import os import re import gradio as gr from PIL import Image from pprint import pprint from qwen_agent.agents import Assistant import sys os.chdir(sys.path[0]) os.environ['TMPDIR'] = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp" llm_cfg = { 'model': 'qwen1.5-72b-chat', 'model_server': 'dashscope', 'api_key': "sk-c5f441f863f44094b0ddb96c831b5002", } system_instruction = '''你是一位专注在生命周期领域做数据分析的助手,在数据分析之后, 如果有可视化要求,请使用 `plt.show()` 显示图像,并将图像进行保存。 最后,请对数据分析结果结合生命周期评价领域知识进行解释。''' tools = ['code_interpreter'] # `code_interpreter` is a built-in tool for executing code. messages = [] # This stores the chat history. files = ["/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/tmp/2021北京.csv","/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/报告案例1.md"] user_input = '''首先分析上传的2021北京.csv的碳排放数据,并处理分析数据和可视化分析, 请按照报告案例1作为模板,用你掌握的信息进行填充,并且将可视化得到的图像结果插入到报告中并加以分析,以markdown格式输出填充数据信息之后的报告。''' messages.append({'role': 'user', 'content': user_input}) bot = Assistant(llm=llm_cfg, system_message=system_instruction, function_list=tools, files=files) # Get response from bot response = [] for response in bot.run(messages=messages): continue pprint(response) messages.extend(response) # Convert bot response to string res_str = "" for res in response: res_str += res['content'] try: with open("./result.md", "w", encoding="utf-8") as f: f.write(res_str) except IOError as e: print(f"An error occurred: {e}") print(res_str)