import os import re import gradio as gr from PIL import Image from pprint import pprint from qwen_agent.agents import Assistant import sys os.chdir(sys.path[0]) # os.environ['TMPDIR'] = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp" llm_cfg = { 'model': 'qwen1.5-72b-chat', 'model_server': 'dashscope', 'api_key': "sk-c5f441f863f44094b0ddb96c831b5002", } system_instruction = '''你是一位专注在生命周期领域做数据分析的助手,在数据分析之后, 如果有可视化要求,请使用 `plt.show()` 显示图像,并将图像进行保存。 最后,请对数据分析结果结合生命周期评价领域知识进行解释。''' tools = ['code_interpreter'] # `code_interpreter` is a built-in tool for executing code. messages = [] # This stores the chat history. files = ["/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/tmp/2021beijing.csv"] bot = Assistant(llm=llm_cfg, system_message=system_instruction, function_list=tools, files=files ) # print("user input>") user_input = '''2021beijing.csv给出了2021年北京不同行业的碳排放量数据,首先分析数据的每一行和每一列代表的含义, 绘制不同排放行业的碳排放量占比的饼图,要求美观,字体清晰,给出可视化结果和结果分析。''' messages.append({'role': 'user', 'content': user_input}) # Get response from bot response = [] for response in bot.run(messages=messages): continue pprint(response) messages.extend(response)