,0,0,11.098220802232799,0,0,0,0.1865993035487686,0,0,3.3750586905014712,0,0,0,0,14.728930597419804",
"token": 131
},
{
"text": "Rural,0,0,0,0.17806516054927157,0,0,0,0,0,0,0,0,0,0.1415149080604755,0,0,0.4191814250686847,0,0,0,0,0.7387614936784318",
"token": 115
}
]
}
]

View File

@ -0,0 +1,611 @@
[
{
"page_num": 1,
"content": [
{
"text": "ID,sepal_length,sepal_width,petal_length,petal_width,species",
"token": 19
},
{
"text": "1,5.1,3.5,1.4,0.2,setosa",
"token": 19
},
{
"text": "2,4.9,3,1.4,0.2,setosa",
"token": 17
},
{
"text": "3,4.7,3.2,1.3,0.2,setosa",
"token": 19
},
{
"text": "4,4.6,3.1,1.5,0.2,setosa",
"token": 19
},
{
"text": "5,5,3.6,1.4,0.2,setosa",
"token": 17
},
{
"text": "6,5.4,3.9,1.7,0.4,setosa",
"token": 19
},
{
"text": "7,4.6,3.4,1.4,0.3,setosa",
"token": 19
},
{
"text": "8,5,3.4,1.5,0.2,setosa",
"token": 17
},
{
"text": "9,4.4,2.9,1.4,0.2,setosa",
"token": 19
},
{
"text": "10,4.9,3.1,1.5,0.1,setosa",
"token": 20
},
{
"text": "11,5.4,3.7,1.5,0.2,setosa",
"token": 20
},
{
"text": "12,4.8,3.4,1.6,0.2,setosa",
"token": 20
},
{
"text": "13,4.8,3,1.4,0.1,setosa",
"token": 18
},
{
"text": "14,4.3,3,1.1,0.1,setosa",
"token": 18
},
{
"text": "15,5.8,4,1.2,0.2,setosa",
"token": 18
},
{
"text": "16,5.7,4.4,1.5,0.4,setosa",
"token": 20
},
{
"text": "17,5.4,3.9,1.3,0.4,setosa",
"token": 20
},
{
"text": "18,5.1,3.5,1.4,0.3,setosa",
"token": 20
},
{
"text": "19,5.7,3.8,1.7,0.3,setosa",
"token": 20
},
{
"text": "20,5.1,3.8,1.5,0.3,setosa",
"token": 20
},
{
"text": "21,5.4,3.4,1.7,0.2,setosa",
"token": 20
},
{
"text": "22,5.1,3.7,1.5,0.4,setosa",
"token": 20
},
{
"text": "23,4.6,3.6,1,0.2,setosa",
"token": 18
},
{
"text": "24,5.1,3.3,1.7,0.5,setosa",
"token": 20
},
{
"text": "25,4.8,3.4,1.9,0.2,setosa",
"token": 20
},
{
"text": "26,5,3,1.6,0.2,setosa",
"token": 16
},
{
"text": "27,5,3.4,1.6,0.4,setosa",
"token": 18
},
{
"text": "28,5.2,3.5,1.5,0.2,setosa",
"token": 20
},
{
"text": "29,5.2,3.4,1.4,0.2,setosa",
"token": 20
},
{
"text": "30,4.7,3.2,1.6,0.2,setosa",
"token": 20
},
{
"text": "31,4.8,3.1,1.6,0.2,setosa",
"token": 20
},
{
"text": "32,5.4,3.4,1.5,0.4,setosa",
"token": 20
},
{
"text": "33,5.2,4.1,1.5,0.1,setosa",
"token": 20
},
{
"text": "34,5.5,4.2,1.4,0.2,setosa",
"token": 20
},
{
"text": "35,4.9,3.1,1.5,0.2,setosa",
"token": 20
},
{
"text": "36,5,3.2,1.2,0.2,setosa",
"token": 18
},
{
"text": "37,5.5,3.5,1.3,0.2,setosa",
"token": 20
},
{
"text": "38,4.9,3.6,1.4,0.1,setosa",
"token": 20
},
{
"text": "39,4.4,3,1.3,0.2,setosa",
"token": 18
},
{
"text": "40,5.1,3.4,1.5,0.2,setosa",
"token": 20
},
{
"text": "41,5,3.5,1.3,0.3,setosa",
"token": 18
},
{
"text": "42,4.5,2.3,1.3,0.3,setosa",
"token": 20
},
{
"text": "43,4.4,3.2,1.3,0.2,setosa",
"token": 20
},
{
"text": "44,5,3.5,1.6,0.6,setosa",
"token": 18
},
{
"text": "45,5.1,3.8,1.9,0.4,setosa",
"token": 20
},
{
"text": "46,4.8,3,1.4,0.3,setosa",
"token": 18
},
{
"text": "47,5.1,3.8,1.6,0.2,setosa",
"token": 20
},
{
"text": "48,4.6,3.2,1.4,0.2,setosa",
"token": 20
},
{
"text": "49,5.3,3.7,1.5,0.2,setosa",
"token": 20
},
{
"text": "50,5,3.3,1.4,0.2,setosa",
"token": 18
},
{
"text": "51,7,3.2,4.7,1.4,versicolor",
"token": 19
},
{
"text": "52,6.4,3.2,4.5,1.5,versicolor",
"token": 21
},
{
"text": "53,6.9,3.1,4.9,1.5,versicolor",
"token": 21
},
{
"text": "54,5.5,2.3,4,1.3,versicolor",
"token": 19
},
{
"text": "55,6.5,2.8,4.6,1.5,versicolor",
"token": 21
},
{
"text": "56,5.7,2.8,4.5,1.3,versicolor",
"token": 21
},
{
"text": "57,6.3,3.3,4.7,1.6,versicolor",
"token": 21
},
{
"text": "58,4.9,2.4,3.3,1,versicolor",
"token": 19
},
{
"text": "59,6.6,2.9,4.6,1.3,versicolor",
"token": 21
},
{
"text": "60,5.2,2.7,3.9,1.4,versicolor",
"token": 21
},
{
"text": "61,5,2,3.5,1,versicolor",
"token": 15
},
{
"text": "62,5.9,3,4.2,1.5,versicolor",
"token": 19
},
{
"text": "63,6,2.2,4,1,versicolor",
"token": 15
},
{
"text": "64,6.1,2.9,4.7,1.4,versicolor",
"token": 21
},
{
"text": "65,5.6,2.9,3.6,1.3,versicolor",
"token": 21
},
{
"text": "66,6.7,3.1,4.4,1.4,versicolor",
"token": 21
},
{
"text": "67,5.6,3,4.5,1.5,versicolor",
"token": 19
},
{
"text": "68,5.8,2.7,4.1,1,versicolor",
"token": 19
},
{
"text": "69,6.2,2.2,4.5,1.5,versicolor",
"token": 21
},
{
"text": "70,5.6,2.5,3.9,1.1,versicolor",
"token": 21
},
{
"text": "71,5.9,3.2,4.8,1.8,versicolor",
"token": 21
},
{
"text": "72,6.1,2.8,4,1.3,versicolor",
"token": 19
},
{
"text": "73,6.3,2.5,4.9,1.5,versicolor",
"token": 21
},
{
"text": "74,6.1,2.8,4.7,1.2,versicolor",
"token": 21
},
{
"text": "75,6.4,2.9,4.3,1.3,versicolor",
"token": 21
},
{
"text": "76,6.6,3,4.4,1.4,versicolor",
"token": 19
},
{
"text": "77,6.8,2.8,4.8,1.4,versicolor",
"token": 21
},
{
"text": "78,6.7,3,5,1.7,versicolor",
"token": 17
},
{
"text": "79,6,2.9,4.5,1.5,versicolor",
"token": 19
},
{
"text": "80,5.7,2.6,3.5,1,versicolor",
"token": 19
},
{
"text": "81,5.5,2.4,3.8,1.1,versicolor",
"token": 21
},
{
"text": "82,5.5,2.4,3.7,1,versicolor",
"token": 19
},
{
"text": "83,5.8,2.7,3.9,1.2,versicolor",
"token": 21
},
{
"text": "84,6,2.7,5.1,1.6,versicolor",
"token": 19
},
{
"text": "85,5.4,3,4.5,1.5,versicolor",
"token": 19
},
{
"text": "86,6,3.4,4.5,1.6,versicolor",
"token": 19
},
{
"text": "87,6.7,3.1,4.7,1.5,versicolor",
"token": 21
},
{
"text": "88,6.3,2.3,4.4,1.3,versicolor",
"token": 21
},
{
"text": "89,5.6,3,4.1,1.3,versicolor",
"token": 19
},
{
"text": "90,5.5,2.5,4,1.3,versicolor",
"token": 19
},
{
"text": "91,5.5,2.6,4.4,1.2,versicolor",
"token": 21
},
{
"text": "92,6.1,3,4.6,1.4,versicolor",
"token": 19
},
{
"text": "93,5.8,2.6,4,1.2,versicolor",
"token": 19
},
{
"text": "94,5,2.3,3.3,1,versicolor",
"token": 17
},
{
"text": "95,5.6,2.7,4.2,1.3,versicolor",
"token": 21
},
{
"text": "96,5.7,3,4.2,1.2,versicolor",
"token": 19
},
{
"text": "97,5.7,2.9,4.2,1.3,versicolor",
"token": 21
},
{
"text": "98,6.2,2.9,4.3,1.3,versicolor",
"token": 21
},
{
"text": "99,5.1,2.5,3,1.1,versicolor",
"token": 19
},
{
"text": "100,5.7,2.8,4.1,1.3,versicolor",
"token": 22
},
{
"text": "101,6.3,3.3,6,2.5,virginica",
"token": 21
},
{
"text": "102,5.8,2.7,5.1,1.9,virginica",
"token": 23
},
{
"text": "103,7.1,3,5.9,2.1,virginica",
"token": 21
},
{
"text": "104,6.3,2.9,5.6,1.8,virginica",
"token": 23
},
{
"text": "105,6.5,3,5.8,2.2,virginica",
"token": 21
},
{
"text": "106,7.6,3,6.6,2.1,virginica",
"token": 21
},
{
"text": "107,4.9,2.5,4.5,1.7,virginica",
"token": 23
},
{
"text": "108,7.3,2.9,6.3,1.8,virginica",
"token": 23
},
{
"text": "109,6.7,2.5,5.8,1.8,virginica",
"token": 23
},
{
"text": "110,7.2,3.6,6.1,2.5,virginica",
"token": 23
},
{
"text": "111,6.5,3.2,5.1,2,virginica",
"token": 21
},
{
"text": "112,6.4,2.7,5.3,1.9,virginica",
"token": 23
},
{
"text": "113,6.8,3,5.5,2.1,virginica",
"token": 21
},
{
"text": "114,5.7,2.5,5,2,virginica",
"token": 19
},
{
"text": "115,5.8,2.8,5.1,2.4,virginica",
"token": 23
},
{
"text": "116,6.4,3.2,5.3,2.3,virginica",
"token": 23
},
{
"text": "117,6.5,3,5.5,1.8,virginica",
"token": 21
},
{
"text": "118,7.7,3.8,6.7,2.2,virginica",
"token": 23
},
{
"text": "119,7.7,2.6,6.9,2.3,virginica",
"token": 23
},
{
"text": "120,6,2.2,5,1.5,virginica",
"token": 19
},
{
"text": "121,6.9,3.2,5.7,2.3,virginica",
"token": 23
},
{
"text": "122,5.6,2.8,4.9,2,virginica",
"token": 21
},
{
"text": "123,7.7,2.8,6.7,2,virginica",
"token": 21
},
{
"text": "124,6.3,2.7,4.9,1.8,virginica",
"token": 23
},
{
"text": "125,6.7,3.3,5.7,2.1,virginica",
"token": 23
},
{
"text": "126,7.2,3.2,6,1.8,virginica",
"token": 21
},
{
"text": "127,6.2,2.8,4.8,1.8,virginica",
"token": 23
},
{
"text": "128,6.1,3,4.9,1.8,virginica",
"token": 21
},
{
"text": "129,6.4,2.8,5.6,2.1,virginica",
"token": 23
},
{
"text": "130,7.2,3,5.8,1.6,virginica",
"token": 21
},
{
"text": "131,7.4,2.8,6.1,1.9,virginica",
"token": 23
},
{
"text": "132,7.9,3.8,6.4,2,virginica",
"token": 21
},
{
"text": "133,6.4,2.8,5.6,2.2,virginica",
"token": 23
},
{
"text": "134,6.3,2.8,5.1,1.5,virginica",
"token": 23
},
{
"text": "135,6.1,2.6,5.6,1.4,virginica",
"token": 23
},
{
"text": "136,7.7,3,6.1,2.3,virginica",
"token": 21
},
{
"text": "137,6.3,3.4,5.6,2.4,virginica",
"token": 23
},
{
"text": "138,6.4,3.1,5.5,1.8,virginica",
"token": 23
},
{
"text": "139,6,3,4.8,1.8,virginica",
"token": 19
},
{
"text": "140,6.9,3.1,5.4,2.1,virginica",
"token": 23
},
{
"text": "141,6.7,3.1,5.6,2.4,virginica",
"token": 23
},
{
"text": "142,6.9,3.1,5.1,2.3,virginica",
"token": 23
},
{
"text": "143,5.8,2.7,5.1,1.9,virginica",
"token": 23
},
{
"text": "144,6.8,3.2,5.9,2.3,virginica",
"token": 23
},
{
"text": "145,6.7,3.3,5.7,2.5,virginica",
"token": 23
},
{
"text": "146,6.7,3,5.2,2.3,virginica",
"token": 21
},
{
"text": "147,6.3,2.5,5,1.9,virginica",
"token": 21
},
{
"text": "148,6.5,3,5.2,2,virginica",
"token": 19
},
{
"text": "149,6.2,3.4,5.4,2.3,virginica",
"token": 23
},
{
"text": "150,5.9,3,5.1,1.8,virginica",
"token": 21
}
]
}
]

View File

@ -0,0 +1,211 @@
[
{
"page_num": 1,
"content": [
{
"text": "Emission_Inventory,Raw_Coal,CleanedCoal,Other_Washed_Coal,Briquettes,Coke,Coke_Oven_Gas,Other_Gas,Other_Coking_Products,Crude_Oil,Gasoline,Kerosene,Diesel_Oil,Fuel_Oil,LPG,Refinery_Gas,Other_Petroleum_Products,Natural_Gas,Scope_2_Heat,Scope_2_Electricity,Other_Energy,Process,Scope_1_Total",
"token": 104
},
{
"text": "unit,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2,Mt CO2",
"token": 89
},
{
"text": ",,,,,,,,,,,,,,,,,,,,,,",
"token": 4
},
{
"text": "TotalEmissions,2.002198474,0,0,0.178065161,0.002876589,0,0,0,0,14.04925879,15.0628126,4.042693832,0.019326756,1.306508211,2.14647396,0.329403245,39.99077224,0,0,0,0.7500386,79.88042846",
"token": 173
},
{
"text": "\"Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy\",0.027948058,0,0,0,0,0,0,0,0,0.057656896,0,0.052285548,0,0.00156543,0,0,0.002160729,0,0,0,0,0.141616662",
"token": 119
},
{
"text": "Coal Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0",
"token": 49
},
{
"text": "Petroleum and Natural Gas Extraction,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.002702663,0,0,0,0,0.002702663",
"token": 70
},
{
"text": "Ferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.000292675,0,0.000297999,0,0,0.002770696,0,0,0,0,0,0,0.00336137",
"token": 91
},
{
"text": "Nonferrous Metals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0",
"token": 52
},
{
"text": "Nonmetal Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0",
"token": 51
},
{
"text": "Other Minerals Mining and Dressing,0,0,0,0,0,0,0,0,0,0.000878024,0,0.003873987,0,0,0.008312088,0,0,0,0,0,0,0.013064099",
"token": 90
},
{
"text": "Logging and Transport of Wood and Bamboo,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0",
"token": 51
},
{
"text": "Food Processing,0,0,0,0,0,0,0,0,0,0.005853492,0,0.009833968,0,0.000246802,0.055413919,0,0.007387279,0,0,0,0,0.07873546",
"token": 105
},
{
"text": "Food Production,0.000216622,0,0,0,1.3073E-06,0,0,0,0,0.006731516,0,0.008641972,0,0.000740405,0.063726007,0,0.012792606,0,0,0,0,0.092850434",
"token": 125
},
{
"text": "Beverage Production,0,0,0,0,0,0,0,0,0,0.00380477,0,0.00297999,0,0.000246802,0.036019047,0,0.015855624,0,0,0,0,0.058906233",
"token": 106
},
{
"text": "Tobacco Processing,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.00072071,0,0,0,0,0.00072071",
"token": 66
},
{
"text": "Textile Industry,0,0,0,0,0,0,0,0,0,0.000878024,0,0.000297999,0,0,0.008312088,0,0.000180178,0,0,0,0,0.009668288",
"token": 97
},
{
"text": "Garments and Other Fiber Products,0,0,0,0,0,0,0,0,0,0.005268143,0,0.000595998,0,0,0.049872527,0,0.001981953,0,0,0,0,0.057718621",
"token": 100
},
{
"text": "\"Leather, Furs, Down and Related Products\",0,0,0,0,0,0,0,0,0,0.000585349,0,0,0,0,0.005541392,0,0,0,0,0,0,0.006126741",
"token": 85
},
{
"text": "\"Timber Processing, Bamboo, Cane, Palm Fiber & Straw Products\",0,0,0,0,0,0,0,0,0,0.001756048,0,0.000595998,0,0,0.016624176,0,0,0,0,0,0,0.018976221",
"token": 99
},
{
"text": "Furniture Manufacturing,0,0,0,0,0,0,0,0,0,0.005268143,0,0.000595998,0,0.000246802,0.049872527,0,0.00072071,0,0,0,0,0.05670418",
"token": 105
},
{
"text": "Papermaking and Paper Products,0,0,0,0,0,0,0,0,0,0.004097444,0,0.002085993,0,0,0.038789743,0,0.002522486,0,0,0,0,0.047495666",
"token": 99
},
{
"text": "Printing and Record Medium Reproduction,0,0,0,0,0,0,0,0,0,0.009658262,0,0.004171986,0,0.000246802,0.091432966,0,0.003243196,0,0,0,0,0.108753212",
"token": 110
},
{
"text": "\"Cultural, Educational and Sports Articles\",0,0,0,0,0,0,0,0,0,0.001463373,0,0.000297999,0,0.000246802,0.01385348,0,0.000360355,0,0,0,0,0.016222008",
"token": 110
},
{
"text": "Petroleum Processing and Coking,0,0,0,0,0,0,0,0,0,0.000585349,0,0.000595998,0,0.661921932,0.005541392,0,0.03963906,0,0,0,0,0.708283731",
"token": 109
},
{
"text": "Raw Chemical Materials and Chemical Products,0,0,0,0,0,0,0,0,0,0.009072913,0,0.008045974,0,0.000740405,0.045938748,0,0.003783728,0,0,0,0,0.067581767",
"token": 110
},
{
"text": "Medical and Pharmaceutical Products,0,0,0,0,0,0,0,0,0,0.009950936,0,0.002383992,0,0.000493603,0.050384433,0,0.025405034,0,0,0,0,0.088617999",
"token": 108
},
{
"text": "Chemical Fiber,0,0,0,0,0,0,0,0,0,0.000292675,0,0,0,0,0.001481895,0,0.00072071,0,0,0,0,0.00249528",
"token": 85
},
{
"text": "Rubber Products,0,0,0,0,0,0,0,0,0,0.002634071,0,0.001638995,0,0.000370202,0.013337056,0,0.000360355,0,0,0,0,0.018340679",
"token": 107
},
{
"text": "Plastic Products,0,0,0,0,0,0,0,0,0,0.002634071,0,0.001638995,0,0.000370202,0.013337056,0,0.000360355,0,0,0,0,0.018340679",
"token": 107
},
{
"text": "Nonmetal Mineral Products,0.145967336,0,0,0,0.000782029,0,0,0,0,0.01082896,0,0.176415421,0,0.000493603,0.10251575,0,0.024143791,0,0,0,0.7500386,1.21118549",
"token": 133
},
{
"text": "Smelting and Pressing of Ferrous Metals,0,0,0,0,0,0,0,0,0,0.000585349,0,0,0,0,0.005541392,0,0.015855624,0,0,0,0,0.021982365",
"token": 94
},
{
"text": "Smelting and Pressing of Nonferrous Metals,0,0,0,0,0,0,0,0,0,0.000585349,0,0,0,0,0.005541392,0,0.00072071,0,0,0,0,0.006847451",
"token": 94
},
{
"text": "Metal Products,0,0,0,0,0,0,0,0,0,0.022535944,0.001517572,0.008343973,0,0.000740405,0.213343588,0,0.004864794,0,0,0,0,0.251346275",
"token": 116
},
{
"text": "Ordinary Machinery,0,0,0,0,0,0,0,0,0,0.016682452,0,0.002085993,0,0.001974413,0.157929669,0,0.003063018,0,0,0,0,0.181735545",
"token": 107
},
{
"text": "Equipment for Special Purposes,0,0,0,0,0,0,0,0,0,0.018731174,0,0.006555978,0,0.000246802,0.17732454,0,0.001981953,0,0,0,0,0.204840448",
"token": 108
},
{
"text": "Transportation Equipment,0,0,0,0,0,0,0,0,0,0.016097103,0,0.033673889,0,0.000246802,0.152388277,0,0.035314799,0,0,0,0,0.23772087",
"token": 106
},
{
"text": "Electric Equipment and Machinery,0,0,0,0,0,0,0,0,0,0.014926405,0,0.001787994,0,0.000493603,0.141305493,0,0.001801775,0,0,0,0,0.16031527",
"token": 107
},
{
"text": "Electronic and Telecommunications Equipment,0,0,0,0,0,0,0,0,0,0.01082896,0,0.000893997,0,0,0.10251575,0,0.003783728,0,0,0,0,0.118022436",
"token": 97
},
{
"text": "\"Instruments, Meters, Cultural and Office Machinery\",0,0,0,0,0,0,0,0,0,0.008487563,0,0.000297999,0,0,0.080350182,0,0.000360355,0,0,0,0,0.0894961",
"token": 102
},
{
"text": "Other Manufacturing Industry,0,0,0,0,0,0,0,0,0,0.001463373,0,0.008641972,0,0,0.01385348,0,0.000180178,0,0,0,0,0.024139002",
"token": 96
},
{
"text": "Scrap and waste,0,0,0,0,0,0,0,0,0,0.000292675,0,0.000297999,0,0,0.002770696,0,0.000180178,0,0,0,0,0.003541547",
"token": 98
},
{
"text": "\"Production and Supply of Electric Power, Steam and Hot Water\",1.758429472,0,0,0,0.002093253,0,0,0,0,0.011706984,0,0.03647905,0.005069313,0.142590845,0.345723727,0.329403245,28.57671299,0,0,0,0,31.20820888",
"token": 155
},
{
"text": "Production and Supply of Gas,0,0,0,0,0,0,0,0,0,0.004097444,0,0.000595998,0,0,0.038789743,0,0.078737587,0,0,0,0,0.122220773",
"token": 99
},
{
"text": "Production and Supply of Tap Water,0,0,0,0,0,0,0,0,0,0.00380477,0,0.002681991,0,0.000740405,0.036019047,0,0.000900888,0,0,0,0,0.044147101",
"token": 109
},
{
"text": "Construction,0,0,0,0,0,0,0,0,0,0.216871878,0,0.452316399,0,0.013462701,0,0,0.051857496,0,0,0,0,0.734508474",
"token": 95
},
{
"text": "\"Transportation, Storage, Post and Telecommunication Services\",0.000585185,0,0,0,0,0,0,0,0,0.90173044,15.04278065,2.411941617,0.014257443,0.052285375,0,0,0.553146623,0,0,0,0,18.97672734",
"token": 134
},
{
"text": "\"Wholesale, Retail Trade and Catering Services\",0,0,0,0,0,0,0,0,0,0.510424501,0,0.122205867,0,0.060112527,0,0,1.173275844,0,0,0,0,1.86601874",
"token": 103
},
{
"text": "Others,0,0,0,0,0,0,0,0,0,1.050994486,0.018514378,0.676618306,0,0.03757033,0,0,5.54875206,0,0,0,0,7.33244956",
"token": 102
},
{
"text": "Urban,0.069051801,0,0,0,0,0,0,0,0,11.0982208,0,0,0,0.186599304,0,0,3.375058691,0,0,0,0,14.7289306",
"token": 93
},
{
"text": "Rural,0,0,0,0.178065161,0,0,0,0,0,0,0,0,0,0.141514908,0,0,0.419181425,0,0,0,0,0.738761494",
"token": 86
}
]
}
]

View File

@ -0,0 +1,83 @@
# 产品碳足迹研究报告(示例)
## 基本信息
- 产品名称:智能节能灯泡
- 产品规格型号LED-E27-10W
- 生产者名称EcoTech Solutions
- 报告编号ECO-2023-CFP-01
- 出具报告机构EcoAnalytics
- 日期2023年4月15日
## 一、概况
### 1. 生产者信息
- 生产者名称EcoTech Solutions
- 地址123 Greenway St, EcoCity
- 法定代表人Jane Doe
- 产品名称:智能节能灯泡
- 产品功能:节能照明,支持远程控制
- 依据标准ISO 14040, ISO 14044
## 二、量化目的
评估并减少产品在其整个生命周期中的碳排放。
## 三、量化范围
### 1. 功能单位或声明单位
以个为功能单位或声明单位。
### 2. 系统边界
- 原材料获取阶段
- 生产阶段
- 分销阶段
- 使用阶段
- 生命末期阶段
- 系统边界图:(此处通常会有一个流程图,但我们将跳过此部分,因为它是图形内容)
### 3. 取舍准则
采用的取舍准则以ISO 14044为依据具体规则如下此处可以详细描述但我们将省略
### 4. 时间范围
2022年度。
## 四、清单分析
### 1. 数据来源说明
- 初级数据:内部记录
- 次级数据:行业平均值
### 2. 分配原则与程序
- 分配依据:按活动比例
- 分配程序:线性分配
- 具体分配情况:(略,通常会有一系列详细的计算)
### 3. 清单结果及计算
| 生命周期阶段 | 活动数据 (单位) | 排放因子 (kg CO2e/单位) | 碳足迹 (kg CO2e/功能单位) |
| --- | --- | --- | --- |
| 原材料获取 | 10 | 0.5 | 5 |
| 生产 | 20 | 1 | 20 |
| 分销 | 5 | 0.8 | 4 |
| 运输 | 15 | 0.6 | 9 |
| 仓库 | 3 | 0.7 | 2.1 |
| 使用 | | | 100 (假设) |
| 生命末期 | 2 | 1.2 | 2.4 |
| **总计** | | | 130.5 |
### 4. 数据质量评价
(略,通常涉及详细的质量评估标准)
## 五、影响评价
### 1. 影响类型和特征化因子选择
100年全球变暖潜势GWP100
### 2. 产品碳足迹结果计算
产品碳足迹总计为130.5 kg CO2e/个。
## 六、结果解释
### 1. 结果说明
EcoTech Solutions生产的LED-E27-10W智能节能灯泡从原材料获取到生命末期的生命周期碳足迹为130.5 kg CO2e/个。各生命周期阶段的温室气体排放情况如下表所示。
### 2. 假设和局限性说明
(此处可以添加关于数据估算和简化模型的说明)
### 3. 改进建议
- 优化原材料供应链以减少获取过程中的排放
- 提升生产效率,降低生产阶段的碳足迹
- 考虑使用更环保的分销方式
- 提供回收计划以减少生命末期的环境影响

1
LCARAG Submodule

@ -0,0 +1 @@
Subproject commit fe482edaa22a709ac8068046843720e6495775b9

43
LCA_RAG/Baiduqa.py Normal file
View File

@ -0,0 +1,43 @@
import os
import qianfan
from qianfan.resources.console.data import Data
import pandas as pd
import re
# 使用安全认证AK/SK鉴权通过环境变量方式初始化替换下列示例中参数安全认证Access Key替换your_iam_akSecret Key替换your_iam_sk
os.environ["QIANFAN_ACCESS_KEY"] = "ALTAK8Mo2gY80BAW8RjEtHX3SS"
os.environ["QIANFAN_SECRET_KEY"] = "95f6ac794fcb45b7805d5780bec589dc"
chat_comp = qianfan.ChatCompletion()
question = []
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/filters/question.txt","r",encoding="utf-8") as file:
for line in file.readlines():
question.append(line.strip())
answers = []
for ques in question:
# 指定特定模型
content = ("你是生命周期领域富有经验和知识的专家。根据你所掌握的知识只用1句话回答问题。不要列出几点来回答不需要换行"+ques)
resp = chat_comp.do(model="ERNIE-3.5-8K", messages=[
{
"role": "user",
"content": content
}])
ans = resp["body"]["result"]
line = re.sub(r'\s+', '', ans)
print(line)
answers.append(line)
data = {"ans":answers}
df = pd.DataFrame(data)
df.to_csv("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/baidu.csv",index=False)
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/ERNIEpred.txt","w",encoding="utf-8") as file:
for ans in answers:
line = re.sub(r'\s+', '', ans)
file.write(line+"\n")

48
LCA_RAG/GLMqa.py Normal file
View File

@ -0,0 +1,48 @@
# glm
from zhipuai import ZhipuAI
import re
import pandas as pd
'''
经过换算需要135000左右的token
'''
# def zhipuQA(prompt):
# client = ZhipuAI(api_key="434790cf952335f18b6347e7b6de9777.V50p55zfk8Ye4ojV") # 请填写您自己的APIKey
# response = client.chat.completions.create(
# model = "glm-4",
# messages = [
# {"role":"user","content":prompt}
# ],
# )
# content = response.choices[0].message.content
# print('\n',content)
# res = re.sub(r'\s+', '', content) #处理空格
# return res
# instruction = "你是生命周期领域富有经验和知识的专家。文件的每一行都是一个问题根据你所掌握的知识回答问题不要列出几点来回答不需要换行只需要用1句话回答问题。"
# question = []
# answers = []
# with open("/home/zhangxj/WorkFile/LCA-GPT/QA/filters/question.txt","r",encoding="utf-8") as file:
# for line in file.readlines():
# question.append(line.strip())
# for ques in question:
# message = (instruction+ques)
# ans = zhipuQA(message)
# answers.append(ans)
# data = {"ans":answers}
# df = pd.DataFrame(data)
# df.to_csv("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLM.csv",index=False)
df = pd.read_excel("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLMoutput.xlsx")
answers = df['content'].values.tolist()
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLMpred.txt","w",encoding="utf-8") as file:
for ans in answers:
line = re.sub(r'\s+', '', ans)
file.write(line+"\n")

103
LCA_RAG/QAdata.py Normal file
View File

@ -0,0 +1,103 @@
import os
import time
from qwen_agent.agents import Assistant
from pprint import pprint
import json
import re
'''
生成QAdata后续不用
'''
def extract_qa(s):
# 使用正则表达式提取 questions 和 answers
questions = re.findall(r'#([^#]*?\?)', s)
answers = re.findall(r'@([^@]*?\。)', s)
if len(questions) == 0:
questions = re.findall(r'#([^#]*?)', s)
print("Q:",questions)
print("A:",answers)
return questions, answers
# 去除长度小于5的元素
def filter_short_answers(questions, answers, min_length=8):
# 遍历 answers 列表,检查每个答案的长度
filtered_questions = []
filtered_answers = []
for question, answer in zip(questions, answers):
if len(answer) >= min_length and len(question) >= min_length:
filtered_questions.append(question)
filtered_answers.append(answer)
return filtered_questions, filtered_answers
def write_to_file(filename, data_list):
with open(filename, 'a', encoding='utf-8') as file:
for item in data_list:
file.write(item + '\n')
data = "/home/zhangxj/WorkFile/LCA-GPT/split_LCAdata/folder6"
docs = os.listdir(data)
llm_cfg = {
'model': 'qwen-plus',
'model_server': 'dashscope',
'api_key': "sk-c5f441f863f44094b0ddb96c831b5002",
}
system_instruction = '''你是一位专注于生命周期分析LCA领域的数据分析助手。在LCA领域的目标和范围定义、数据清单收集和分析、生命周期影响评价、结果分析和政策建议等方面有着丰富的经验和知识。
请根据下面的文档提出10个问题及其相应的答案规定每个问题的字符数量为x答案的字符数量为y
"x>40 & x<70;y>40 & y<70"
10个question结果的输出为10个字符串"#问题1:"开头
10个对应的answer结果输出为10个字符串"@答案1:"开头答案以""结尾,不要换行
'''
tools = ['code_interpreter'] # `code_interpreter` is a built-in tool for executing code.
messages = [] # This stores the chat history.
questions = []
answers = []
# Process each document
for doc in docs:
doc_path = os.path.join(data, doc)
files = [doc_path]
prompt = "分析这篇文章根据文章研究的内容并按照格式输出10个与LCA领域相关的问题和相应的答案。"
messages.append({'role': 'user', 'content': prompt})
assistant = Assistant(llm=llm_cfg,
system_message=system_instruction,
# function_list=tools,
files=files)
response = []
for response in assistant.run(messages=messages):
continue
# pprint(response)
content = response[0]['content']
content = content.replace('\n', '')
print(content)
# print(type(content))
question, answer = extract_qa(content)
filterq,filtera = filter_short_answers(question,answer)
questions.extend(filterq)
answers.extend(filtera)
file1 = "/home/zhangxj/WorkFile/LCA-GPT/QA/originData/ques.txt"
file2 = "/home/zhangxj/WorkFile/LCA-GPT/QA/originData/answer.txt"
write_to_file(file1,filterq)
write_to_file(file2,filtera)
# print(answers)
# Pause for a while to avoid hitting API rate limits
time.sleep(3)
# Print the final results
# print("Final Questions List:")
# pprint(questions)
# print("\nFinal Answers List:")
# pprint(answers)

148
LCA_RAG/RAGnoUI.py Normal file
View File

@ -0,0 +1,148 @@
'''
支持上传文件进行分析记录历史上下文
'''
import time
import tempfile
from dotenv import load_dotenv
from langchain_core.prompts import ChatPromptTemplate
from langchain.prompts import MessagesPlaceholder
from langchain_community.document_loaders import TextLoader, PyPDFLoader, CSVLoader, JSONLoader
from langchain_core.messages import AIMessage, HumanMessage
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_openai import ChatOpenAI
from langchain_community.chat_models.tongyi import ChatTongyi
# from langchain_community.chat_models.baidu_qianfan_endpoint import QianfanChatEndpoint
from langchain_community.chat_models import QianfanChatEndpoint
from langchain_community.chat_models import ChatZhipuAI
from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter, RecursiveJsonSplitter
import requests
import os
import re
import pandas as pd
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
device = "cuda"
memory = 6
def init_chain():
try:
# 加载环境变量并初始化模型
# 使用Tongyi
# os.environ["DASHSCOPE_API_KEY"] = 'sk-c5f441f863f44094b0ddb96c831b5002'
# llm = ChatTongyi(
# streaming=True,
# model='llama3-70b-instruct'
# )
# 使用Qianfan
# ak = "beiDmKGviUVjTyGqb8U0dc2u"
# sk = "i3GexGV2B5Poi00RVAFUoZ61Ylj0P7tI"
# llm = QianfanChatEndpoint(
# streaming=True,
# model = 'ERNIE-3.5-8K',
# api_key=ak,
# secret_key=sk
# )
# 使用智谱
# os.environ["ZHIPUAI_API_KEY"] = "434790cf952335f18b6347e7b6de9777.V50p55zfk8Ye4ojV"
# llm = ChatZhipuAI(
# streaming=True,
# model = "glm-4"
# )
# deepseek
# pip3 install langchain_openai
# python3 deepseek_v2_langchain.py
llm = ChatOpenAI(
model='deepseek-chat',
openai_api_key='sk-c47f0552d66549ac92c72d64ebdc4d05',
openai_api_base='https://api.deepseek.com',
)
embedding = HuggingFaceEmbeddings(model_name="/home/zhangxj/models/acge_text_embedding", model_kwargs={"device": device})
retriever = Chroma(persist_directory="chromaDB", embedding_function=embedding,)
retriever = retriever.as_retriever(search_type="mmr", search_kwargs={"k": 10})
instruct_system_prompt = (
"你是生命周期领域富有经验和知识的专家。"
"使用以下检索到的上下文来回答问题。"
"{context}"
"答案最多使用1句话并保持非常简洁不能换行。"
)
# instr = "你是生命周期领域富有经验和知识的专家。根据你所掌握的知识只用1句话回答问题。不要列出几点来回答不需要换行"
instruct_prompt = ChatPromptTemplate.from_messages(
[
("system", instruct_system_prompt),
("human", "{input}"),
]
)
# Create a chain for passing a list of Documents to a model.
qa_chain = create_stuff_documents_chain(llm, instruct_prompt) #
rag_chain = create_retrieval_chain(retriever, qa_chain)
return rag_chain,retriever
except Exception as e:
print(f"Error in init_chain: {e}")
return None
def user_in(uin, rag_chain):
try:
result = rag_chain.invoke({"input": uin})['answer']
# print(rag_chain)
# result = rag_chain(uin)
return result
except Exception as e:
print(f"Error in user_in: {e}")
return "An error occurred while processing your request."
def retrieve_and_output(retriever,query):
try:
retrieved_docs = retriever.get_relevant_documents(query)
# 输出检索到的内容
print("Retrieved content:")
for doc in retrieved_docs:
print(doc.page_content)
except Exception as e:
print(f"Error in retrieve_and_output: {e}")
def main():
question = []
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/split/question/ques0.txt","r",encoding="utf-8") as file:
for line in file.readlines():
question.append(line.strip())
rag,retriever= init_chain()
answers = []
for ques in question:
# print(ques)
response = user_in(ques, rag)
retrieve_and_output(retriever,ques)
print(response)
# print(len(response))
answers.append(response.strip())
# if len(answers) == 3:
# break
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/RAGpred.txt","w",encoding="utf-8") as file:
for ans in answers:
line = re.sub(r'\s+', '', ans)
file.write(line+'\n')
data = {"ans":answers}
df = pd.DataFrame(data)
df.to_csv("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/rag.csv",index=False)
if __name__ == "__main__":
main()

40
LCA_RAG/SplitData.py Normal file
View File

@ -0,0 +1,40 @@
import os
import shutil
# 原始文件夹路径
original_folder = '/home/zhangxj/WorkFile/LCA-GPT/LCAdata'
# 新文件夹的基础路径
base_new_folder = '/home/zhangxj/WorkFile/LCA-GPT/split_LCAdata'
# 获取原始文件夹中的所有PDF文件
pdf_files = [f for f in os.listdir(original_folder) if f.endswith('.pdf')]
# 计算每组文件的数量和剩余文件数量
files_per_group, remainder = divmod(len(pdf_files), 6)
# 创建并分配文件到各个组
groups = []
for i in range(6):
group = []
if i < remainder:
group = pdf_files[i * (files_per_group + 1):(i + 1) * (files_per_group + 1)]
else:
group = pdf_files[i * files_per_group + remainder:(i + 1) * files_per_group + remainder]
groups.append(group)
# 确保每组文件数量正确
for group in groups:
assert len(group) in (files_per_group, files_per_group + 1), "每组文件数量不正确"
# 分组并复制文件
for i, group in enumerate(groups):
# 创建新文件夹
new_folder = os.path.join(base_new_folder, f'folder{i+1}')
os.makedirs(new_folder, exist_ok=True)
# 复制文件到新文件夹
for j, file_name in enumerate(group):
file_path = os.path.join(original_folder, file_name)
shutil.copy(file_path, new_folder)
print("文件分组和复制完成。")

171
LCA_RAG/UploadMain.py Normal file
View File

@ -0,0 +1,171 @@
'''
支持上传文件进行分析记录历史上下文
'''
import time
import streamlit as st
import tempfile
from dotenv import load_dotenv
from langchain_core.prompts import ChatPromptTemplate
from langchain.prompts import MessagesPlaceholder
from langchain_community.document_loaders import TextLoader, PyPDFLoader, CSVLoader, JSONLoader
from langchain_core.messages import AIMessage, HumanMessage
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_openai import ChatOpenAI
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_community.chat_models import ChatZhipuAI
from langchain_community.embeddings import HuggingFaceEmbeddings
# from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter, RecursiveJsonSplitter
import requests
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
device = "cuda"
memory = 6
def chroma_save_upload(path):
try:
# Load the docs
file_type = os.path.basename(path).split('.')[1]
loader = None
doc = None
if file_type == "txt":
loader = TextLoader(path, encoding="utf-8")
elif file_type == "pdf":
loader = PyPDFLoader(path)
elif file_type == "csv":
loader == CSVLoader(path, encoding="utf-8")
elif file_type == "json":
json_data = requests.get(path).json()
splitter = RecursiveJsonSplitter(max_chunk_size=300)
doc = splitter.create_documents(texts=[json_data])
if doc is None:
doc = loader.load()
# Split the doc content
tex_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = tex_splitter.split_documents(doc)
# Store the content
embedding = HuggingFaceEmbeddings(model_name="/home/zhangxj/models/acge_text_embedding", model_kwargs={"device": device})
vs = Chroma.from_documents(documents=splits, embedding=embedding, persist_directory="chromaDB")
vs.add_documents(documents=splits)
vs.as_retriever()
print("Upload Files saved: " + str(path))
except Exception as e:
print(f"Error in chroma_save_upload: {e}")
@st.cache_resource(ttl="1h")
def configure_retriever(uploaded_files):
try:
# 读取上传的文档,并写入一个临时目录
temp_dir = tempfile.TemporaryDirectory(dir="/home/zhangxj/WorkFile/LCA-GPT/LCA_RAG/tmp")
for file in uploaded_files:
temp_filepath = os.path.join(temp_dir.name, file.name)
print("文档路径:", temp_filepath)
with open(temp_filepath, "wb") as f:
f.write(file.getvalue())
chroma_save_upload(path=temp_filepath)
except Exception as e:
print(f"Error in configure_retriever: {e}")
def init_chain():
try:
# 加载环境变量并初始化模型
load_dotenv(".env")
os.environ["DASHSCOPE_API_KEY"] = 'sk-c5f441f863f44094b0ddb96c831b5002'
llm = ChatTongyi(
streaming=True,
model='qwen-plus'
)
embedding = HuggingFaceEmbeddings(model_name="/home/zhangxj/models/acge_text_embedding", model_kwargs={"device": device})
retriever = Chroma(persist_directory="chromaDB", embedding_function=embedding)
retriever = retriever.as_retriever()
instruct_system_prompt = (
"你是生命周期领域富有经验的专家。"
"你要利用检索到的上下文来回答问题。如果上下文没有足够的信息,请说明。"
"如果你有不明白的地方,请向用户询问。"
"涉及生命后期评价领域的问题,你应该完整地引用文献资料。\n\n"
"{context}"
)
instruct_prompt = ChatPromptTemplate.from_messages(
[
("system", instruct_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
# Create a chain for passing a list of Documents to a model.
qa_chain = create_stuff_documents_chain(llm, instruct_prompt) #
rag_chain = create_retrieval_chain(retriever, qa_chain)
return rag_chain
except Exception as e:
print(f"Error in init_chain: {e}")
return None
def user_in(uin, rag_chain, history):
try:
result = rag_chain.invoke({"input": uin, "chat_history": history})["answer"]
print(result)
return result
except Exception as e:
print(f"Error in user_in: {e}")
return "An error occurred while processing your request."
def get_code(text):
return
def main(memory=memory):
start_time = time.time()
st.set_page_config(page_title="LCA-GPT", layout="wide")
st.title("LCA-GPT")
uploaded_files = st.sidebar.file_uploader(
label="Upload files", type=None, accept_multiple_files=True
)
if uploaded_files:
configure_retriever(uploaded_files)
if "messages" not in st.session_state or st.sidebar.button("Clear chat history"):
st.session_state["messages"] = [{"role": "assistant", "content": "Hello, I am LCA-GPT, helping you solve problems in the LCA field"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "rag" not in st.session_state:
st.session_state.rag = init_chain()
print("Prompt start ......")
if prompt := st.chat_input("Please enter your question:"):
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
response = user_in(prompt, st.session_state.rag, st.session_state.chat_history[-memory:])
st.session_state.chat_history.extend([HumanMessage(content=prompt), AIMessage(content=response)])
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
end_time = time.time()
execution_time = end_time - start_time
print(f"Execution time: {execution_time} seconds")
if __name__ == "__main__":
main()

Binary file not shown.

Binary file not shown.

327
LCA_RAG/batchGLM.ipynb Normal file
View File

@ -0,0 +1,327 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# 创建批处理xlsx文件\n",
"\n",
"import pandas as pd\n",
"\n",
"customid = 1\n",
"method = \"POST\"\n",
"url = \"/v4/chat/completions\"\n",
"model = \"glm-4\"\n",
"role = \"system\"\n",
"instruction = \"你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题不要列出几点来回答不需要换行只需要用1句话回答问题。\"\n",
"\n",
"temperature = 0.95\n",
"top_p = 0.7\n",
"max_tokens = 4096\n",
"\n",
"df = pd.DataFrame(columns=[\"custom_id\",\"method\",\"url\",\"model\",\"role\",\"content\",\"role1\",\"content1\",\"temperature\",\"top_p\",\"max_tokens\"])\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"question = []\n",
"with open(\"/home/zhangxj/WorkFile/LCA-GPT/QA/filters/question.txt\",\"r\",encoding=\"utf-8\") as file:\n",
" for line in file.readlines():\n",
" question.append(line.strip())"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"data = []\n",
"for ques in question:\n",
" row = {\n",
" \"custom_id\": f\"request-{customid}\",\n",
" \"method\":method,\n",
" \"url\":url,\n",
" \"model\":model,\n",
" \"role\":role,\n",
" \"content\":instruction,\n",
" \"role1\":\"user\",\n",
" \"content1\":ques,\n",
" \"temperature\":temperature,\n",
" \"top_p\":top_p,\n",
" \"max_tokens\":max_tokens\n",
" }\n",
" data.append(row)\n",
" customid+=1"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3933"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(data)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(data)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>custom_id</th>\n",
" <th>method</th>\n",
" <th>url</th>\n",
" <th>model</th>\n",
" <th>role</th>\n",
" <th>content</th>\n",
" <th>role1</th>\n",
" <th>content1</th>\n",
" <th>temperature</th>\n",
" <th>top_p</th>\n",
" <th>max_tokens</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>request-1</td>\n",
" <td>POST</td>\n",
" <td>/v4/chat/completions</td>\n",
" <td>glm-4</td>\n",
" <td>system</td>\n",
" <td>你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要...</td>\n",
" <td>user</td>\n",
" <td>什么是生命周期分析LCA的主要目标</td>\n",
" <td>0.95</td>\n",
" <td>0.7</td>\n",
" <td>4096</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>request-2</td>\n",
" <td>POST</td>\n",
" <td>/v4/chat/completions</td>\n",
" <td>glm-4</td>\n",
" <td>system</td>\n",
" <td>你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要...</td>\n",
" <td>user</td>\n",
" <td>在LCA中如何确定研究的范围</td>\n",
" <td>0.95</td>\n",
" <td>0.7</td>\n",
" <td>4096</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>request-3</td>\n",
" <td>POST</td>\n",
" <td>/v4/chat/completions</td>\n",
" <td>glm-4</td>\n",
" <td>system</td>\n",
" <td>你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要...</td>\n",
" <td>user</td>\n",
" <td>医疗废物如何处理?</td>\n",
" <td>0.95</td>\n",
" <td>0.7</td>\n",
" <td>4096</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>request-4</td>\n",
" <td>POST</td>\n",
" <td>/v4/chat/completions</td>\n",
" <td>glm-4</td>\n",
" <td>system</td>\n",
" <td>你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要...</td>\n",
" <td>user</td>\n",
" <td>LCA数据清单收集阶段需要哪些信息</td>\n",
" <td>0.95</td>\n",
" <td>0.7</td>\n",
" <td>4096</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>request-5</td>\n",
" <td>POST</td>\n",
" <td>/v4/chat/completions</td>\n",
" <td>glm-4</td>\n",
" <td>system</td>\n",
" <td>你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要...</td>\n",
" <td>user</td>\n",
" <td>生命周期影响评价阶段的目标是什么?</td>\n",
" <td>0.95</td>\n",
" <td>0.7</td>\n",
" <td>4096</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" custom_id method url model role \\\n",
"0 request-1 POST /v4/chat/completions glm-4 system \n",
"1 request-2 POST /v4/chat/completions glm-4 system \n",
"2 request-3 POST /v4/chat/completions glm-4 system \n",
"3 request-4 POST /v4/chat/completions glm-4 system \n",
"4 request-5 POST /v4/chat/completions glm-4 system \n",
"\n",
" content role1 \\\n",
"0 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... user \n",
"1 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... user \n",
"2 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... user \n",
"3 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... user \n",
"4 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... user \n",
"\n",
" content1 temperature top_p max_tokens \n",
"0 什么是生命周期分析LCA的主要目标 0.95 0.7 4096 \n",
"1 在LCA中如何确定研究的范围 0.95 0.7 4096 \n",
"2 医疗废物如何处理? 0.95 0.7 4096 \n",
"3 LCA数据清单收集阶段需要哪些信息 0.95 0.7 4096 \n",
"4 生命周期影响评价阶段的目标是什么? 0.95 0.7 4096 "
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()\n",
"\n",
"# \"custom_id\",\"method\",\"url\",\"model\",\"role\",\"content\",\"role1\",\"content1\",\"temperature\",\"top_p\",\"max_tokens\"])"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"df.to_excel(\"/home/zhangxj/WorkFile/LCA-GPT/QA/questionForBatch.xlsx\",index=False)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Batch(id='batch_1823353255129645056', completion_window='24h', created_at=1723556266945, endpoint='/v4/chat/completions', input_file_id='1723556210_f79e4160ab3840b4b02f44c821d27752', object='batch', status='validating', cancelled_at=None, cancelling_at=None, completed_at=None, error_file_id=None, errors=None, expired_at=None, expires_at=None, failed_at=None, finalizing_at=None, in_progress_at=None, metadata={'description': '回答问题'}, output_file_id=None, request_counts=BatchRequestCounts(completed=None, failed=None, total=3933))\n"
]
}
],
"source": [
"from zhipuai import ZhipuAI\n",
" \n",
"client = ZhipuAI(api_key=\"434790cf952335f18b6347e7b6de9777.V50p55zfk8Ye4ojV\") # 填写您自己的APIKey\n",
"\n",
"create = client.batches.create(\n",
" input_file_id=\"1723556210_f79e4160ab3840b4b02f44c821d27752\",\n",
" endpoint=\"/v4/chat/completions\", \n",
" completion_window=\"24h\", #完成时间只支持 24 小时\n",
" metadata={\n",
" \"description\": \"回答问题\"\n",
" }\n",
")\n",
"print(create)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Batch(id=None, completion_window=None, created_at=None, endpoint=None, input_file_id=None, object=None, status=None, cancelled_at=None, cancelling_at=None, completed_at=None, error_file_id=None, errors=None, expired_at=None, expires_at=None, failed_at=None, finalizing_at=None, in_progress_at=None, metadata=None, output_file_id=None, request_counts=None)\n"
]
}
],
"source": [
"batch_job = client.batches.retrieve(\"batch_id\")\n",
"print(batch_job)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Qwen",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}

51
LCA_RAG/chroma.py Normal file
View File

@ -0,0 +1,51 @@
'''
生成数据库
'''
import os
from dotenv import load_dotenv
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_chroma import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
import sys
os.chdir(sys.path[0])
# Load the enivronment variables and API keys
load_dotenv(".env")
key = 1
# Call the model and parser for extracting the output of LLM
parser = StrOutputParser()
# Store the vectrostores locally
def chroma_save(path,key=key):
#Load the docs
loader = PyPDFLoader(path)
doc = loader.load()
# Split the doc content
tex_splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 200)
splits = tex_splitter.split_documents(doc)
# Store the content
embedding = HuggingFaceEmbeddings(model_name = "/home/zhangxj/models/acge_text_embedding")
vs = Chroma.from_documents(documents=splits, embedding=embedding, persist_directory="chroma_new")
vs.add_documents(documents=splits)
vs.as_retriever()
print("saved: " + str(path))
def main():
data = "/home/zhangxj/WorkFile/LCA-GPT/LCAdata" #os.path.join('resources', 'pdfs')
docs = os.listdir(data)
# save every file to the loacal database
for doc in docs:
doc_path = os.path.join(data,doc)
chroma_save(doc_path)
if __name__ == "__main__":
main()

121
LCA_RAG/csv_agent.py Normal file
View File

@ -0,0 +1,121 @@
from langchain.agents import AgentType
from langchain_experimental.agents import create_csv_agent
from langchain.callbacks import StreamlitCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain_community.chat_models import ChatZhipuAI
from langchain_core.prompts import ChatPromptTemplate
from langchain.prompts import MessagesPlaceholder
from langchain_community.document_loaders import TextLoader, PyPDFLoader, CSVLoader, JSONLoader
from langchain_core.messages import AIMessage, HumanMessage
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_openai import ChatOpenAI
from langchain_community.chat_models.tongyi import ChatTongyi
from langchain_community.chat_models import QianfanChatEndpoint
from langchain_community.chat_models import ChatZhipuAI
from langchain.retrievers import ContextualCompressionRetriever
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter, RecursiveJsonSplitter
import requests
import re
import pandas as pd
import os
import streamlit as st
from dotenv import load_dotenv
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
device = "cuda"
memory = 6
os.environ["DASHSCOPE_API_KEY"] = 'sk-c5f441f863f44094b0ddb96c831b5002'
def get_retriever():
try:
embedding = HuggingFaceEmbeddings(model_name="/home/zhangxj/models/acge_text_embedding", model_kwargs={"device": device})
retriever = Chroma(persist_directory="chromaDB", embedding_function=embedding,)
retriever = retriever.as_retriever(search_type="mmr", search_kwargs={"k": 5})
return retriever
except Exception as e:
print(f"Error in init_chain: {e}")
return None
def retrieve_and_output(retriever,query):
try:
retrieved_docs = retriever.get_relevant_documents(query)
# 输出检索到的内容
res = ''
for doc in retrieved_docs:
contents = doc.page_content
cleaned_contents = re.sub(r"\s+", "", contents)
# print("###",cleaned_contents,"###")
res = res+cleaned_contents
return res
except Exception as e:
print(f"Error in retrieve_and_output: {e}")
st.set_page_config(page_title="Chat with your csv!!" , page_icon="random")
st.title(":male-student: :book: Chat with your csv!!")
uploaded_file = st.file_uploader(
"请上传你需要分析的数据" ,
type = "csv" ,
help = "你需要上传的格式为csv"
)
if not uploaded_file:
st.warning("您必须上传一个文件从而进行数据分析")
if "messages" not in st.session_state or st.sidebar.button("Clear conversation history"):
st.session_state['messages'] = [{"role" : "assistant" , "content" : "How can i help you?"}]
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
if query := st.chat_input(placeholder="What is this data about?"):
st.session_state.messages.append( {"role" : "user" , "content" : query})
st.chat_message("user").write(query)
instruct_system_prompt = (
"你是生命周期领域富有经验的专家。"
"你要利用检索到的上下文来回答问题。如果上下文没有足够的信息,请说明。"
"如果你有不明白的地方,请向用户询问。"
"涉及生命后期评价领域的问题,你应该完整地引用文献资料。\n\n"
"{context}"
)
instruct_prompt = ChatPromptTemplate.from_messages(
[
("system", instruct_system_prompt),
("human", "{input}"),
]
)
llm = ChatOpenAI(
temperature = 0 ,
model = 'qwen-plus',
api_key = os.getenv("DASHSCOPE_API_KEY"), # 如果您没有配置环境变量请用百炼API Key将本行替换为api_key="sk-xxx"
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
retriever= get_retriever()
context = retrieve_and_output(retriever,query)
messages = instruct_prompt.format_messages(context=context,input = query)
csv_agent = create_csv_agent(
llm ,
uploaded_file,
agent_type = AgentType.ZERO_SHOT_REACT_DESCRIPTION,
allow_dangerous_code=True,
agent_executor_kwargs={"handle_parsing_errors": True}
)
with st.chat_message("assistant"):
st_cb = StreamlitCallbackHandler(st.container())
response = csv_agent.invoke(messages)
st.session_state.messages.append({"role":"assistant" , "content":response})
st.markdown(response['output'])

11
LCA_RAG/data/class.csv Normal file
View File

@ -0,0 +1,11 @@
name,number
LCA theory and related knowledge,790
Ecological protection and environmental governance industry,754
Research and experimental development,321
Construction industry,295
Non-metallic mineral products industry,183
Chemical raw materials and chemical products manufacturing industry,174
Comprehensive utilization of waste resources industry,157
"Agriculture, forestry, animal husbandry and fishery industry",131
"Electricity, heat production and supply industry",126
Automobile manufacturing industry,87
1 name number
2 LCA theory and related knowledge 790
3 Ecological protection and environmental governance industry 754
4 Research and experimental development 321
5 Construction industry 295
6 Non-metallic mineral products industry 183
7 Chemical raw materials and chemical products manufacturing industry 174
8 Comprehensive utilization of waste resources industry 157
9 Agriculture, forestry, animal husbandry and fishery industry 131
10 Electricity, heat production and supply industry 126
11 Automobile manufacturing industry 87

View File

@ -0,0 +1,5 @@
LCA理论与相关知识,生态保护和环境治理业,研究和试验发展,建筑业,非金属矿物制品业,化学原料和化学制品制造业,废弃资源综合利用业,农、林、牧、渔业,电力、热力生产和供应业,汽车制造业
0.8285459900958628,0.8278908556430978,0.8031791591570013,0.8203105013249284,0.825442724214877,0.8266749505338997,0.8150948574588557,0.8184339215282266,0.811075790060891,0.8514739521618547
0.8031236508979073,0.7980815338993579,0.762518234991953,0.7842578558598534,0.7794850773172952,0.7717763445843225,0.761772907653432,0.7447150918363615,0.7617944805395036,0.798203267585272
0.8069283152682871,0.7964145340400919,0.7619536520907441,0.7759484621427827,0.7705819658894356,0.764714789459075,0.7655670039213387,0.75926776605708,0.769578997104887,0.8130694065970936
0.80836640302139,0.7882782395543724,0.757611659642692,0.7679492297819105,0.760956196511378,0.7494578895897701,0.7485851030440847,0.7276846668647445,0.7415060230663845,0.7754989156777832
1 LCA理论与相关知识 生态保护和环境治理业 研究和试验发展 建筑业 非金属矿物制品业 化学原料和化学制品制造业 废弃资源综合利用业 农、林、牧、渔业 电力、热力生产和供应业 汽车制造业
2 0.8285459900958628 0.8278908556430978 0.8031791591570013 0.8203105013249284 0.825442724214877 0.8266749505338997 0.8150948574588557 0.8184339215282266 0.811075790060891 0.8514739521618547
3 0.8031236508979073 0.7980815338993579 0.762518234991953 0.7842578558598534 0.7794850773172952 0.7717763445843225 0.761772907653432 0.7447150918363615 0.7617944805395036 0.798203267585272
4 0.8069283152682871 0.7964145340400919 0.7619536520907441 0.7759484621427827 0.7705819658894356 0.764714789459075 0.7655670039213387 0.75926776605708 0.769578997104887 0.8130694065970936
5 0.80836640302139 0.7882782395543724 0.757611659642692 0.7679492297819105 0.760956196511378 0.7494578895897701 0.7485851030440847 0.7276846668647445 0.7415060230663845 0.7754989156777832

BIN
LCA_RAG/data/eval/bert.xlsx Normal file

Binary file not shown.

View File

@ -0,0 +1,5 @@
LCA理论与相关知识,生态保护和环境治理业,研究和试验发展,建筑业,非金属矿物制品业,化学原料和化学制品制造业,废弃资源综合利用业,农、林、牧、渔业,电力、热力生产和供应业,汽车制造业
0.7563889,0.76573056,0.74416304,0.76548576,0.7918446,0.80663353,0.78028744,0.7865737,0.7891359,0.7961327
0.72979796,0.7285658,0.706629,0.7384504,0.74560964,0.75003314,0.73390573,0.7173627,0.7410214,0.7537849
0.73387533,0.73159605,0.6975246,0.7213398,0.7342301,0.73770964,0.7344841,0.7319357,0.7426608,0.7584841
0.7237778,0.7110586,0.68896115,0.71236473,0.7142454,0.72282004,0.716429,0.69628036,0.7154095,0.72462904
1 LCA理论与相关知识 生态保护和环境治理业 研究和试验发展 建筑业 非金属矿物制品业 化学原料和化学制品制造业 废弃资源综合利用业 农、林、牧、渔业 电力、热力生产和供应业 汽车制造业
2 0.7563889 0.76573056 0.74416304 0.76548576 0.7918446 0.80663353 0.78028744 0.7865737 0.7891359 0.7961327
3 0.72979796 0.7285658 0.706629 0.7384504 0.74560964 0.75003314 0.73390573 0.7173627 0.7410214 0.7537849
4 0.73387533 0.73159605 0.6975246 0.7213398 0.7342301 0.73770964 0.7344841 0.7319357 0.7426608 0.7584841
5 0.7237778 0.7110586 0.68896115 0.71236473 0.7142454 0.72282004 0.716429 0.69628036 0.7154095 0.72462904

BIN
LCA_RAG/data/eval/cos.xlsx Normal file

Binary file not shown.

5
LCA_RAG/data/eval/f1.csv Normal file
View File

@ -0,0 +1,5 @@
LCA理论与相关知识,生态保护和环境治理业,研究和试验发展,建筑业,非金属矿物制品业,化学原料和化学制品制造业,废弃资源综合利用业,农、林、牧、渔业,电力、热力生产和供应业,汽车制造业
0.3437605081212203,0.3483626691289569,0.3430343943468575,0.39371906828313225,0.4130349692057703,0.4185145863497029,0.38042435656104256,0.39036740247556595,0.41114581401949746,0.4130216859020192
0.30454084953051963,0.2788926668662055,0.2821541495127059,0.31389786788066487,0.297081206460411,0.2931829455107586,0.28198554328062225,0.27194804107827547,0.26988029172611805,0.3179324748633672
0.30268024101560764,0.27761325010853644,0.2729394816189532,0.28676175803618814,0.25563488130229556,0.2694429593634037,0.2718793531798568,0.27189044583195743,0.2713352793043654,0.3088808476140809
0.2682497767547755,0.2302952772337834,0.23015648181836218,0.2204392856411433,0.21248638601796016,0.22850507493329048,0.2066845950860928,0.20235451922007622,0.18898670597783235,0.2327820200502282
1 LCA理论与相关知识 生态保护和环境治理业 研究和试验发展 建筑业 非金属矿物制品业 化学原料和化学制品制造业 废弃资源综合利用业 农、林、牧、渔业 电力、热力生产和供应业 汽车制造业
2 0.3437605081212203 0.3483626691289569 0.3430343943468575 0.39371906828313225 0.4130349692057703 0.4185145863497029 0.38042435656104256 0.39036740247556595 0.41114581401949746 0.4130216859020192
3 0.30454084953051963 0.2788926668662055 0.2821541495127059 0.31389786788066487 0.297081206460411 0.2931829455107586 0.28198554328062225 0.27194804107827547 0.26988029172611805 0.3179324748633672
4 0.30268024101560764 0.27761325010853644 0.2729394816189532 0.28676175803618814 0.25563488130229556 0.2694429593634037 0.2718793531798568 0.27189044583195743 0.2713352793043654 0.3088808476140809
5 0.2682497767547755 0.2302952772337834 0.23015648181836218 0.2204392856411433 0.21248638601796016 0.22850507493329048 0.2066845950860928 0.20235451922007622 0.18898670597783235 0.2327820200502282

BIN
LCA_RAG/data/eval/f1.xlsx Normal file

Binary file not shown.

View File

@ -0,0 +1,5 @@
LCA理论与相关知识,生态保护和环境治理业,研究和试验发展,建筑业,非金属矿物制品业,化学原料和化学制品制造业,废弃资源综合利用业,农、林、牧、渔业,电力、热力生产和供应业,汽车制造业
0.39498794454490654,0.33244458401218807,0.32609547773099173,0.29661873962970675,0.40538367218695087,0.3627170721998308,0.2940372790691262,0.348491457651763,0.32386475957904526,0.3455275567344533
0.2213504786974626,0.1579393502684968,0.17042631995903024,0.11762091016328305,0.13737843819811033,0.08316912972085386,0.10792134263471842,0.1357506361323155,0.06020408163265306,0.09315818281335522
0.30471539483857785,0.19627007847801298,0.20333817273069607,0.1457537942283705,0.16863152027086453,0.13428285147352084,0.13910282923021774,0.17828388744419277,0.10913031879418433,0.1705906011713634
0.2724725275577533,0.1618331729529683,0.1632025416542098,0.09701429611918969,0.11709287878162374,0.08392393366531298,0.10455685503456204,0.131476254623987,0.0647123664280527,0.12014164935057432
1 LCA理论与相关知识 生态保护和环境治理业 研究和试验发展 建筑业 非金属矿物制品业 化学原料和化学制品制造业 废弃资源综合利用业 农、林、牧、渔业 电力、热力生产和供应业 汽车制造业
2 0.39498794454490654 0.33244458401218807 0.32609547773099173 0.29661873962970675 0.40538367218695087 0.3627170721998308 0.2940372790691262 0.348491457651763 0.32386475957904526 0.3455275567344533
3 0.2213504786974626 0.1579393502684968 0.17042631995903024 0.11762091016328305 0.13737843819811033 0.08316912972085386 0.10792134263471842 0.1357506361323155 0.06020408163265306 0.09315818281335522
4 0.30471539483857785 0.19627007847801298 0.20333817273069607 0.1457537942283705 0.16863152027086453 0.13428285147352084 0.13910282923021774 0.17828388744419277 0.10913031879418433 0.1705906011713634
5 0.2724725275577533 0.1618331729529683 0.1632025416542098 0.09701429611918969 0.11709287878162374 0.08392393366531298 0.10455685503456204 0.131476254623987 0.0647123664280527 0.12014164935057432

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 134 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.3 KiB

840
LCA_RAG/evaluate.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

22
LCA_RAG/requirements.txt Normal file
View File

@ -0,0 +1,22 @@
fastapi==0.115.6
langchain==0.3.14
langchain_chroma==0.2.0
langchain_community==0.3.14
langchain_core==0.3.29
langchain_experimental==0.3.4
langchain_openai==0.3.0
langchain_text_splitters==0.3.5
matplotlib==2.0.2
matplotlib==3.7.1
matplotlib==3.3.4
numpy==1.21.6
pandas==2.0.1
python-dotenv==1.0.1
qianfan==0.4.12.2
qwen_agent==0.0.6
Requests==2.32.3
streamlit==1.21.0
streamlit==1.41.1
streamlit==1.36.0
uvicorn==0.34.0
zhipuai==2.1.5.20250106

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

View File

@ -0,0 +1,40 @@
name,amount,upstream,percent
框架,12001.608124689696,12001.608124689696,0.3188756016876195
本体,9921.329383076814,9921.329383076818,0.26360383072843213
支座,4000.5360415632317,4000.536041563232,0.1062918672292065
盖板,4000.5360415632317,4000.536041563232,0.1062918672292065
回转体,2179.0427075510406,2179.0427075510415,0.057895870891162174
十字芯,2112.2830299453867,2112.2830299453863,0.056122105897021046
螺栓M12*101,597.6802854997139,597.6802854997142,0.01588001030157591
木托盘,428.6748704213756,428.6748704213757,0.011389636773156409
工序1产品生产,390.39147,37637.27315972845,0.010372469555464918
橡胶柱,232.26291272653157,232.26291272653168,0.006171087680577533
橡胶瓦,217.74648068112333,217.7464806811234,0.0057853947005414375
框架运输,206.46493127521833,206.46493127521833,0.00548565063146323
内六角螺栓,174.32341660408326,174.32341660408335,0.004631669671292974
电,117.59823926905,117.59823926905,0.0031245153911649247
回转体运输,96.72436362861278,96.72436362861276,0.002569908909663175
六角螺母M8,93.3875446093303,93.3875446093303,0.0024812516096212357
翻边螺栓,93.3875446093303,93.3875446093303,0.0024812516096212357
铰链轴 φ9*60,93.3875446093303,93.3875446093303,0.0024812516096212357
六角螺母M12,80.93587199475294,80.93587199475296,0.0021504180616717383
泡沫外包装,73.34619593977384,73.34619593977384,0.0019487648754069054
支座运输,68.7808895585369,68.78088955853687,0.0018274673955958074
天然气,67.6640653173853,67.6640653173853,0.0017977940386442576
销轴 8*48,59.14544491924253,59.145444919242514,0.0015714593527601161
销轴,44.203437781749685,44.2034377817497,0.0011744590952207186
铰链轴,40.46793599737647,40.46793599737648,0.0010752090308358692
十字芯运输,37.3454548358276,37.34545483582761,0.000992246560406691
橡胶柱运输,31.538876813749376,31.53887681374937,0.0008379692301273226
弹垫12,31.129181536443436,31.12918153644344,0.0008270838698737454
平垫12,31.129181536443436,31.12918153644344,0.0008270838698737454
螺栓M12*101运输,27.0143064141925,27.014306414192504,0.0007177540811616923
弹垫8,18.67750892186606,18.677508921866067,0.0004962503219242472
橡胶瓦运输,18.674779254015462,18.674779254015455,0.0004961777962702495
内六角螺栓运输,7.883737174524834,7.883737174524833,0.0002094662156067238
闭口销φ2.2*17,6.225836307288688,6.225836307288689,0.00016541677397474908
平垫8,6.225836307288688,6.225836307288689,0.00016541677397474908
翻边螺栓运输,4.223430629209732,4.223430629209729,0.00011221404407503059
铰链轴 φ9*60运输,4.220985377217578,4.220985377217577,0.0001121490751815144
六角螺母M8运输,4.220985377217578,4.220985377217577,0.0001121490751815144
1 name amount upstream percent
2 框架 12001.608124689696 12001.608124689696 0.3188756016876195
3 本体 9921.329383076814 9921.329383076818 0.26360383072843213
4 支座 4000.5360415632317 4000.536041563232 0.1062918672292065
5 盖板 4000.5360415632317 4000.536041563232 0.1062918672292065
6 回转体 2179.0427075510406 2179.0427075510415 0.057895870891162174
7 十字芯 2112.2830299453867 2112.2830299453863 0.056122105897021046
8 螺栓M12*101 597.6802854997139 597.6802854997142 0.01588001030157591
9 木托盘 428.6748704213756 428.6748704213757 0.011389636773156409
10 工序1:产品生产 390.39147 37637.27315972845 0.010372469555464918
11 橡胶柱 232.26291272653157 232.26291272653168 0.006171087680577533
12 橡胶瓦 217.74648068112333 217.7464806811234 0.0057853947005414375
13 框架运输 206.46493127521833 206.46493127521833 0.00548565063146323
14 内六角螺栓 174.32341660408326 174.32341660408335 0.004631669671292974
15 117.59823926905 117.59823926905 0.0031245153911649247
16 回转体运输 96.72436362861278 96.72436362861276 0.002569908909663175
17 六角螺母M8 93.3875446093303 93.3875446093303 0.0024812516096212357
18 翻边螺栓 93.3875446093303 93.3875446093303 0.0024812516096212357
19 铰链轴 φ9*60 93.3875446093303 93.3875446093303 0.0024812516096212357
20 六角螺母M12 80.93587199475294 80.93587199475296 0.0021504180616717383
21 泡沫外包装 73.34619593977384 73.34619593977384 0.0019487648754069054
22 支座运输 68.7808895585369 68.78088955853687 0.0018274673955958074
23 天然气 67.6640653173853 67.6640653173853 0.0017977940386442576
24 销轴 8*48 59.14544491924253 59.145444919242514 0.0015714593527601161
25 销轴 44.203437781749685 44.2034377817497 0.0011744590952207186
26 铰链轴 40.46793599737647 40.46793599737648 0.0010752090308358692
27 十字芯运输 37.3454548358276 37.34545483582761 0.000992246560406691
28 橡胶柱运输 31.538876813749376 31.53887681374937 0.0008379692301273226
29 弹垫12 31.129181536443436 31.12918153644344 0.0008270838698737454
30 平垫12 31.129181536443436 31.12918153644344 0.0008270838698737454
31 螺栓M12*101运输 27.0143064141925 27.014306414192504 0.0007177540811616923
32 弹垫8 18.67750892186606 18.677508921866067 0.0004962503219242472
33 橡胶瓦运输 18.674779254015462 18.674779254015455 0.0004961777962702495
34 内六角螺栓运输 7.883737174524834 7.883737174524833 0.0002094662156067238
35 闭口销φ2.2*17 6.225836307288688 6.225836307288689 0.00016541677397474908
36 平垫8 6.225836307288688 6.225836307288689 0.00016541677397474908
37 翻边螺栓运输 4.223430629209732 4.223430629209729 0.00011221404407503059
38 铰链轴 φ9*60运输 4.220985377217578 4.220985377217577 0.0001121490751815144
39 六角螺母M8运输 4.220985377217578 4.220985377217577 0.0001121490751815144

View File

@ -0,0 +1,121 @@
name,amount,upstream,percent
顺丁烯二酸酐(石化),1.0478333960661341,1.0478333960661337,0.14691798302721387
顺丁烯二酸酐(大风),1.0478333960661341,1.0478333960661337,0.14691798302721387
火力发电,0.9623219099825041,0.9623219099825047,0.134928314528164
过氧化氢(平湖),0.7248451913011941,0.7248451913011941,0.10163141765928706
过氧化氢(名鑫),0.7248451913011941,0.7248451913011941,0.10163141765928706
蒸汽生产,0.7140986808002964,0.7140986808002961,0.1001246364731747
氢氧化钠(前宇),0.4121099232116898,0.41210992321169,0.05778242889668318
氢氧化钠(电化),0.3645635378709197,0.3645635378709198,0.051115892918038204
产品生产,0.31208042353191773,7.132097613074651,0.04375717221814351
碳酸钠(江顺实业),0.17101214416366373,0.17101214416366373,0.023977818790668556
碳酸钠(秦业),0.17101214416366373,0.17101214416366373,0.023977818790668556
F06,0.05946017299904296,0.059460172999042965,0.008336982501478924
硫酸(前通),0.05349537772432942,0.053495377724329427,0.007500651368856902
硫酸(乐欣福),0.05349537772432942,0.053495377724329427,0.007500651368856902
二氧化硅,0.0416117122689358,0.04161171226893576,0.005834428316383765
酒石酸钠,0.04008191958142867,0.04008191958142866,0.005619934240376911
水处理的污泥(中能),0.02085130967203848,0.020851309672038482,0.002923587253462936
水处理的污泥(杰泰),0.02085130967203848,0.020851309672038482,0.002923587253462936
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.01907594495272549,0.019075944952725497,0.002674661226979736
"polypropylene production, granulate | polypropylene, granulate | Cutoff, S",0.014541316754908027,0.014541316754908029,0.0020388555434590104
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.012172654422687496,0.012172654422687496,0.001706742543788581
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.011447441536565621,0.01144744153656562,0.0016050595711954402
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.00968809451687643,0.009688094516876427,0.0013583794056766826
"injection moulding | injection moulding | Cutoff, S",0.009269658528533318,0.00926965852853332,0.0012997099915654637
酒石酸氢钾,0.008876409356123473,0.00887640935612347,0.0012445720512645716
自来水,0.006708425286645729,0.006708425286645731,0.0009405963926163546
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.006666810803095505,0.006666810803095504,0.0009347615757352821
电力(核能),0.006172558951250732,0.006172558951250729,0.0008654619280497674
废树脂(立佳),0.005662803306458653,0.005662803306458653,0.0007939884748741423
废树脂(大地),0.005662803306458652,0.005662803306458652,0.0007939884748741422
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.005658348612026375,0.005658348612026375,0.0007933638768002024
"polyethylene production, high density, granulate | polyethylene, high density, granulate | Cutoff, S",0.0042650731153103805,0.004265073115310381,0.0005980110406076882
聚合氯化铝,0.004067810869066113,0.004067810869066112,0.0005703526633747905
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.003948700270127523,0.003948700270127523,0.0005536520227778034
F04,0.0037873625983000495,0.0037873625983000482,0.0005310306734104437
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.003720614272328129,0.003720614272328129,0.0005216718101989312
木制品,0.003703744471536108,0.0037037444715361093,0.0005193064751029707
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.0033317656664620552,0.0033317656664620557,0.0004671508786355112
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.0030715933531159805,0.0030715933531159805,0.00043067180509210885
"injection moulding | injection moulding | Cutoff, S",0.00267963238135753,0.0026796323813575297,0.000375714484956739
氯化钾,0.0026252796752409065,0.0026252796752409065,0.00036809362654097877
弱酸树脂,0.0022883120821518355,0.002288312082151835,0.000320846994291956
阳树脂,0.0022883120821518355,0.002288312082151835,0.000320846994291956
酸黄沙处理,0.0022261479284531272,0.002226147928453127,0.0003121308833984724
F01,0.0019017653523963306,0.0019017653523963306,0.0002666488115515961
一般工业垃圾处理,0.001869857104765684,0.001869857104765684,0.00026217491770413214
F05,0.001802783275160294,0.0018027832751602941,0.00025277041523596213
光伏发电,0.0017523176917856995,0.0017523176917856999,0.0002456945749835685
特级氧化钙,0.0016327204955009875,0.001632720495500988,0.0002289257079863663
阴树脂D201,0.001544690353686903,0.0015446903536869023,0.00021658289573254821
钼酸钠,0.0014202254969797562,0.0014202254969797568,0.00019913152820233152
钨酸钠,0.0014005001428550373,0.001400500142855037,0.00019636581253285471
阴树脂D630,0.0009654314710543141,0.0009654314710543138,0.0001353643098328426
尿素,0.0008665256349769106,0.000866525634976911,0.00012149660338192582
多乙烯多胺,0.0007956207811687508,0.0007956207811687508,0.00011155494839417352
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.0007463837640036111,0.0007463837640036109,0.00010465136689034249
戊二醛,0.0006859953841003264,0.0006859953841003265,9.618423938039646e-05
消泡剂,0.0006443156126354828,0.0006443156126354824,9.034026840214798e-05
聚丙烯酰胺,0.0006254028415299812,0.0006254028415299814,8.768848597690038e-05
牛皮纸,0.0006135718014997905,0.0006135718014997904,8.602964159870486e-05
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.0005528681186877643,0.0005528681186877646,7.751830508800659e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.000528421631576874,0.0005284216315768739,7.40906336739089e-05
硬纸板,0.0004585743777904158,0.00045857437779041576,6.429726605953227e-05
风力发电,0.0004483426390386543,0.0004483426390386542,6.286266164062968e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.00041050032815046454,0.00041050032815046465,5.7556745633701113e-05
卡拉胶,0.00040730975930956874,0.0004073097593095688,5.710939213211039e-05
磷酸,0.00039489299811160746,0.0003948929981116072,5.5368423083229355e-05
F02,0.0003450097078832129,0.0003450097078832129,4.837422685448623e-05
F03,0.0003390648542781465,0.00033906485427814674,4.754069176739373e-05
合金,0.000302658691296397,0.000302658691296397,4.243613978888333e-05
次氯酸钠,0.00027393853549390366,0.0002739385354939039,3.8409252138068905e-05
废机油处理,0.0002571723238646212,0.00025717232386462133,3.605844140343364e-05
水力发电,0.00023616560520469266,0.0002361656052046927,3.311306406852185e-05
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.0001601422609326987,0.00016014226093269876,2.2453739365418092e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.00014556240255910613,0.00014556240255910613,2.040947985516341e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0001410032931918723,0.00014100329319187226,1.9770241637380747e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.00013537009711005332,0.00013537009711005326,1.8980404427147934e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0001334965841179963,0.0001334965841179963,1.87177169130816e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.00012478293227959265,0.0001247829322795926,1.7495965289487768e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.00012476489870428894,0.00012476489870428897,1.749343678016526e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",7.94342220559564e-05,7.943422205595643e-05,1.1137567987058476e-05
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",7.698239905730311e-05,7.698239905730313e-05,1.0793794930144818e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",7.651114577153162e-05,7.651114577153165e-05,1.0727719939120075e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S",7.184258126431081e-05,7.184258126431081e-05,1.007313488427417e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",6.585092567051703e-05,6.585092567051703e-05,9.233037633949133e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",5.4649636082733866e-05,5.464963608273385e-05,7.662491324088087e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",5.1058764183737385e-05,5.105876418373738e-05,7.159010848384327e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S",4.3672109287591886e-05,4.3672109287591866e-05,6.123319065001527e-06
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",4.2774601878415035e-05,4.2774601878415035e-05,5.99747846972819e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",3.9657935387642325e-05,3.965793538764234e-05,5.560486905695304e-06
废试剂瓶处理(立佳),3.3769940777473076e-05,3.3769940777473076e-05,4.734924086788381e-06
废试剂瓶处理(大地),3.3769940777473076e-05,3.3769940777473076e-05,4.734924086788381e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",3.1935514137126534e-05,3.193551413712655e-05,4.477716917191648e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",2.8172187746796842e-05,2.817218774679685e-05,3.950056389462651e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",2.4781698112067627e-05,2.478169811206762e-05,3.474671752478192e-06
精制盐,2.2615051813537913e-05,2.2615051813537913e-05,3.170883664306517e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",1.7584416067858894e-05,1.7584416067858904e-05,2.465532164846275e-06
实验室废液(大地),1.7154090510147373e-05,1.7154090510147376e-05,2.4051956998878252e-06
实验室废液(立佳),1.7154090510147373e-05,1.7154090510147376e-05,2.4051956998878252e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",1.379604543532732e-05,1.379604543532732e-05,1.9343601537416195e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",1.21874112849449e-05,1.2187411284944902e-05,1.708811621226662e-06
废电瓶处理,1.071551349435922e-05,1.0715513494359221e-05,1.502435058476402e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",8.455220374510647e-06,8.455220374510645e-06,1.1855166366498449e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",5.451910112443665e-06,5.451910112443665e-06,7.644188860299886e-07
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",5.052844090517362e-06,5.052844090517362e-06,7.084653582495037e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",3.8523276270708694e-06,3.852327627070873e-06,5.401394983726434e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S",3.602791519368273e-06,3.6027915193682716e-06,5.051517400383851e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",1.638199103130583e-06,1.6381991031305831e-06,2.2969387016344474e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",1.281989320139293e-06,1.2819893201392933e-06,1.7974926728276042e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",1.2517217872624413e-06,1.251721787262441e-06,1.755054200278708e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",1.0096748657347052e-06,1.0096748657347054e-06,1.415677295111268e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S",6.281208955933398e-07,6.281208955933398e-07,8.806958761218588e-08
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",1.6801175702067753e-07,1.6801175702067756e-07,2.355713089409717e-08
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",8.54683277525838e-08,8.546832775258381e-08,1.1983617217451174e-08
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",8.267232735273698e-08,8.267232735273701e-08,1.1591586632406858e-08
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",5.324198422992289e-08,5.3241984229922914e-08,7.465122761685008e-09
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",4.221415749969102e-08,4.221415749969103e-08,5.918897888091646e-09
电力(浙江),0.0,0.9709312948697838,0.0
制造,0.0,0.023810975283441345,0.0
生产,0.0,0.006944705496667908,0.0
1 name amount upstream percent
2 顺丁烯二酸酐(石化) 1.0478333960661341 1.0478333960661337 0.14691798302721387
3 顺丁烯二酸酐(大风) 1.0478333960661341 1.0478333960661337 0.14691798302721387
4 火力发电 0.9623219099825041 0.9623219099825047 0.134928314528164
5 过氧化氢(平湖) 0.7248451913011941 0.7248451913011941 0.10163141765928706
6 过氧化氢(名鑫) 0.7248451913011941 0.7248451913011941 0.10163141765928706
7 蒸汽生产 0.7140986808002964 0.7140986808002961 0.1001246364731747
8 氢氧化钠(前宇) 0.4121099232116898 0.41210992321169 0.05778242889668318
9 氢氧化钠(电化) 0.3645635378709197 0.3645635378709198 0.051115892918038204
10 产品生产 0.31208042353191773 7.132097613074651 0.04375717221814351
11 碳酸钠(江顺实业) 0.17101214416366373 0.17101214416366373 0.023977818790668556
12 碳酸钠(秦业) 0.17101214416366373 0.17101214416366373 0.023977818790668556
13 F06 0.05946017299904296 0.059460172999042965 0.008336982501478924
14 硫酸(前通) 0.05349537772432942 0.053495377724329427 0.007500651368856902
15 硫酸(乐欣福) 0.05349537772432942 0.053495377724329427 0.007500651368856902
16 二氧化硅 0.0416117122689358 0.04161171226893576 0.005834428316383765
17 酒石酸钠 0.04008191958142867 0.04008191958142866 0.005619934240376911
18 水处理的污泥(中能) 0.02085130967203848 0.020851309672038482 0.002923587253462936
19 水处理的污泥(杰泰) 0.02085130967203848 0.020851309672038482 0.002923587253462936
20 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.01907594495272549 0.019075944952725497 0.002674661226979736
21 polypropylene production, granulate | polypropylene, granulate | Cutoff, S 0.014541316754908027 0.014541316754908029 0.0020388555434590104
22 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.012172654422687496 0.012172654422687496 0.001706742543788581
23 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.011447441536565621 0.01144744153656562 0.0016050595711954402
24 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.00968809451687643 0.009688094516876427 0.0013583794056766826
25 injection moulding | injection moulding | Cutoff, S 0.009269658528533318 0.00926965852853332 0.0012997099915654637
26 酒石酸氢钾 0.008876409356123473 0.00887640935612347 0.0012445720512645716
27 自来水 0.006708425286645729 0.006708425286645731 0.0009405963926163546
28 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.006666810803095505 0.006666810803095504 0.0009347615757352821
29 电力(核能) 0.006172558951250732 0.006172558951250729 0.0008654619280497674
30 废树脂(立佳) 0.005662803306458653 0.005662803306458653 0.0007939884748741423
31 废树脂(大地) 0.005662803306458652 0.005662803306458652 0.0007939884748741422
32 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.005658348612026375 0.005658348612026375 0.0007933638768002024
33 polyethylene production, high density, granulate | polyethylene, high density, granulate | Cutoff, S 0.0042650731153103805 0.004265073115310381 0.0005980110406076882
34 聚合氯化铝 0.004067810869066113 0.004067810869066112 0.0005703526633747905
35 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.003948700270127523 0.003948700270127523 0.0005536520227778034
36 F04 0.0037873625983000495 0.0037873625983000482 0.0005310306734104437
37 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.003720614272328129 0.003720614272328129 0.0005216718101989312
38 木制品 0.003703744471536108 0.0037037444715361093 0.0005193064751029707
39 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.0033317656664620552 0.0033317656664620557 0.0004671508786355112
40 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.0030715933531159805 0.0030715933531159805 0.00043067180509210885
41 injection moulding | injection moulding | Cutoff, S 0.00267963238135753 0.0026796323813575297 0.000375714484956739
42 氯化钾 0.0026252796752409065 0.0026252796752409065 0.00036809362654097877
43 弱酸树脂 0.0022883120821518355 0.002288312082151835 0.000320846994291956
44 阳树脂 0.0022883120821518355 0.002288312082151835 0.000320846994291956
45 酸黄沙处理 0.0022261479284531272 0.002226147928453127 0.0003121308833984724
46 F01 0.0019017653523963306 0.0019017653523963306 0.0002666488115515961
47 一般工业垃圾处理 0.001869857104765684 0.001869857104765684 0.00026217491770413214
48 F05 0.001802783275160294 0.0018027832751602941 0.00025277041523596213
49 光伏发电 0.0017523176917856995 0.0017523176917856999 0.0002456945749835685
50 特级氧化钙 0.0016327204955009875 0.001632720495500988 0.0002289257079863663
51 阴树脂(D201) 0.001544690353686903 0.0015446903536869023 0.00021658289573254821
52 钼酸钠 0.0014202254969797562 0.0014202254969797568 0.00019913152820233152
53 钨酸钠 0.0014005001428550373 0.001400500142855037 0.00019636581253285471
54 阴树脂(D630) 0.0009654314710543141 0.0009654314710543138 0.0001353643098328426
55 尿素 0.0008665256349769106 0.000866525634976911 0.00012149660338192582
56 多乙烯多胺 0.0007956207811687508 0.0007956207811687508 0.00011155494839417352
57 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.0007463837640036111 0.0007463837640036109 0.00010465136689034249
58 戊二醛 0.0006859953841003264 0.0006859953841003265 9.618423938039646e-05
59 消泡剂 0.0006443156126354828 0.0006443156126354824 9.034026840214798e-05
60 聚丙烯酰胺 0.0006254028415299812 0.0006254028415299814 8.768848597690038e-05
61 牛皮纸 0.0006135718014997905 0.0006135718014997904 8.602964159870486e-05
62 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.0005528681186877643 0.0005528681186877646 7.751830508800659e-05
63 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.000528421631576874 0.0005284216315768739 7.40906336739089e-05
64 硬纸板 0.0004585743777904158 0.00045857437779041576 6.429726605953227e-05
65 风力发电 0.0004483426390386543 0.0004483426390386542 6.286266164062968e-05
66 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.00041050032815046454 0.00041050032815046465 5.7556745633701113e-05
67 卡拉胶 0.00040730975930956874 0.0004073097593095688 5.710939213211039e-05
68 磷酸 0.00039489299811160746 0.0003948929981116072 5.5368423083229355e-05
69 F02 0.0003450097078832129 0.0003450097078832129 4.837422685448623e-05
70 F03 0.0003390648542781465 0.00033906485427814674 4.754069176739373e-05
71 合金 0.000302658691296397 0.000302658691296397 4.243613978888333e-05
72 次氯酸钠 0.00027393853549390366 0.0002739385354939039 3.8409252138068905e-05
73 废机油处理 0.0002571723238646212 0.00025717232386462133 3.605844140343364e-05
74 水力发电 0.00023616560520469266 0.0002361656052046927 3.311306406852185e-05
75 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.0001601422609326987 0.00016014226093269876 2.2453739365418092e-05
76 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.00014556240255910613 0.00014556240255910613 2.040947985516341e-05
77 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0001410032931918723 0.00014100329319187226 1.9770241637380747e-05
78 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.00013537009711005332 0.00013537009711005326 1.8980404427147934e-05
79 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0001334965841179963 0.0001334965841179963 1.87177169130816e-05
80 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.00012478293227959265 0.0001247829322795926 1.7495965289487768e-05
81 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.00012476489870428894 0.00012476489870428897 1.749343678016526e-05
82 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 7.94342220559564e-05 7.943422205595643e-05 1.1137567987058476e-05
83 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 7.698239905730311e-05 7.698239905730313e-05 1.0793794930144818e-05
84 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 7.651114577153162e-05 7.651114577153165e-05 1.0727719939120075e-05
85 transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S 7.184258126431081e-05 7.184258126431081e-05 1.007313488427417e-05
86 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 6.585092567051703e-05 6.585092567051703e-05 9.233037633949133e-06
87 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 5.4649636082733866e-05 5.464963608273385e-05 7.662491324088087e-06
88 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 5.1058764183737385e-05 5.105876418373738e-05 7.159010848384327e-06
89 transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S 4.3672109287591886e-05 4.3672109287591866e-05 6.123319065001527e-06
90 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 4.2774601878415035e-05 4.2774601878415035e-05 5.99747846972819e-06
91 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 3.9657935387642325e-05 3.965793538764234e-05 5.560486905695304e-06
92 废试剂瓶处理(立佳) 3.3769940777473076e-05 3.3769940777473076e-05 4.734924086788381e-06
93 废试剂瓶处理(大地) 3.3769940777473076e-05 3.3769940777473076e-05 4.734924086788381e-06
94 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 3.1935514137126534e-05 3.193551413712655e-05 4.477716917191648e-06
95 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 2.8172187746796842e-05 2.817218774679685e-05 3.950056389462651e-06
96 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 2.4781698112067627e-05 2.478169811206762e-05 3.474671752478192e-06
97 精制盐 2.2615051813537913e-05 2.2615051813537913e-05 3.170883664306517e-06
98 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 1.7584416067858894e-05 1.7584416067858904e-05 2.465532164846275e-06
99 实验室废液(大地) 1.7154090510147373e-05 1.7154090510147376e-05 2.4051956998878252e-06
100 实验室废液(立佳) 1.7154090510147373e-05 1.7154090510147376e-05 2.4051956998878252e-06
101 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 1.379604543532732e-05 1.379604543532732e-05 1.9343601537416195e-06
102 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 1.21874112849449e-05 1.2187411284944902e-05 1.708811621226662e-06
103 废电瓶处理 1.071551349435922e-05 1.0715513494359221e-05 1.502435058476402e-06
104 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 8.455220374510647e-06 8.455220374510645e-06 1.1855166366498449e-06
105 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 5.451910112443665e-06 5.451910112443665e-06 7.644188860299886e-07
106 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 5.052844090517362e-06 5.052844090517362e-06 7.084653582495037e-07
107 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 3.8523276270708694e-06 3.852327627070873e-06 5.401394983726434e-07
108 transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S 3.602791519368273e-06 3.6027915193682716e-06 5.051517400383851e-07
109 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 1.638199103130583e-06 1.6381991031305831e-06 2.2969387016344474e-07
110 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 1.281989320139293e-06 1.2819893201392933e-06 1.7974926728276042e-07
111 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 1.2517217872624413e-06 1.251721787262441e-06 1.755054200278708e-07
112 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 1.0096748657347052e-06 1.0096748657347054e-06 1.415677295111268e-07
113 transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S 6.281208955933398e-07 6.281208955933398e-07 8.806958761218588e-08
114 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 1.6801175702067753e-07 1.6801175702067756e-07 2.355713089409717e-08
115 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 8.54683277525838e-08 8.546832775258381e-08 1.1983617217451174e-08
116 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 8.267232735273698e-08 8.267232735273701e-08 1.1591586632406858e-08
117 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 5.324198422992289e-08 5.3241984229922914e-08 7.465122761685008e-09
118 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 4.221415749969102e-08 4.221415749969103e-08 5.918897888091646e-09
119 电力(浙江) 0.0 0.9709312948697838 0.0
120 制造 0.0 0.023810975283441345 0.0
121 生产 0.0 0.006944705496667908 0.0

View File

@ -0,0 +1,121 @@
name,amount,upstream,percent
顺丁烯二酸酐(石化),97.43695577828797,97.436955778288,0.14691798302721387
顺丁烯二酸酐(大风),97.43695577828797,97.436955778288,0.14691798302721387
火力发电,89.48533014834815,89.48533014834824,0.13492831452816398
过氧化氢(平湖),67.40261296888605,67.4026129688861,0.10163141765928704
过氧化氢(名鑫),67.40261296888605,67.4026129688861,0.10163141765928704
蒸汽生产,66.40330594891702,66.403305948917,0.1001246364731747
氢氧化钠(前宇),38.32168025424979,38.321680254249806,0.05778242889668318
氢氧化钠(电化),33.900390511759404,33.900390511759404,0.05111589291803819
产品生产,29.020039388999997,663.2064623446377,0.04375717221814351
碳酸钠(江顺实业),15.902244374900063,15.902244374900059,0.02397781879066856
碳酸钠(秦业),15.902244374900063,15.902244374900059,0.02397781879066856
F06,5.5291406714349804,5.529140671434982,0.008336982501478922
硫酸(前通),4.974480459620046,4.974480459620043,0.007500651368856901
硫酸(乐欣福),4.974480459620046,4.974480459620043,0.007500651368856901
二氧化硅,3.8694305635122546,3.8694305635122537,0.0058344283163837656
酒石酸钠,3.7271767061698684,3.727176706169868,0.005619934240376913
水处理的污泥(中能),1.9389419597250281,1.9389419597250293,0.0029235872534629365
水处理的污泥(杰泰),1.9389419597250281,1.9389419597250293,0.0029235872534629365
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",1.7738526103155972,1.7738526103155967,0.0026746612269797354
"polypropylene production, granulate | polypropylene, granulate | Cutoff, S",1.352182172209203,1.3521821722092033,0.0020388555434590104
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",1.1319226845991117,1.1319226845991115,0.0017067425437885808
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",1.0644858800649284,1.064485880064928,0.0016050595711954404
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.9008860001606436,0.9008860001606436,0.0013583794056766828
"injection moulding | injection moulding | Cutoff, S",0.8619760655801093,0.8619760655801093,0.0012997099915654634
酒石酸氢钾,0.8254082272521852,0.8254082272521853,0.001244572051264572
自来水,0.6238096060412199,0.6238096060412197,0.0009405963926163545
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.619939917779095,0.6199399177790951,0.0009347615757352819
电力(核能),0.5739799435958551,0.5739799435958552,0.0008654619280497673
废树脂(立佳),0.5265782875636937,0.5265782875636938,0.0007939884748741422
废树脂(大地),0.5265782875636937,0.5265782875636938,0.0007939884748741422
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.5261640500846888,0.5261640500846888,0.0007933638768002024
"polyethylene production, high density, granulate | polyethylene, high density, granulate | Cutoff, S",0.39660478668446,0.3966047866844599,0.0005980110406076881
聚合氯化铝,0.37826157216563644,0.3782615721656364,0.0005703526633747903
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.36718559939641937,0.3671855993964194,0.0005536520227778033
F04,0.3521829743090306,0.3521829743090306,0.0005310306734104434
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.3459761157469562,0.34597611574695625,0.0005216718101989312
木制品,0.3444074102257047,0.3444074102257048,0.0005193064751029708
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.30981748160104633,0.3098174816010462,0.0004671508786355112
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.2856243242867166,0.28562432428671664,0.0004306718050921088
"injection moulding | injection moulding | Cutoff, S",0.2491762744197963,0.24917627441979634,0.000375714484956739
氯化钾,0.24412207186985055,0.2441220718698505,0.0003680936265409787
弱酸树脂,0.21278780003827816,0.2127878000382781,0.000320846994291956
阳树脂,0.21278780003827816,0.2127878000382781,0.000320846994291956
酸黄沙处理,0.2070072189672074,0.20700721896720747,0.00031213088339847246
F01,0.1768432149975358,0.17684321499753589,0.00026664881155159597
一般工业垃圾处理,0.17387609968605386,0.17387609968605391,0.00026217491770413214
F05,0.16763897287402746,0.16763897287402743,0.0002527704152359622
光伏发电,0.16294622989212165,0.16294622989212162,0.0002456945749835685
特级氧化钙,0.15182500893337944,0.15182500893337958,0.00022892570798636628
阴树脂D201,0.14363917608314067,0.14363917608314072,0.00021658289573254813
钼酸钠,0.13206531636034965,0.1320653163603496,0.00019913152820233155
钨酸钠,0.1302310758553448,0.13023107585534477,0.00019636581253285471
阴树脂D630,0.08977448505196294,0.08977448505196287,0.0001353643098328426
尿素,0.08057733251581649,0.08057733251581653,0.0001214966033819258
多乙烯多胺,0.07398396268153838,0.07398396268153838,0.00011155494839417351
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.06940546281487474,0.06940546281487474,0.00010465136689034249
戊二醛,0.06379000913278247,0.06379000913278252,9.618423938039646e-05
消泡剂,0.05991424981425356,0.05991424981425358,9.034026840214797e-05
聚丙烯酰胺,0.058155570573097434,0.058155570573097455,8.768848597690038e-05
牛皮纸,0.05705541426145408,0.05705541426145408,8.602964159870484e-05
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.05141064088436913,0.051410640884369134,7.751830508800657e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.04913738705174556,0.04913738705174555,7.409063367390888e-05
硬纸板,0.0426423623617743,0.04264236236177429,6.429726605953226e-05
风力发电,0.041690923440249925,0.041690923440249925,6.286266164062966e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.03817200565579705,0.03817200565579705,5.75567456337011e-05
卡拉胶,0.0378753179225896,0.037875317922589614,5.7109392132110405e-05
磷酸,0.036720695998629684,0.036720695998629684,5.536842308322934e-05
F02,0.03208209986082075,0.03208209986082076,4.837422685448621e-05
F03,0.03152929400447001,0.03152929400447,4.754069176739372e-05
合金,0.028143922144947806,0.028143922144947802,4.243613978888332e-05
次氯酸钠,0.025473264231791866,0.025473264231791876,3.84092521380689e-05
废机油处理,0.023914191360832622,0.023914191360832632,3.605844140343365e-05
水力发电,0.021960798078275695,0.02196079807827569,3.311306406852185e-05
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.01489146505094745,0.014891465050947454,2.245373936541809e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.013535698933037063,0.013535698933037061,2.040947985516341e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.013111752016025931,0.013111752016025928,1.9770241637380744e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.012587926873999273,0.012587926873999277,1.8980404427147937e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.01241371081709323,0.012413710817093231,1.8717716913081597e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.011603437244945747,0.01160343724494575,1.7495965289487764e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.01160176032122296,0.011601760321222964,1.7493436780165255e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.007386507063819933,0.007386507063819933,1.1137567987058476e-05
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.007158514550894822,0.0071585145508948215,1.0793794930144813e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.007114693189847851,0.007114693189847853,1.0727719939120075e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S",0.006680568151319829,0.00668056815131983,1.007313488427417e-05
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0061234102259063025,0.0061234102259063025,9.233037633949132e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.005081813763794935,0.005081813763794934,7.662491324088087e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0047479022586438486,0.00474790225864385,7.159010848384326e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S",0.004061024774907134,0.004061024774907134,6.123319065001527e-06
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.003977566478896562,0.003977566478896563,5.997478469728192e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.00368775084963986,0.0036877508496398594,5.560486905695302e-06
废试剂瓶处理(立佳),0.0031402322530693343,0.0031402322530693348,4.7349240867883815e-06
废试剂瓶处理(大地),0.0031402322530693343,0.0031402322530693348,4.7349240867883815e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.002969650796031407,0.002969650796031408,4.477716917191647e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0026197029241173545,0.0026197029241173545,3.95005638946265e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.002304424760769903,0.0023044247607699026,3.474671752478193e-06
精制盐,0.002102950537511125,0.002102950537511126,3.1708836643065167e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0016351568648446128,0.0016351568648446126,2.465532164846275e-06
实验室废液(大地),0.0015951413313691383,0.0015951413313691379,2.4051956998878252e-06
实验室废液(立佳),0.0015951413313691383,0.0015951413313691379,2.4051956998878252e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0012828801544634081,0.0012828801544634083,1.9343601537416195e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0011332949101271386,0.0011332949101271381,1.7088116212266617e-06
废电瓶处理,0.0009964246400346924,0.000996424640034693,1.5024350584764015e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0007862422946432563,0.0007862422946432562,1.1855166366498449e-06
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0005069675451533771,0.000506967545153377,7.644188860299885e-07
"transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S",0.0004698588039383794,0.00046985880393837933,7.084653582495037e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0003582240058883277,0.00035822400588832767,5.401394983726434e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S",0.0003350198984580951,0.0003350198984580949,5.05151740038385e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.0001523344590533466,0.00015233445905334661,2.2969387016344472e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.00011921087566364017,0.00011921087566364016,1.797492672827604e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",0.00011639632873899379,0.00011639632873899382,1.7550542002787074e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",9.388863307123689e-05,9.388863307123688e-05,1.415677295111268e-07
"transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S",5.8408319640428885e-05,5.840831964042887e-05,8.806958761218588e-08
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",1.562324144326374e-05,1.5623241443263748e-05,2.3557130894097164e-08
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",7.947612380878076e-06,7.947612380878078e-06,1.1983617217451172e-08
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",7.687615163439939e-06,7.68761516343994e-06,1.1591586632406858e-08
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",4.950917657745543e-06,4.9509176577455435e-06,7.465122761685008e-09
"transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S",3.925451329340405e-06,3.925451329340407e-06,5.918897888091645e-09
电力(浙江),0.0,90.28590804335467,0.0
制造,0.0,2.2141582377893116,0.0
生产,0.0,0.645781061104256,0.0
1 name amount upstream percent
2 顺丁烯二酸酐(石化) 97.43695577828797 97.436955778288 0.14691798302721387
3 顺丁烯二酸酐(大风) 97.43695577828797 97.436955778288 0.14691798302721387
4 火力发电 89.48533014834815 89.48533014834824 0.13492831452816398
5 过氧化氢(平湖) 67.40261296888605 67.4026129688861 0.10163141765928704
6 过氧化氢(名鑫) 67.40261296888605 67.4026129688861 0.10163141765928704
7 蒸汽生产 66.40330594891702 66.403305948917 0.1001246364731747
8 氢氧化钠(前宇) 38.32168025424979 38.321680254249806 0.05778242889668318
9 氢氧化钠(电化) 33.900390511759404 33.900390511759404 0.05111589291803819
10 产品生产 29.020039388999997 663.2064623446377 0.04375717221814351
11 碳酸钠(江顺实业) 15.902244374900063 15.902244374900059 0.02397781879066856
12 碳酸钠(秦业) 15.902244374900063 15.902244374900059 0.02397781879066856
13 F06 5.5291406714349804 5.529140671434982 0.008336982501478922
14 硫酸(前通) 4.974480459620046 4.974480459620043 0.007500651368856901
15 硫酸(乐欣福) 4.974480459620046 4.974480459620043 0.007500651368856901
16 二氧化硅 3.8694305635122546 3.8694305635122537 0.0058344283163837656
17 酒石酸钠 3.7271767061698684 3.727176706169868 0.005619934240376913
18 水处理的污泥(中能) 1.9389419597250281 1.9389419597250293 0.0029235872534629365
19 水处理的污泥(杰泰) 1.9389419597250281 1.9389419597250293 0.0029235872534629365
20 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 1.7738526103155972 1.7738526103155967 0.0026746612269797354
21 polypropylene production, granulate | polypropylene, granulate | Cutoff, S 1.352182172209203 1.3521821722092033 0.0020388555434590104
22 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 1.1319226845991117 1.1319226845991115 0.0017067425437885808
23 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 1.0644858800649284 1.064485880064928 0.0016050595711954404
24 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.9008860001606436 0.9008860001606436 0.0013583794056766828
25 injection moulding | injection moulding | Cutoff, S 0.8619760655801093 0.8619760655801093 0.0012997099915654634
26 酒石酸氢钾 0.8254082272521852 0.8254082272521853 0.001244572051264572
27 自来水 0.6238096060412199 0.6238096060412197 0.0009405963926163545
28 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.619939917779095 0.6199399177790951 0.0009347615757352819
29 电力(核能) 0.5739799435958551 0.5739799435958552 0.0008654619280497673
30 废树脂(立佳) 0.5265782875636937 0.5265782875636938 0.0007939884748741422
31 废树脂(大地) 0.5265782875636937 0.5265782875636938 0.0007939884748741422
32 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.5261640500846888 0.5261640500846888 0.0007933638768002024
33 polyethylene production, high density, granulate | polyethylene, high density, granulate | Cutoff, S 0.39660478668446 0.3966047866844599 0.0005980110406076881
34 聚合氯化铝 0.37826157216563644 0.3782615721656364 0.0005703526633747903
35 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.36718559939641937 0.3671855993964194 0.0005536520227778033
36 F04 0.3521829743090306 0.3521829743090306 0.0005310306734104434
37 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.3459761157469562 0.34597611574695625 0.0005216718101989312
38 木制品 0.3444074102257047 0.3444074102257048 0.0005193064751029708
39 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.30981748160104633 0.3098174816010462 0.0004671508786355112
40 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.2856243242867166 0.28562432428671664 0.0004306718050921088
41 injection moulding | injection moulding | Cutoff, S 0.2491762744197963 0.24917627441979634 0.000375714484956739
42 氯化钾 0.24412207186985055 0.2441220718698505 0.0003680936265409787
43 弱酸树脂 0.21278780003827816 0.2127878000382781 0.000320846994291956
44 阳树脂 0.21278780003827816 0.2127878000382781 0.000320846994291956
45 酸黄沙处理 0.2070072189672074 0.20700721896720747 0.00031213088339847246
46 F01 0.1768432149975358 0.17684321499753589 0.00026664881155159597
47 一般工业垃圾处理 0.17387609968605386 0.17387609968605391 0.00026217491770413214
48 F05 0.16763897287402746 0.16763897287402743 0.0002527704152359622
49 光伏发电 0.16294622989212165 0.16294622989212162 0.0002456945749835685
50 特级氧化钙 0.15182500893337944 0.15182500893337958 0.00022892570798636628
51 阴树脂(D201) 0.14363917608314067 0.14363917608314072 0.00021658289573254813
52 钼酸钠 0.13206531636034965 0.1320653163603496 0.00019913152820233155
53 钨酸钠 0.1302310758553448 0.13023107585534477 0.00019636581253285471
54 阴树脂(D630) 0.08977448505196294 0.08977448505196287 0.0001353643098328426
55 尿素 0.08057733251581649 0.08057733251581653 0.0001214966033819258
56 多乙烯多胺 0.07398396268153838 0.07398396268153838 0.00011155494839417351
57 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.06940546281487474 0.06940546281487474 0.00010465136689034249
58 戊二醛 0.06379000913278247 0.06379000913278252 9.618423938039646e-05
59 消泡剂 0.05991424981425356 0.05991424981425358 9.034026840214797e-05
60 聚丙烯酰胺 0.058155570573097434 0.058155570573097455 8.768848597690038e-05
61 牛皮纸 0.05705541426145408 0.05705541426145408 8.602964159870484e-05
62 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.05141064088436913 0.051410640884369134 7.751830508800657e-05
63 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.04913738705174556 0.04913738705174555 7.409063367390888e-05
64 硬纸板 0.0426423623617743 0.04264236236177429 6.429726605953226e-05
65 风力发电 0.041690923440249925 0.041690923440249925 6.286266164062966e-05
66 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.03817200565579705 0.03817200565579705 5.75567456337011e-05
67 卡拉胶 0.0378753179225896 0.037875317922589614 5.7109392132110405e-05
68 磷酸 0.036720695998629684 0.036720695998629684 5.536842308322934e-05
69 F02 0.03208209986082075 0.03208209986082076 4.837422685448621e-05
70 F03 0.03152929400447001 0.03152929400447 4.754069176739372e-05
71 合金 0.028143922144947806 0.028143922144947802 4.243613978888332e-05
72 次氯酸钠 0.025473264231791866 0.025473264231791876 3.84092521380689e-05
73 废机油处理 0.023914191360832622 0.023914191360832632 3.605844140343365e-05
74 水力发电 0.021960798078275695 0.02196079807827569 3.311306406852185e-05
75 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.01489146505094745 0.014891465050947454 2.245373936541809e-05
76 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.013535698933037063 0.013535698933037061 2.040947985516341e-05
77 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.013111752016025931 0.013111752016025928 1.9770241637380744e-05
78 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.012587926873999273 0.012587926873999277 1.8980404427147937e-05
79 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.01241371081709323 0.012413710817093231 1.8717716913081597e-05
80 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.011603437244945747 0.01160343724494575 1.7495965289487764e-05
81 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.01160176032122296 0.011601760321222964 1.7493436780165255e-05
82 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.007386507063819933 0.007386507063819933 1.1137567987058476e-05
83 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.007158514550894822 0.0071585145508948215 1.0793794930144813e-05
84 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.007114693189847851 0.007114693189847853 1.0727719939120075e-05
85 transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S 0.006680568151319829 0.00668056815131983 1.007313488427417e-05
86 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0061234102259063025 0.0061234102259063025 9.233037633949132e-06
87 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.005081813763794935 0.005081813763794934 7.662491324088087e-06
88 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0047479022586438486 0.00474790225864385 7.159010848384326e-06
89 transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S 0.004061024774907134 0.004061024774907134 6.123319065001527e-06
90 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.003977566478896562 0.003977566478896563 5.997478469728192e-06
91 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.00368775084963986 0.0036877508496398594 5.560486905695302e-06
92 废试剂瓶处理(立佳) 0.0031402322530693343 0.0031402322530693348 4.7349240867883815e-06
93 废试剂瓶处理(大地) 0.0031402322530693343 0.0031402322530693348 4.7349240867883815e-06
94 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.002969650796031407 0.002969650796031408 4.477716917191647e-06
95 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0026197029241173545 0.0026197029241173545 3.95005638946265e-06
96 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.002304424760769903 0.0023044247607699026 3.474671752478193e-06
97 精制盐 0.002102950537511125 0.002102950537511126 3.1708836643065167e-06
98 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0016351568648446128 0.0016351568648446126 2.465532164846275e-06
99 实验室废液(大地) 0.0015951413313691383 0.0015951413313691379 2.4051956998878252e-06
100 实验室废液(立佳) 0.0015951413313691383 0.0015951413313691379 2.4051956998878252e-06
101 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0012828801544634081 0.0012828801544634083 1.9343601537416195e-06
102 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0011332949101271386 0.0011332949101271381 1.7088116212266617e-06
103 废电瓶处理 0.0009964246400346924 0.000996424640034693 1.5024350584764015e-06
104 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0007862422946432563 0.0007862422946432562 1.1855166366498449e-06
105 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0005069675451533771 0.000506967545153377 7.644188860299885e-07
106 transport, freight, lorry 16-32 metric ton, EURO6 | transport, freight, lorry 16-32 metric ton, EURO6 | Cutoff, S 0.0004698588039383794 0.00046985880393837933 7.084653582495037e-07
107 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0003582240058883277 0.00035822400588832767 5.401394983726434e-07
108 transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S 0.0003350198984580951 0.0003350198984580949 5.05151740038385e-07
109 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.0001523344590533466 0.00015233445905334661 2.2969387016344472e-07
110 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.00011921087566364017 0.00011921087566364016 1.797492672827604e-07
111 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 0.00011639632873899379 0.00011639632873899382 1.7550542002787074e-07
112 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 9.388863307123689e-05 9.388863307123688e-05 1.415677295111268e-07
113 transport, freight, lorry 3.5-7.5 metric ton, EURO3 | transport, freight, lorry 3.5-7.5 metric ton, EURO3 | Cutoff, S 5.8408319640428885e-05 5.840831964042887e-05 8.806958761218588e-08
114 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 1.562324144326374e-05 1.5623241443263748e-05 2.3557130894097164e-08
115 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 7.947612380878076e-06 7.947612380878078e-06 1.1983617217451172e-08
116 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 7.687615163439939e-06 7.68761516343994e-06 1.1591586632406858e-08
117 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 4.950917657745543e-06 4.9509176577455435e-06 7.465122761685008e-09
118 transport, freight, lorry 3.5-7.5 metric ton, EURO5 | transport, freight, lorry 3.5-7.5 metric ton, EURO5 | Cutoff, S 3.925451329340405e-06 3.925451329340407e-06 5.918897888091645e-09
119 电力(浙江) 0.0 90.28590804335467 0.0
120 制造 0.0 2.2141582377893116 0.0
121 生产 0.0 0.645781061104256 0.0

View File

@ -0,0 +1,33 @@
name,amount,upstream,percent
北京煤电自产,21.722222222222225,22.327645270727338,0.9728845992864793
山西煤炭自产,0.2890080448027844,0.2890080448027844,0.012943955410366914
北京煤炭自产,0.17689324322923597,0.17689324322923597,0.007922610785166487
内蒙古煤炭自产,0.11205259700631809,0.11205259700631809,0.005018558636509003
陕西煤炭自产,0.01729885226305945,0.01729885226305945,0.0007747728008622167
河北煤炭自产,0.005725037659929048,0.005725037659929048,0.00025641027481903157
宁夏煤炭自产,0.003681741655070106,0.003681741655070106,0.00016489610124257272
河南煤炭自产,0.0003380155172682859,0.0003380155172682859,1.5138878872795475e-05
辽宁煤炭自产,9.624202771374984e-05,9.624202771374984e-05,4.310442348344183e-06
黑龙江煤炭自产,8.779297960622036e-05,8.779297960622036e-05,3.932030383934904e-06
甘肃煤炭自产,8.019094603388261e-05,8.019094603388261e-05,3.591554105305361e-06
山东煤炭自产,4.685223080160008e-05,4.685223080160008e-05,2.09839551970246e-06
新疆煤炭自产,4.4209741066289364e-05,4.4209741066289364e-05,1.9800449411586874e-06
贵州煤炭自产,3.403242484795567e-05,3.403242484795567e-05,1.5242281232662667e-06
安徽煤炭自产,1.850842263144369e-05,1.850842263144369e-05,8.289464655598571e-07
北京煤炭贸易,0.0,0.6055199895298221,0.0
甘肃煤炭贸易,0.0,0.00019019170912748932,0.0
安徽煤炭贸易,0.0,2.166737937699332e-05,0.0
广西煤炭贸易,0.0,4.149185221209223e-05,0.0
河南煤炭贸易,0.0,0.0005852641556217211,0.0
江苏煤碳贸易,0.0,1.7476919663101248e-05,0.0
国外煤炭贸易,0.0,0.00045837926891533095,0.0
贵州煤炭贸易,0.0,3.5244307048533534e-05,0.0
黑龙江煤炭贸易,0.0,0.00011753624522569059,0.0
内蒙古煤炭贸易,0.0,0.11553336234573641,0.0
新疆煤炭贸易,0.0,4.496070247672856e-05,0.0
山西煤炭贸易,0.0,0.2979771523381061,0.0
辽宁煤炭贸易,0.0,0.00053782780257796,0.0
陕西煤炭贸易,0.0,0.017595201739713014,0.0
宁夏煤炭贸易,0.0,0.003710333913438605,0.0
河北煤炭贸易,0.0,0.021250071274427015,0.0
山东煤炭贸易,0.0,0.0002550680344034363,0.0
1 name amount upstream percent
2 北京煤电自产 21.722222222222225 22.327645270727338 0.9728845992864793
3 山西煤炭自产 0.2890080448027844 0.2890080448027844 0.012943955410366914
4 北京煤炭自产 0.17689324322923597 0.17689324322923597 0.007922610785166487
5 内蒙古煤炭自产 0.11205259700631809 0.11205259700631809 0.005018558636509003
6 陕西煤炭自产 0.01729885226305945 0.01729885226305945 0.0007747728008622167
7 河北煤炭自产 0.005725037659929048 0.005725037659929048 0.00025641027481903157
8 宁夏煤炭自产 0.003681741655070106 0.003681741655070106 0.00016489610124257272
9 河南煤炭自产 0.0003380155172682859 0.0003380155172682859 1.5138878872795475e-05
10 辽宁煤炭自产 9.624202771374984e-05 9.624202771374984e-05 4.310442348344183e-06
11 黑龙江煤炭自产 8.779297960622036e-05 8.779297960622036e-05 3.932030383934904e-06
12 甘肃煤炭自产 8.019094603388261e-05 8.019094603388261e-05 3.591554105305361e-06
13 山东煤炭自产 4.685223080160008e-05 4.685223080160008e-05 2.09839551970246e-06
14 新疆煤炭自产 4.4209741066289364e-05 4.4209741066289364e-05 1.9800449411586874e-06
15 贵州煤炭自产 3.403242484795567e-05 3.403242484795567e-05 1.5242281232662667e-06
16 安徽煤炭自产 1.850842263144369e-05 1.850842263144369e-05 8.289464655598571e-07
17 北京煤炭贸易 0.0 0.6055199895298221 0.0
18 甘肃煤炭贸易 0.0 0.00019019170912748932 0.0
19 安徽煤炭贸易 0.0 2.166737937699332e-05 0.0
20 广西煤炭贸易 0.0 4.149185221209223e-05 0.0
21 河南煤炭贸易 0.0 0.0005852641556217211 0.0
22 江苏煤碳贸易 0.0 1.7476919663101248e-05 0.0
23 国外煤炭贸易 0.0 0.00045837926891533095 0.0
24 贵州煤炭贸易 0.0 3.5244307048533534e-05 0.0
25 黑龙江煤炭贸易 0.0 0.00011753624522569059 0.0
26 内蒙古煤炭贸易 0.0 0.11553336234573641 0.0
27 新疆煤炭贸易 0.0 4.496070247672856e-05 0.0
28 山西煤炭贸易 0.0 0.2979771523381061 0.0
29 辽宁煤炭贸易 0.0 0.00053782780257796 0.0
30 陕西煤炭贸易 0.0 0.017595201739713014 0.0
31 宁夏煤炭贸易 0.0 0.003710333913438605 0.0
32 河北煤炭贸易 0.0 0.021250071274427015 0.0
33 山东煤炭贸易 0.0 0.0002550680344034363 0.0

View File

@ -0,0 +1,70 @@
name,amount,upstream,percent,type
山东兖矿济三电力有限公司,2190508332.0,2190508332.0,0.15162563659545,process
淄博齐翔腾达化工股份有限公司,2083028811.0,2083028811.0,0.1441859703980977,process
兖煤菏泽能化有限公司,1995437299.0,1995437299.0,0.13812293992551694,process
兖州煤业榆林能化有限公司,1965288145.0,1965288145.0,0.13603603406842282,process
兖矿国宏化工有限责任公司,1496527715.0,1496527715.0,0.10358872602983059,process
兖矿鲁南化肥厂,987771400.0,987771400.0,0.06837292748347276,process
兖矿集团有限公司南屯电力分公司,808404783.9000001,808404783.9000001,0.05595728087175553,process
兖矿鲁南化工有限公司,799015055.0,799015055.0,0.055307329624767435,process
兖矿新疆煤化工有限公司,609125696.6999999,609125696.6999999,0.04216330528378218,process
山东玻纤集团股份有限公司,380624207.6,380624207.6,0.026346573047862174,process
山东兖矿国际焦化有限公司,278250123.4,278250123.4,0.01926030203900978,process
内蒙古恒坤化工有限公司,241055573.20000002,241055573.20000002,0.016685718199464534,process
山东康格能源科技有限公司,191097419.3,191097419.3,0.013227645578802636,process
山东泰汶盐化工有限责任公司,149180418.8,149180418.8,0.010326176640229206,process
兖煤菏泽能化有限公司赵楼煤矿,71202981.53999999,71202981.53999999,0.004928626495403156,process
兖矿榆林精细化工有限公司,42617061.79,42617061.79,0.0029499267495762156,process
山东兖矿轻合金有限公司,42561605.75,42561605.75,0.002946088116668399,process
新汶矿业集团有限责任公司孙村煤矿,34727962.339999996,34727962.339999996,0.0024038481481865066,process
新汶矿业集团有限责任公司华丰煤矿,26974437.549999997,26974437.549999997,0.0018671539411989602,process
兖矿科蓝凯美特化工有限公司,17839060.79,17839060.79,0.0012348087925687385,process
兖矿北海高岭土有限公司,15265919.99,15265919.99,0.0010566975723783534,process
华能灵台邵寨煤业有限责任公司,6726962.244,6726962.244,0.0004656361802873329,process
山东良庄矿业有限公司,3369737.1149999998,3369737.1149999998,0.00023325112612317152,process
新汶矿业集团有限责任公司鄂庄煤矿,2125828.4239999996,2125828.4239999996,0.00014714853322991248,process
彬县水帘洞煤炭有限责任公司,2055400.4799999997,2055400.4799999997,0.00014227355435532464,process
兖矿新疆矿业有限公司硫磺沟煤矿,1359326.781,1359326.781,9.409176194376094e-05,process
兖矿东华重工有限公司煤机装备制造分公司,1218037.551,1218037.551,8.431180852844065e-05,process
山东新矿赵官能源有限责任公司,1156632.3010000002,1156632.3010000002,8.006137497128917e-05,process
山东能源重装集团乾元不锈钢制造有限公司,772362.993,772362.993,5.3462490320439514e-05,process
山东能源重装集团莱芜装备制造有限公司,649504.5599,649504.5599,4.495830530649864e-05,process
山东能源重型装备制造集团有限责任公司新汶分公司,389702.73589999997,389702.73589999997,2.6974983181130408e-05,process
旬邑虎豪黑沟煤业有限公司,300000.0,300000.0,2.076581509146937e-05,process
兖矿集团邹城金通橡胶有限公司,188199.0,188199.0,1.3027018781331481e-05,process
山东能源重装集团鲁南装备制造有限公司,4643.864456,4643.864456,3.2144543534381006e-07,process
山东能源集团有限公司,0.0,14446820347.699253,0.0,process
山东能源重装集团莱芜装备制造有限公司,0.0,0.0,0.0,transport
兖矿新疆煤化工有限公司,0.0,0.0,0.0,transport
新汶矿业集团有限责任公司鄂庄煤矿,0.0,0.0,0.0,transport
山东能源重装集团鲁南装备制造有限公司,0.0,0.0,0.0,transport
兖矿榆林精细化工有限公司,0.0,0.0,0.0,transport
兖矿科蓝凯美特化工有限公司,0.0,0.0,0.0,transport
兖州煤业榆林能化有限公司,0.0,0.0,0.0,transport
山东新矿赵官能源有限责任公司,0.0,0.0,0.0,transport
旬邑虎豪黑沟煤业有限公司,0.0,0.0,0.0,transport
兖矿鲁南化肥厂,0.0,0.0,0.0,transport
兖矿集团有限公司南屯电力分公司,0.0,0.0,0.0,transport
兖矿新疆矿业有限公司硫磺沟煤矿,0.0,0.0,0.0,transport
兖矿北海高岭土有限公司,0.0,0.0,0.0,transport
兖矿鲁南化工有限公司,0.0,0.0,0.0,transport
兖矿东华重工有限公司煤机装备制造分公司,0.0,0.0,0.0,transport
淄博齐翔腾达化工股份有限公司,0.0,0.0,0.0,transport
山东康格能源科技有限公司,0.0,0.0,0.0,transport
内蒙古恒坤化工有限公司,0.0,0.0,0.0,transport
彬县水帘洞煤炭有限责任公司,0.0,0.0,0.0,transport
兖煤菏泽能化有限公司赵楼煤矿,0.0,0.0,0.0,transport
兖矿集团邹城金通橡胶有限公司,0.0,0.0,0.0,transport
兖矿国宏化工有限责任公司,0.0,0.0,0.0,transport
新汶矿业集团有限责任公司孙村煤矿,0.0,0.0,0.0,transport
新汶矿业集团有限责任公司华丰煤矿,0.0,0.0,0.0,transport
山东兖矿轻合金有限公司,0.0,0.0,0.0,transport
山东泰汶盐化工有限责任公司,0.0,0.0,0.0,transport
山东能源重装集团乾元不锈钢制造有限公司,0.0,0.0,0.0,transport
山东能源重型装备制造集团有限责任公司新汶分公司,0.0,0.0,0.0,transport
山东良庄矿业有限公司,0.0,0.0,0.0,transport
山东玻纤集团股份有限公司,0.0,0.0,0.0,transport
华能灵台邵寨煤业有限责任公司,0.0,0.0,0.0,transport
兖煤菏泽能化有限公司,0.0,0.0,0.0,transport
山东兖矿济三电力有限公司,0.0,0.0,0.0,transport
山东兖矿国际焦化有限公司,0.0,0.0,0.0,transport
1 name amount upstream percent type
2 山东兖矿济三电力有限公司 2190508332.0 2190508332.0 0.15162563659545 process
3 淄博齐翔腾达化工股份有限公司 2083028811.0 2083028811.0 0.1441859703980977 process
4 兖煤菏泽能化有限公司 1995437299.0 1995437299.0 0.13812293992551694 process
5 兖州煤业榆林能化有限公司 1965288145.0 1965288145.0 0.13603603406842282 process
6 兖矿国宏化工有限责任公司 1496527715.0 1496527715.0 0.10358872602983059 process
7 兖矿鲁南化肥厂 987771400.0 987771400.0 0.06837292748347276 process
8 兖矿集团有限公司南屯电力分公司 808404783.9000001 808404783.9000001 0.05595728087175553 process
9 兖矿鲁南化工有限公司 799015055.0 799015055.0 0.055307329624767435 process
10 兖矿新疆煤化工有限公司 609125696.6999999 609125696.6999999 0.04216330528378218 process
11 山东玻纤集团股份有限公司 380624207.6 380624207.6 0.026346573047862174 process
12 山东兖矿国际焦化有限公司 278250123.4 278250123.4 0.01926030203900978 process
13 内蒙古恒坤化工有限公司 241055573.20000002 241055573.20000002 0.016685718199464534 process
14 山东康格能源科技有限公司 191097419.3 191097419.3 0.013227645578802636 process
15 山东泰汶盐化工有限责任公司 149180418.8 149180418.8 0.010326176640229206 process
16 兖煤菏泽能化有限公司赵楼煤矿 71202981.53999999 71202981.53999999 0.004928626495403156 process
17 兖矿榆林精细化工有限公司 42617061.79 42617061.79 0.0029499267495762156 process
18 山东兖矿轻合金有限公司 42561605.75 42561605.75 0.002946088116668399 process
19 新汶矿业集团有限责任公司孙村煤矿 34727962.339999996 34727962.339999996 0.0024038481481865066 process
20 新汶矿业集团有限责任公司华丰煤矿 26974437.549999997 26974437.549999997 0.0018671539411989602 process
21 兖矿科蓝凯美特化工有限公司 17839060.79 17839060.79 0.0012348087925687385 process
22 兖矿北海高岭土有限公司 15265919.99 15265919.99 0.0010566975723783534 process
23 华能灵台邵寨煤业有限责任公司 6726962.244 6726962.244 0.0004656361802873329 process
24 山东良庄矿业有限公司 3369737.1149999998 3369737.1149999998 0.00023325112612317152 process
25 新汶矿业集团有限责任公司鄂庄煤矿 2125828.4239999996 2125828.4239999996 0.00014714853322991248 process
26 彬县水帘洞煤炭有限责任公司 2055400.4799999997 2055400.4799999997 0.00014227355435532464 process
27 兖矿新疆矿业有限公司硫磺沟煤矿 1359326.781 1359326.781 9.409176194376094e-05 process
28 兖矿东华重工有限公司煤机装备制造分公司 1218037.551 1218037.551 8.431180852844065e-05 process
29 山东新矿赵官能源有限责任公司 1156632.3010000002 1156632.3010000002 8.006137497128917e-05 process
30 山东能源重装集团乾元不锈钢制造有限公司 772362.993 772362.993 5.3462490320439514e-05 process
31 山东能源重装集团莱芜装备制造有限公司 649504.5599 649504.5599 4.495830530649864e-05 process
32 山东能源重型装备制造集团有限责任公司新汶分公司 389702.73589999997 389702.73589999997 2.6974983181130408e-05 process
33 旬邑虎豪黑沟煤业有限公司 300000.0 300000.0 2.076581509146937e-05 process
34 兖矿集团邹城金通橡胶有限公司 188199.0 188199.0 1.3027018781331481e-05 process
35 山东能源重装集团鲁南装备制造有限公司 4643.864456 4643.864456 3.2144543534381006e-07 process
36 山东能源集团有限公司 0.0 14446820347.699253 0.0 process
37 山东能源重装集团莱芜装备制造有限公司 0.0 0.0 0.0 transport
38 兖矿新疆煤化工有限公司 0.0 0.0 0.0 transport
39 新汶矿业集团有限责任公司鄂庄煤矿 0.0 0.0 0.0 transport
40 山东能源重装集团鲁南装备制造有限公司 0.0 0.0 0.0 transport
41 兖矿榆林精细化工有限公司 0.0 0.0 0.0 transport
42 兖矿科蓝凯美特化工有限公司 0.0 0.0 0.0 transport
43 兖州煤业榆林能化有限公司 0.0 0.0 0.0 transport
44 山东新矿赵官能源有限责任公司 0.0 0.0 0.0 transport
45 旬邑虎豪黑沟煤业有限公司 0.0 0.0 0.0 transport
46 兖矿鲁南化肥厂 0.0 0.0 0.0 transport
47 兖矿集团有限公司南屯电力分公司 0.0 0.0 0.0 transport
48 兖矿新疆矿业有限公司硫磺沟煤矿 0.0 0.0 0.0 transport
49 兖矿北海高岭土有限公司 0.0 0.0 0.0 transport
50 兖矿鲁南化工有限公司 0.0 0.0 0.0 transport
51 兖矿东华重工有限公司煤机装备制造分公司 0.0 0.0 0.0 transport
52 淄博齐翔腾达化工股份有限公司 0.0 0.0 0.0 transport
53 山东康格能源科技有限公司 0.0 0.0 0.0 transport
54 内蒙古恒坤化工有限公司 0.0 0.0 0.0 transport
55 彬县水帘洞煤炭有限责任公司 0.0 0.0 0.0 transport
56 兖煤菏泽能化有限公司赵楼煤矿 0.0 0.0 0.0 transport
57 兖矿集团邹城金通橡胶有限公司 0.0 0.0 0.0 transport
58 兖矿国宏化工有限责任公司 0.0 0.0 0.0 transport
59 新汶矿业集团有限责任公司孙村煤矿 0.0 0.0 0.0 transport
60 新汶矿业集团有限责任公司华丰煤矿 0.0 0.0 0.0 transport
61 山东兖矿轻合金有限公司 0.0 0.0 0.0 transport
62 山东泰汶盐化工有限责任公司 0.0 0.0 0.0 transport
63 山东能源重装集团乾元不锈钢制造有限公司 0.0 0.0 0.0 transport
64 山东能源重型装备制造集团有限责任公司新汶分公司 0.0 0.0 0.0 transport
65 山东良庄矿业有限公司 0.0 0.0 0.0 transport
66 山东玻纤集团股份有限公司 0.0 0.0 0.0 transport
67 华能灵台邵寨煤业有限责任公司 0.0 0.0 0.0 transport
68 兖煤菏泽能化有限公司 0.0 0.0 0.0 transport
69 山东兖矿济三电力有限公司 0.0 0.0 0.0 transport
70 山东兖矿国际焦化有限公司 0.0 0.0 0.0 transport

View File

@ -0,0 +1,52 @@
name,amount,upstream,percent
快件运输,9.747687612784874,9.747687612784874,0.14177381471305034
瓦楞纸箱-南京,6.127995493495469,6.12799549349547,0.08912773287048584
塑料薄膜包装袋-广东,6.127995493495469,6.12799549349547,0.08912773287048584
塑料包装-河北,6.127995493495469,6.12799549349547,0.08912773287048584
塑料包装-苏州,6.127995493495469,6.12799549349547,0.08912773287048584
书籍运输,3.792297420293587,3.792297420293587,0.05515651436103807
日化品运输,3.6788137754911827,3.6788137754911827,0.05350596811147672
书籍运输,3.4223437535728687,3.422343753572868,0.04977577744356806
日化品运输,3.015697563190044,3.015697563190044,0.04386137149015122
瓦楞纸箱-广东,2.572123066973619,2.5721230669736186,0.03740986720152995
瓦楞纸箱-苏州,2.572123066973619,2.5721230669736186,0.03740986720152995
瓦楞纸箱-河北,2.572123066973619,2.5721230669736186,0.03740986720152995
快件_2运输,2.5340300660210824,2.534030066021083,0.0368558291287643
日化品运输,2.1869971266773125,2.1869971266773125,0.03180845937336519
快件_3目的中转运输,1.9669363282091696,1.9669363282091696,0.028607817322966633
快件_2运输,1.8647433287684505,1.8647433287684507,0.027121486211095874
快件运输,1.6561736645168954,1.6561736645168956,0.02408797527917187
快件_2目的中转运输,1.151567838675877,1.151567838675877,0.016748809756255444
日化品-瓦楞纸箱运输,0.3666435908731544,0.3666435908731544,0.005332594004141196
日化品_2-瓦楞纸箱,0.17787993739805466,0.17787993739805466,0.0025871486949134914
低压电力-天津,0.15289265459077053,0.15289265459077056,0.0022237248200802275
日化品-塑料包装运输,0.14198389655810478,0.14198389655810478,0.0020650639867104553
低压电力-南京,0.13638048145561166,0.13638048145561166,0.0019835659365001444
低压电力-江苏,0.13638048145561166,0.13638048145561166,0.0019835659365001444
低压电力-上海,0.13445056898218316,0.13445056898218316,0.0019554966072100476
快件-瓦楞纸运输,0.09805150541753317,0.09805150541753317,0.0014260957586667575
日化品-塑料包装运输,0.08737317370905205,0.08737317370905205,0.0012707863272178998
书籍-瓦楞纸运输,0.034785007734353196,0.034785007734353196,0.0005059254499348153
快件-塑料薄膜包装袋运输,0.023573436827491006,0.02357343682749101,0.00034286039907014255
日化品-塑料编织袋运输,0.01369432659082348,0.013694326590823478,0.0001991751272538707
分拣建包-塑料编织袋运输,0.0054757108464944994,0.0054757108464944994,7.964067436413896e-05
始发网点建包,0.0,8.821743502714114,0.0
始发地网点-练塘物流中心,0.0,8.965371671576197,0.0
始发地中转-上海浦西转运中心,0.0,11.300513693826517,0.0
目的网点分拣,0.0,20.367460972317986,0.0
始发地中转中心,0.0,11.226382031259572,0.0
目的中转-圆通青岛转运中心,0.0,13.76041209728065,0.0
目的网点-李沧工业园,0.0,14.911979935956523,0.0
目的网点,0.0,16.529499719741935,0.0
日化品_2,0.0,8.965371671576197,0.0
目的中转-青岛中通转运中心,0.0,14.979327469317699,0.0
目的网点-青岛国际院士港,0.0,16.94626379752686,0.0
书籍,0.0,6.16278050122982,0.0
目的中心分拣建包,0.0,20.367460972317986,0.0
南京转运中心,0.0,10.091458402979018,0.0
青岛转运中心,0.0,13.513802156551888,0.0
快递服务,0.0,68.7552044255433,0.0
日化品,0.0,9.208746047900346,0.0
快件包装,0.0,8.821743502714114,0.0
出发地网点-南京,0.0,6.16278050122982,0.0
始发中心分拣建包,0.0,10.619773359533117,0.0
1 name amount upstream percent
2 快件运输 9.747687612784874 9.747687612784874 0.14177381471305034
3 瓦楞纸箱-南京 6.127995493495469 6.12799549349547 0.08912773287048584
4 塑料薄膜包装袋-广东 6.127995493495469 6.12799549349547 0.08912773287048584
5 塑料包装-河北 6.127995493495469 6.12799549349547 0.08912773287048584
6 塑料包装-苏州 6.127995493495469 6.12799549349547 0.08912773287048584
7 书籍运输 3.792297420293587 3.792297420293587 0.05515651436103807
8 日化品运输 3.6788137754911827 3.6788137754911827 0.05350596811147672
9 书籍运输 3.4223437535728687 3.422343753572868 0.04977577744356806
10 日化品运输 3.015697563190044 3.015697563190044 0.04386137149015122
11 瓦楞纸箱-广东 2.572123066973619 2.5721230669736186 0.03740986720152995
12 瓦楞纸箱-苏州 2.572123066973619 2.5721230669736186 0.03740986720152995
13 瓦楞纸箱-河北 2.572123066973619 2.5721230669736186 0.03740986720152995
14 快件_2运输 2.5340300660210824 2.534030066021083 0.0368558291287643
15 日化品运输 2.1869971266773125 2.1869971266773125 0.03180845937336519
16 快件_3目的中转运输 1.9669363282091696 1.9669363282091696 0.028607817322966633
17 快件_2运输 1.8647433287684505 1.8647433287684507 0.027121486211095874
18 快件运输 1.6561736645168954 1.6561736645168956 0.02408797527917187
19 快件_2目的中转运输 1.151567838675877 1.151567838675877 0.016748809756255444
20 日化品-瓦楞纸箱运输 0.3666435908731544 0.3666435908731544 0.005332594004141196
21 日化品_2-瓦楞纸箱 0.17787993739805466 0.17787993739805466 0.0025871486949134914
22 低压电力-天津 0.15289265459077053 0.15289265459077056 0.0022237248200802275
23 日化品-塑料包装运输 0.14198389655810478 0.14198389655810478 0.0020650639867104553
24 低压电力-南京 0.13638048145561166 0.13638048145561166 0.0019835659365001444
25 低压电力-江苏 0.13638048145561166 0.13638048145561166 0.0019835659365001444
26 低压电力-上海 0.13445056898218316 0.13445056898218316 0.0019554966072100476
27 快件-瓦楞纸运输 0.09805150541753317 0.09805150541753317 0.0014260957586667575
28 日化品-塑料包装运输 0.08737317370905205 0.08737317370905205 0.0012707863272178998
29 书籍-瓦楞纸运输 0.034785007734353196 0.034785007734353196 0.0005059254499348153
30 快件-塑料薄膜包装袋运输 0.023573436827491006 0.02357343682749101 0.00034286039907014255
31 日化品-塑料编织袋运输 0.01369432659082348 0.013694326590823478 0.0001991751272538707
32 分拣建包-塑料编织袋运输 0.0054757108464944994 0.0054757108464944994 7.964067436413896e-05
33 始发网点建包 0.0 8.821743502714114 0.0
34 始发地网点-练塘物流中心 0.0 8.965371671576197 0.0
35 始发地中转-上海浦西转运中心 0.0 11.300513693826517 0.0
36 目的网点分拣 0.0 20.367460972317986 0.0
37 始发地中转中心 0.0 11.226382031259572 0.0
38 目的中转-圆通青岛转运中心 0.0 13.76041209728065 0.0
39 目的网点-李沧工业园 0.0 14.911979935956523 0.0
40 目的网点 0.0 16.529499719741935 0.0
41 日化品_2 0.0 8.965371671576197 0.0
42 目的中转-青岛中通转运中心 0.0 14.979327469317699 0.0
43 目的网点-青岛国际院士港 0.0 16.94626379752686 0.0
44 书籍 0.0 6.16278050122982 0.0
45 目的中心分拣建包 0.0 20.367460972317986 0.0
46 南京转运中心 0.0 10.091458402979018 0.0
47 青岛转运中心 0.0 13.513802156551888 0.0
48 快递服务 0.0 68.7552044255433 0.0
49 日化品 0.0 9.208746047900346 0.0
50 快件包装 0.0 8.821743502714114 0.0
51 出发地网点-南京 0.0 6.16278050122982 0.0
52 始发中心分拣建包 0.0 10.619773359533117 0.0

View File

@ -0,0 +1,96 @@
# 产品碳足迹研究报告(模板)
## 基本信息
- 产品名称:
- 产品规格型号:
- 生产者名称:
- 报告编号:
- 出具报告机构:(若有)
- 日期: 年 月 日
## 一、概况
- 生产者名称:
- 地址:
- 法定代表人:
- 产品名称:
- 产品功能
- 依据标准:
## 二、量化目的
(在此处填写量化目的)
## 三、量化范围
### 1. 功能单位或声明单位
以()为功能单位或声明单位。
### 2. 系统边界
(需要用户提供系统边界图)
### 3. 取舍准则
采用的取舍准则以()为依据,具体规则如下:
### 4. 时间范围
()年度。
## 四、清单分析
### 1. 数据来源说明
- 初级数据:()
- 次级数据:()
### 2. 分配原则与程序
- 分配依据:
- 分配程序:
- 具体分配情况:
### 3. 数据质量评价(可选项)
(填写数据质量评估结,数据质量可从定性和定量两个方面对报告使用的初级数据和次级数据进行评价,具体评价内容包括:数据来源、完整性、数据代表性(时间、地理、技术)和准确性。)
## 五、影响评价
### 1. 影响类型和特征化因子选择
一般选择政府间气候变化专门委员会IPCC给出的100年全球变暖潜势GWP
### 2. 产品碳足迹结果计算
(在此处填写计算结果)
## 六、结果解释
### 1. 结果说明
(填写产品生产者的全名)公司生产的(填写所评价的产品名称,每功能单位的产品),从(填写某生命周期阶段)到(填写某生命周期阶段)生命周期碳足迹为()$kg CO_2e$。各生命周期阶段的温室气体排放情况如表1和图1所示。
图1添加可视化结果
表1 生命周期各阶段碳排放情况 (必须给出表格)
| 生命周期阶段 | 碳足迹(kg·CO2e/功能单位) | 百分比(%) |
| ------------ | -------------------------- | ---------- |
| 原材料获取 | | |
| 制造 | | |
| 分销 | | |
| 使用 | | |
| 生命末期 | | |
| **总计** | | |
### 2. 假设和局限性说明(可选项)
结合量化情况,对范围、数据选择、情景设定等相关的假设和局限进行详细的说明。
### 3. 改进建议
(在此处填写改进建议,至少三点建议)

View File

@ -0,0 +1,8 @@
name,amount,upstream,percent
热电联产过程,11.563782746325435,23.566185385211607,0.4906938716344823
蒸汽生产,5.676556159827958,5.676556159827957,0.24087717494534117
电力生产,4.770369020573175,4.770369020573176,0.2024243186836129
硬煤,1.274026328132373,1.274026328132373,0.05406162717076213
自来水,0.14596698510428013,0.14596698510428013,0.006193916525662156
天然气生产,0.12691571865979778,0.1269157186597978,0.005385501157070618
除盐水,0.008568426588587924,0.00856842658858793,0.0003635898830688498
1 name amount upstream percent
2 热电联产过程 11.563782746325435 23.566185385211607 0.4906938716344823
3 蒸汽生产 5.676556159827958 5.676556159827957 0.24087717494534117
4 电力生产 4.770369020573175 4.770369020573176 0.2024243186836129
5 硬煤 1.274026328132373 1.274026328132373 0.05406162717076213
6 自来水 0.14596698510428013 0.14596698510428013 0.006193916525662156
7 天然气生产 0.12691571865979778 0.1269157186597978 0.005385501157070618
8 除盐水 0.008568426588587924 0.00856842658858793 0.0003635898830688498

View File

@ -0,0 +1,18 @@
name,amount,upstream,percent
热电联产过程,7.768016690681819,15.830678024991137,0.4271553667461783
蒸汽生产,3.813249000129158,3.8132490001291584,0.20968669867799936
电力生产,3.204514213508473,3.204514213508473,0.1762129895725556
自来水2,2.2747902403241365,2.2747902403241365,0.12508841034570384
硬煤,0.8558322132474474,0.8558322132474476,0.04706134621999886
自来水,0.09891810804448142,0.09891810804448141,0.005439406530918495
天然气生产,0.08525625097674533,0.08525625097674529,0.004688154853871639
天然气1,0.05471232164636453,0.05471232164636454,0.0030085751291474647
脱盐水1,0.02239890591571513,0.022398905915715132,0.0012316931402345697
除盐水,0.005786765548626877,0.005786765548626876,0.0003182083739808369
自来水1,0.0015892883418327755,0.001589288341832776,8.739335554406726e-05
净化过程,0.0003687588995295291,0.0808982386458136,2.027767823393122e-05
丙烯1,1.4423674774555847e-05,1.4423674774555846e-05,7.931432608201855e-07
甲醇1,1.2110648137600026e-05,1.2110648137600028e-05,6.659522697673815e-07
柴油,3.3133820060242056e-07,3.313382006024206e-07,1.8219951917086196e-08
除盐水1,3.746478529873767e-08,3.7464785298737654e-08,2.0601505817496473e-09
1 name amount upstream percent
2 热电联产过程 7.768016690681819 15.830678024991137 0.4271553667461783
3 蒸汽生产 3.813249000129158 3.8132490001291584 0.20968669867799936
4 电力生产 3.204514213508473 3.204514213508473 0.1762129895725556
5 自来水2 2.2747902403241365 2.2747902403241365 0.12508841034570384
6 硬煤 0.8558322132474474 0.8558322132474476 0.04706134621999886
7 自来水 0.09891810804448142 0.09891810804448141 0.005439406530918495
8 天然气生产 0.08525625097674533 0.08525625097674529 0.004688154853871639
9 天然气1 0.05471232164636453 0.05471232164636454 0.0030085751291474647
10 脱盐水1 0.02239890591571513 0.022398905915715132 0.0012316931402345697
11 除盐水 0.005786765548626877 0.005786765548626876 0.0003182083739808369
12 自来水1 0.0015892883418327755 0.001589288341832776 8.739335554406726e-05
13 净化过程 0.0003687588995295291 0.0808982386458136 2.027767823393122e-05
14 丙烯1 1.4423674774555847e-05 1.4423674774555846e-05 7.931432608201855e-07
15 甲醇1 1.2110648137600026e-05 1.2110648137600028e-05 6.659522697673815e-07
16 柴油 3.3133820060242056e-07 3.313382006024206e-07 1.8219951917086196e-08
17 除盐水1 3.746478529873767e-08 3.7464785298737654e-08 2.0601505817496473e-09

View File

@ -0,0 +1,31 @@
name,amount,upstream,percent
国网电力,1745.1059852379938,1745.1059852379938,0.6997011247384999
电解铝生产,300.05999999999995,2494.0734315529276,0.12030920830312859
氧化铝,254.85791999999992,350.00135725120265,0.10218541153430007
煤气,72.2153816612149,72.21538166121489,0.02895479369115856
碳素阳极,43.69513949999999,157.07717617400118,0.01751958821548944
石油焦,23.855627782161278,23.855627782161278,0.009564925988288819
铝土矿运输,13.97984747557237,13.979847475572372,0.0056052268945697625
煤炭1,9.633183141138625,9.633183141138627,0.003862429637903865
铝土矿开采,6.908478719999998,9.361108840056284,0.0027699580263354368
沥青,5.825292173587356,5.825292173587358,0.002335653834362148
燃料油,5.211358861124648,5.211358861124647,0.0020894969631587027
焦炭,2.724156006506894,2.7241560065068944,0.0010922517244453007
氟化铝,2.533040173387193,2.533040173387192,0.001015623734787152
电力,2.2247095601306017,2.2247095601306017,0.000891998419928395
天然气1,2.1044229636332448,2.1044229636332443,0.0008437694484091158
冰晶石,1.1934821364038375,1.1934821364038377,0.00047852726439602826
石灰石,1.175892028695957,1.175892028695957,0.0004714745018408665
自来水,0.2533950602804196,0.2533950602804196,0.00010159887719209768
石灰石运输,0.18402725072466056,0.1840272507246605,7.378581897248972e-05
柴油,0.13811590888044525,0.13811590888044528,5.537764330958281e-05
煤炭,0.044867484334753516,0.04486748433475352,1.7989640468130442e-05
石油焦运输,0.04432536223077501,0.04432536223077501,1.7772276337179032e-05
煤炭运输,0.03010587983072586,0.03010587983072587,1.2070967698806093e-05
汽油,0.02273207473153838,0.02273207473153839,9.114436826097905e-06
天然气,0.02220509197894794,0.02220509197894794,8.90314282571945e-06
煤气运输,0.010099368203461903,0.010099368203461903,4.049346773712897e-06
燃料油运输1,0.005332464856641741,0.005332464856641742,2.1380544731281216e-06
焦炭运输,0.0027457118613630174,0.002745711861363018,1.1008945553192503e-06
氟化铝运输,0.002478744446136075,0.0024787444461360744,9.938538355675805e-07
冰晶石运输,0.0007704863957622045,0.0007704863957622046,3.089269088931609e-07
1 name amount upstream percent
2 国网电力 1745.1059852379938 1745.1059852379938 0.6997011247384999
3 电解铝生产 300.05999999999995 2494.0734315529276 0.12030920830312859
4 氧化铝 254.85791999999992 350.00135725120265 0.10218541153430007
5 煤气 72.2153816612149 72.21538166121489 0.02895479369115856
6 碳素阳极 43.69513949999999 157.07717617400118 0.01751958821548944
7 石油焦 23.855627782161278 23.855627782161278 0.009564925988288819
8 铝土矿运输 13.97984747557237 13.979847475572372 0.0056052268945697625
9 煤炭1 9.633183141138625 9.633183141138627 0.003862429637903865
10 铝土矿开采 6.908478719999998 9.361108840056284 0.0027699580263354368
11 沥青 5.825292173587356 5.825292173587358 0.002335653834362148
12 燃料油 5.211358861124648 5.211358861124647 0.0020894969631587027
13 焦炭 2.724156006506894 2.7241560065068944 0.0010922517244453007
14 氟化铝 2.533040173387193 2.533040173387192 0.001015623734787152
15 电力 2.2247095601306017 2.2247095601306017 0.000891998419928395
16 天然气1 2.1044229636332448 2.1044229636332443 0.0008437694484091158
17 冰晶石 1.1934821364038375 1.1934821364038377 0.00047852726439602826
18 石灰石 1.175892028695957 1.175892028695957 0.0004714745018408665
19 自来水 0.2533950602804196 0.2533950602804196 0.00010159887719209768
20 石灰石运输 0.18402725072466056 0.1840272507246605 7.378581897248972e-05
21 柴油 0.13811590888044525 0.13811590888044528 5.537764330958281e-05
22 煤炭 0.044867484334753516 0.04486748433475352 1.7989640468130442e-05
23 石油焦运输 0.04432536223077501 0.04432536223077501 1.7772276337179032e-05
24 煤炭运输 0.03010587983072586 0.03010587983072587 1.2070967698806093e-05
25 汽油 0.02273207473153838 0.02273207473153839 9.114436826097905e-06
26 天然气 0.02220509197894794 0.02220509197894794 8.90314282571945e-06
27 煤气运输 0.010099368203461903 0.010099368203461903 4.049346773712897e-06
28 燃料油运输1 0.005332464856641741 0.005332464856641742 2.1380544731281216e-06
29 焦炭运输 0.0027457118613630174 0.002745711861363018 1.1008945553192503e-06
30 氟化铝运输 0.002478744446136075 0.0024787444461360744 9.938538355675805e-07
31 冰晶石运输 0.0007704863957622045 0.0007704863957622046 3.089269088931609e-07

Some files were not shown because too many files have changed in this diff Show More