{
"cells": [
{
"attachments": {
"image.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAABCCAYAAACFFEMLAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACp4SURBVHhe7d0HXBTX2gfgP71LL4KIFAFBsQtqFNGosUSjscWo15ZETXI1URNNrFhjYqLez5ZiLDEm9m5iQ1GDBHtv2CJVqrRd2N33m92dLSAoKojc+z6/jNlpy86ZM+e8Z+bMjAEJwBhjjDHGGGPVmKH4f8YYY4wxxhirtrhhwxhjjDHGGKv2uGHDGGOMMcYYq/a4YcMYY4wxxhir9rhhwxhjjDHGGKv2uGHDGGOMMcYYq/a4YcMYY4wxxhir9rhhwxhjjDHGGKv2uGHDGGOMMcYYq/a4YcMYY4wxxhir9rhhwxhjjDHGGKv2uGHDGGOMMcYYq/a4YcMYY4wxxhir9gxIIH5+IVKpFKmpqeIYY4wxxhhjjFUMFxcXmJmZiWOlq7CGzZEjRxARESGOMcYYY4wxxljFULY1wsPDxbHSVVjD5saNG1i4cKE4xhhjjDHGGGMVY8KECahbt644VroKa9gwxhhjjDHGWFXhhwcwxhhjjDHGqj1u2DDGGGOMMcaqPW7YMMYYY4wxxqo9btgwxhhjjDHGqj1u2DDGGGOMMcaqPW7YMMYYY4wxxqo9btgwxhhjjDHGqj1u2DDGGGOMMcaqvVfqBZ2yh2exa8Pv2Bl1GvFJuYCVA9zqNkenXv3Qu0MQrG7/hInrAzFnZmvYiOtUJkXeDexeugzb/r6JB9mFUCiM4RDwGnoNH4X+zRxhJC7330Jy61dMGrcM5yw74cslX6Cjm7E4hzHGnoccqdErsfxAEmTiFH0GxpZwcHOHu3sdBIe1RLCzqTinauVfWYtvN9yEVBw38eyOj0c2QNIv32LDTe1UeHb/GCND7fkMYZnycWWtfpo9jTFqdhyND9q6lKhfC5EatwlLV56A96RFGOpXznxSmIzjq/+DtVGX8E+GBEZ2Xghu1BTNWzeD7dG52NjkB/zQzUFcmFUcGR6e3YUNv+9E1Ol4qMM5N9Rt3gm9+vVGhyAr3P5pItYHzsHM1hUczUlu4ddJ47DsnCU6fbkEX3R0E3JV9VOyDNIxgKGZDZyFctPDuwFatwmBi97hIL21CYvXXUCOQpygz9ABYSM+RLfapRw/+Vew9tsNKPehClP49h+PofXxhGPcELZNh+Ljt7xhpsjCqVVLsONekThP2BJzfwwYPxhB5uKEiqJs2FQ5WRodX/A2+ZuAYFiX3l18iG7nyKjo0T2K2zKTenoZEMzcyMMaZN5pK6WLq1WmgivL6S0P4ffAiiK+PUc5cjmlbutNtkKSAf407tgjccnqSXJ7F60+8ICKxHGiNNrSxULZyFUNnuNOUq44hzHGnpc0/SbFbJpK4UL5rSlfgJrUd/7PtPb7hfT524FkoppmRw16fkFb4gvENauOLPM8rR3mqfu9Id/SrSIZZZ5fS8M8NdsACvn2ll4Zyh4np9x752j/siFUR5OWysGqFX208Cdat2opLZjxOY3p35o8DNTz/KdfIIm4NhWl0pnfZtK7LVzEdX1o8pny5Y+ihO00JsSMULMPLY9LF/aTjHLuHqMVw4LF/AZquS5FXJpVFFnacVrwtr8qjQ3rvkuLD92mHFkRPboXR1tm9iQvYT+buXmQNcyp09aKj+bStnQhC3H/wnMcnaymgYw89x6d27+UBnmJ26IanKjHnA20a8sKmhBhr55Wox71mLqb7kvF9fIS6eLhH2ikv/56IL/hy2n/qZuUqj24SpDn0r1z+2npIK9i61m/9m9auGo9/bJqBS3+agq990agsO/U81qtT1WuSDl3YmnztHba6arB/k36Zu8pupkiEZZQEsrP+FjasbAfeQrzjYLepx+P3KRH6pkVquobNrJk2j3anwxUiVGDuq+++1hFIX8UR/NeM1cllunLaNjI7tKPEabqnWPRlbaJfzBjV09xx5lQxC9J4s6qhh7F0JSGFuRVrPGSRQeHOKm3WRgazL6kq1wYY+yFZNCONy215QscBtHBLHGWPIW297XTzfMYQXtTq750zdzbRzyRJQyqho1qKu3tY6v9rdywKaeCMzTZV0xL5dBiFSWW2MW557+ldhaaho2Erq8ZR2+/3pbC6gqNE8165W3YCHlqWx91nmqx8p4QUul7RCenNiRDYR43bCqWLHk3jfY3UO+rGt1p9d3Hojl6FDePXjNX7kvTSmnYZB0cQk6a/NJgNl2q1oFMAZ2Z7KveFuVgHEEb09Rz5IkbqIulOB2G1GTORWFpDQldmhWoWw8N6Jvr5SupCs5MJl/tesLxsyqxRKwrp4yjn1OwgaHYsBFl7KDu2t8DchpySDjSSiG/Tyub2VDY6pLfW3Gq+Aq6DHfXDMM7y2+oUgK+HyGyv9djlw0NbZph4ubfMcRVnFDZ0mPw6/FC9WcbN9iZqD/ad1qJAxuWYMmvR/FrX7fq2f1AloRtH/fB7PMFKH6l0hbtFu3Dmumf4LNvdmH7+GCYiXMYY+zFGMKyhl5/AwND5X9qhi4I/1eErntxwlp8fSC1RPn08hkYGsFA/KxjAEOjx6eypzAwgZl+3zLl/hc/aliFjMaiCSGwUI2ZoHbP2fj9wFEc3TEd9VTTnkF2LFb/kSV8MISRScn9aIPQST/jC3/LUvYve26yu1gz7B0sv6GK5oRwLhL9vR6L5mDTbCI2/z4ElRXO2bZbhH1rpuOTz77Bru3jEVytAxkDmOgfOMJxYyhmWkPHRmhbR/0ZQml5Zt12xGt7gwnrmeunvRlqWJQvYjUwMSvWDdRA8we1DGHfdhIWvltHOEr1GJrBWq+Hm4W9ZekxsqEVnJ2sYWVlWvr8ClC1sXlWNGZ/uQ854mjtHj0QUEZfOyPXrpg5pyNcy7ixRSHJREaeXBwrDwUkGSnIkDxefUof3kKiphugqTXMNKlk6oqwAR9jTM96MMzORal/TZ6Hh4kpyJJWXrWskGYiNVNaasWvTIek5EyU+udlCdj+cQTeXpMgTijOyL4Zhsz4Fl+N7w6fsvo8KiTIzMgrfdvLoJBkICVDUuWBCmOs6hg8IYo0tnGEpfgZKELK/axS78lRltv5GRnIf2oBJEPuw3Q8sUpQlmVJycisxLKaPV1+3HT0jTwNCcwR0HswWruZCGGZIcxtrVQBlnENF1irFy03eU4iHuQqPykQ89l7mH84CeKpSjXLBhg2/k3425QRUJQn/yhjiMyMpyxTgkKKzNTS62dFfgYynp6xX1lZ0bPx5T5tNIcePQKEPVoaI7h2nYk5HV3LuE+5fOkqy3moi99kecjTFBhG9mg2ZAa+/Wo8upcZyGiUHQcWo8hHRkb+M8U9lc7IAvrnip5GeyLpBaRvG6SKHxWwQ4tBbyKohv4eLPEHnlDgGzypMqgAVdqwyYr5HluSxRGh7ecb6qNXuZVkjDqDfsLG6aF6hZwE8ZsnonN9bwR1GIyhXUPgFRCO0asvam+ckl5bgQENa8HF2RnOwuDeYjKiTq7EkBBbWDi6wdHCHL69FyI2S7mCAkm/9YR/65m4pl4deLAUb3gp13WCvZCLjIQdYmxlD9fXf8Bdbc0rxf0/F2BIqDusnVti8IfvoKmdJdwbtUfX7t3RvfubGDg7ClFT28PXTf07nJ3roNemFChy/sL0bg3g6SJOd62HEQezhZ+SiaiJbeGjXd4X/XfexvG5XVHb3AGuDtZoOO4g0pU/W56OE4tHIqJ+A7zWcyhG9m4IGyMz1Go9FF8f0ty0m4/TMzqj14rr6qtjgn/+0wlezh4Imx6No9Paw0/7tzzx+tIbxSoCSfxmTOxcH95BHTB4aFeEeAUgfPRqXNQlNFYMaIhamu1wb4HJUSexckgIbC0c4eZoAXPf3lgYmyWkMmOM6UgfPoBQ6ons0CDEFcVuby38B7undEVQ7UB0+tcghPt6IGTAYsRm6IcaCuRe/Q2f92yGgJAOeOdfHVHLxAaBb83An0mawlqO9BOLMTKiPhq81hNDR/ZGQyG4NavVGkO/PgTtYuwlkeL2H7twNZdU9YJ5owlYOiqw+L5/jhjIyLomPKzEkbR9+LKDH0KHfoeD9yTiRGP4vP8bfu7pKI4rlSf/CCTx2DyxM+p7B6HD4KHoGuKFgPDRWH0xR6zbFMiMmoi2Pm5ifeoM3/47cfv4XHStbQ4HVwdYNxyHg6rKuxD/7J6CrkG1EdjpXxgU7guPkAFYHJvxagXRT5WFmO+3QBfO+SLUp+xoDsZ1MOinjZgeqtdkfWq6KikfRvI1+gY5wLnhmxjQvQ1CgpqgRYMQDPszC7mx09DeT5funq8vxQ0hkHm2OFCn8J/dmNI1CLUDO+Ffg8Lh6xGCAYtjUazYqSr5t3H6gfgZFmj/7wGoW6lXpzJxZkcMksWT/vadF2FZ91f0wRtil7QqkEd/T6yj7Y8HuNDwqGe4IV+eQdGTm5JQABL8p9KZPGGa5DLNC1F+lwEFjN5NyWLH2ry4z8hb83dM/ahpaE/6ZP5X9FGYrs+374RY1f0msrw0uvPHGKqlWb7WGPrjdgIlJNyl2EVt1H9POWj7XMsoVVhe3SfRgjpvUN57U0S3FjcVv9ue2o34lKb9fJkK5Em0rq2xOF2v76L0Ks0PEr9X+I5uOzKUUwWptLmr7jd6dWlFtV1qaMdhP5AOZEno8sLWJORnqtFrG6m6psvTaGd/8cYyo0Y0NU59J40k8x4dHKu7Mcz9vT0Un5BIKVnKu87SaWcv3XcHzr4s3mMjp4zoydTUVDndn6aqE5ouzwtRLWcQMJp26xKaPvNWr6/sP+vXNJR6fjKfvvoojIQiTj3ddwLF8lMJGPsfk0UHBzmIZYMwOA6hQ5riXnqLVnbQlXN23X6kePFGWBVh/vfd1OWZx5hoVb/tjH2DVf3ojRrPpLPKIkmQEzebWlkov6MhzblQIBRTF2iGeAOtafhKui2U15LLC6m1mTCtRi/api4sKW1nf7JX/W0jajQ1TnvfYdYf/clONV0YtOV9Fv3RX3c/EN9jU06Si9p9oRpCV1OSXEpJh2dQK3NQnYlxQkRQOnnCj9Rcs165Hx7wiI6N1Y8vNIMTtRzxLe2/8/hfK0/+kWdE0+Sm6vtv/aeeUf1myeV5FKL8boMAGr07WXs/T+rmrrp6z6sLtartQjU040JcMPBAKt36vps673mMoWh1xqbBTsK4UWOaqcnY1UHe3zSxjmbbhMFlOD1bOFe+dC26t5berCFM8/pUfCiAjNKOTqEmZrbUa3emcgKl7+ylS+fA2XRZvMfmWeJAJemt76mbvXK6B41R7xzaN1h5H7IRNZ55tsz8WrEkdHGGv/b3waQ9/f4gje6e2U7z+6nvvTHz7kBj110qcRO+lK5/XV+3HprRDw+KLVAmycUZ5K9dDxS6Wohp5Tl05df3VHFusx8elH5vTNZ+GmCnW6/sB1Cl07Yu7tRhk3izUCWowis2hUi7kyl+VjKFtbbP19PlnozE4HmnVVcVakZ0RF3lyQGzOujQWdnpkHB9+Uh8eUTZx7ZENwfD2hjz+2Z8+/lnmB35FoRCRSV+zyHcF77MyNIRLo5Wuvt8jK3g6Kp8HKkXAup7PX5JXHYHv0xahnjViBfahCgf/WkM1ybN4a6alonrhj0wYWgQzA3NYGtb7FyUmrEd3Ep94qE5HJx1Zz3up/TA3tt3cGJWBFxNLODfux/qW6bj5O8nVI8EfLRjAbY/kAvbaIvglrXVK8nPYc2Gy8gXPprZucDRStfv0sjKEa7uNeGi+k2msHPS/S2t3JOIHDwPp9UJjY7qhEadDp2hSunryzHyyyNQpbSxDRx1CY3aY37H5m8/x2ezI/GWLqFxSJnQjLH/XTmXsfGb6Zg8dgher98AHxzKh0ntthi2YD8ubB0BH20xqcDDvUIZskdZV1iicaf6qntxbBu0hRCkQH72O8yNEubln8VXg6fgrwJhYuPhGFDPXFWuetirT/cX3r2Oh4UKpJ/8HSfUhSUWbH8AuVBO2Qa3hLq0lOPcmg24rCwsWeX6ezyautqiZvsZ+EtzEaVC2aDVLKGe76J/RUYpDTE/fYpOPiF4Z+Ul5IlTy5d/cnEycjDmqStDRHSsq4orzOp0gDrsuI7lI7+EGHbA3MFZF3fcT0GPvbdx58QsRLiawMK/N/q4RePzz/YIEYKQsxt3Qn11xkZbdcbGd3OjVPOqhcI0FA/n9LrwP1V501WBlANLsfuRMC39Ci4kKQ9kIzi2nYSlHwdp7wk2tXPSpbueZ4kDoXiIvcI8dbHTGJ3UOwcN1DsHZ7+bC2Wx89IVxWF2/+54s/dQTN4oRJ1WIejeuzvaN60Nq0qK5v+e2Fw4DmwRNPAHMc599VVhw6bETVFCBVYoVzb0yiMbMcvW4p445hzoLvblNIe7v5PqE5CMjUuPIUMc07Lxgo+DOrg3tnHWNVSEQuu5ulpLH+L2Q/GzcGhZi9tkaGatvZyeFHceDyugi0NAr+7ws3JAqymHkVyYj+s/9oSbiQNCB3QUGjqWqPN6NzRyUP59A9UNkxrSR89/f0t2zDKs1SU03MU+nebu/tCm9MalOPZ4QsPLx0HdQBQaPM66hEYu92ln7H+boSmME7fj6yXrcOimMpoEvPvNwXfjO8Kz2LmfbJxc86f6xIlQWrtYFiEvLw8FsIK16s7VLMTsv4aUU8vxo9h/2LqOL1RFvJEHen/3H0wYOwOrf5uEppaGcAgdgI5CYGlZ53V0a+Sg6uNvYGSi6+svfYSndbdnFaD5V4g6HYPts3rAQ5xU0QxtmuKT7Rdw6OuBqK9+IoEOxeO3Ud0x8XCmqm7MLU/+KYrBMl1liEBdZQhd2LERSx+vDJWVN7r7WcGh1RQcTi5E/vUf0e7OL/hTbARZu1iiSMjXecKhYKXO2MiK2Y9r2pbXK67kwyEUhSh/OFfedE2HQvhO1dfm/oH36wWj18wduJFrgbD5R7DmDTvVouXytDgw+yTW6HYOLIuEfaPeOeob5rNisL8qdo5JC0zfGYMLdx4iKWo22htdwJaFn6BnUCDeWnxB11CvQC2EtD0bF4UfxjQXH+zx6qvCho053Opqcq1SLlIflTP6L0zG2XO6wsPU2lzcEEOYWplru+TmXD6NhNLeGaRRETcwWfihY2vNASVsQ456G+Q5qdqHIth4e8NefQy9EDMbi1JutjNH8Cf7hYZOHu7sGAb6YyHG9YlAt8iz4vwXUYjks+d0jUNTa5iLOcbQ1ArmuoTG6Scn9PN0k2aM/beyqotec9YhsqmuRLvxzSB8EZVR/CRMYQqu3FTdBS5Ixbph4QgNDUVo5zlI9Q9GcHADeBvkI/lMrLZ/v4mFmVjeCA2Zlh/i60XT8a8wZ1XZaR78CfYLgWXenR0YRn9g4bg+iOgWiYooLdkzMDBGjVqN0HPKWqwf7Vt5T+A0dUf7Cetx7sFZ/DqlF/yLPcbpHn6M3IYHchlSypF/5MlnoQs7TGGtqwxhpasMcfl0wuMvVTSzgUWxyrsQKVduChGDWuq6YQhX5uvQzpiT6i/k62A08DZAYXVpZJu7oXg4l4ryh3PlTddkOHabgL6ai3CyeGyf8RYCPMMw5ve7kD0eHJVPKXFgYcoV6IqddRgWrtw3oeg8JxX+wr4JbuANgyrdOcZwbfc5VkY2FccTsUsoy2ac1PzoCmRkBRf/thi5eBOWdnTV9WZ6AaRqnT6e7hWlChs2ZvDu2FHvbM0j3LqeXsaTcEpSQK6Xp4zNjLUbYmik+wx5EWTlPWvwvAyd0XXBcgz2Uo7EY+uWC8iVPcTxDQeRrpxk1RZTZ3TQXuqsFLJUHF8yAqEeHgj9KApuY9Zi46QQceaLURRPaBjrElr3GXIUVXpCM8b+mxhYhGDcTzPQRBuQ3MOyIROwN1XvzlySo1CvUmg04yAuXLqES9rhAqIXvQajHF0omZOQirJ7N8mQenwJRoR6wCP0I0S5jcHajZNQMaUle3a2aNKvU4mrdC8u58g49J5zTpsPjBwa4Z1ZW3Eh/g/M6iF20xYUXYzCzXw5CsqTfxRyvUa3Mcx0lSGMdJWhEHbI1FcVnoggL56xcfCCfr6+hAvRixCu7AFVHZh5o2NHvWtvj27heno5WzbPkK6GNfvg52Nr8F6TGuJUQVYclr/bFqN2Vdwj4kleqBeLNsKMgxeK7ZtLF6KxqMp3jjFqhrZGLXEMuImNm66objt4JrmxmNFvCmKedrnH2Atdh4XBTtseUSD73AZsvCL+RUPlvlN/VFIUlfWEBRkKCoxgV1l95wSV983lYNXkA4xqII4Iru46gdQn5UxFPlITcyA3dUGgr64XZWGuRAitlRQozC8QPwMmtYNRs4ILzNIYew3Az3FHMK1VDcSvGIEePd7FN/ebY/DE5Th8dT8mhpTW47OCyB/iwMT2CB+7Cn9nuGHkr79gUvtauqspL8QULoG+un6phbmQiImrKMxHgS6hEfwyEpox9l/FsuGn+Gl6Y11FlPgzhv17KxK1ZYsjfGrqTrMnnLlTSsVtAmdfd+07FWSX/8Ql3SPW9Mjx8MBEtA8fi1V/Z8Bt5K/4ZVJ71KqYwpI9J6vmEzFvkF+FXrWRSxIR88s23Chx6cTMszOmbNyHucHiBNX7dMqXf0xdAqELOwqRq6sMka+rDFE7uKa2G3rZTODoU1P7N4WMjTvV+t4uKzT5YBR04dxV7Drx5IaGIj8ViTnyZ0hXV0jjz+JBzXfxfdwDXNk8Bd28NMduCn777jDSxLEXZeLoA12xk4Azr+jOMTKxLJbXDI2eNaSX458tU7H8nof2NoMncXo9EpEdHdXltfQK/u/9SERnis14Ezu426o/Kj1KzITmrSnFSP7BxTR71K9VeR3bqrRhA/NgfLR0gvblW0VRX2Hl2TKajfJ0RM/sjKb9V+Ca1B6th3WGJg1zkrLEBCxCZoKmRLJEh+HhcH4JWyi9tQbDX2uPyJwpuJBwEYf37sehP7dj7YJRiPDUL66L3/siLywSz+xQ8TM8ZZ3uUV+/K0Z+fxO+WHRZLEA8ERaoPpMhkz393IVCtUwhkuL+xj9l9CSzbz0MnXUJjSwxpxZlJmgfz2rZYTjCX0ZCM8aqrWJXfxUyKFSjlmg0/idMa6grP9J+fw+j199TnzE1dELY27qGT+Lm7xGld/ZLcmsj5q44C7NW76ClJhBJ24jZ667rdQdSIO/+VSTl3cemLxbhsri6Z1ggVKWlTPgtqims8pSsu3R1nqGVN5oF2pXSzVqNiqTak5XKfVmeuk2p4NpSzP+zlODarCaC6qiDKovmXRBkZQjH8uQfi9YYpqsMkaSrDKELOzpgeLhzKYFViTpeWMIp7G001mVsfB+l91slt7Bx7gqcroSeRZXFPPgjLJ2gjeYQ9dVKlB3ORWNm56bov+IapPblTVdb3Pl5JEauuQOZoQ3qvT0Lu69cwcqu6phHeQWsrNDpWRk6heFt3c7B5u+j9E66S3Br41yseEk7p+xtUiDr5lkkiWOAD3r3rqc9EV1KuPgY6a2f8eG4AzBsGAxHzQH4hPWMnEPQvLbQAlJk4a+5wzHrghta+YkNFHM/dAx3UX8W5Jw+hOul7P/8S1uws6gd3vCptA6oVdywEf68XZvZ2L1+OPxVv+QKInsMxqKYh3qXAYVC5dYOzOzbCv32tsD3mz5FsJkhXLrNx/zO6gx9+/ApPFSWfIp0nDp0WzXNst0cLOzjoSosFdI8IXwXFeZqrzSQJEc3vahA+/AARbHpeZCKO5okeboWaGGe+uqFIhU7PhqFtTeEla/9iE9HfoCxn32BqVOnYeZX/4fVO08jRftllvBp6Sd+Bq5v2oRj509i65z3MSVWnIgCxJ+5CvVVXBnyH2lXRrbQAtaNqZFC/5LpWSyZ9yPWLxmLYXMvitOAvMTrOHchRVjXGNZOmof7Awl7lmLxgrEYNCsWyldPSfJ0RXmh8Fm52YYu3TB/fmd1AHD7ME6pExrppw5BldKW7TBnYR94qBMaedofWIhcXUIjR5egKOCHBzD2v0Wejbv3NHcdCh7dxZ1ssXywbIwJP09FQ+2Fk2zsHDMSP95SFhrG8B44Fx9o3rD9cB36dByGyBVrsGLW+3ij2zKgeQDs6gzAgs8bihWaBEc+bofeU1Zhz7Ej2Pafj9Br9EbcKZAV69Z2dsk8/Lh+CcYOmwttaZmXiOvnLqjK7MKcLF2XJEm2+FLQQuRk6ToqSbJfsZf2vaokafhH/ypI5h08LFmZlSHn5iloX9eBNFwT8lH5apB0bBg5CquuFT/bLk88gHXKx5+ZtMCX83rATcg0xuXJP4VO6DZ/PtRhx20cPvVQte8V6aegDjss0W7OQvRRVYZC7Z3/SFdfZycis8T2GnsPxFxdxsa6Ph0xLHIF1qyYhfff6IZlaI6Axx7D+goztEOb2buxfri/Oh2vRKLH4EWI0X9ykiIPt3bMRN9W/bC3xffY9GkwzAxdyp+ulI3jsyZj033xOy190OY1ZWcsE7QaEKbq8i8X4jRtJCPEaZr47ZniQGNvDJz7gerJr0oP1/VBx2GRWLFmBWa9/wbUxc7L2DkSpOkfOEXpeJCl3nZZ0j7MmfqnEDEqOeONrzdiRgtNfFeE9H/Ehx+oPEJCpjZ6FRIjGxfXj0eX1u9hV5YBvIW4VNMgkqT9o/dOMWHNhIxi8Xj+7b2Y/25rtIuMg9SzNYJs1UeN8oFRbaZ9g97O4uj9pfhw9gEka1dWIOfiTxg1+Bf4TfoEzXShaMUTH/tcxeSUeX4dTeziq3ofi/JnOQa2pPYdWlN9DxsytW9IfWdspZslHxxeEE9bxrcme9SgsBFTadr7bcgOttTi49/ouris5Opy6uOne3eMcqjZeQHFXV5NA3wM9KabUtCQ1XT6wCSK8NAtK7RRqe67a+jK+f/QW7X1p1tSow+20APJPfqhlZHe9McHA7+htPG++m0H8swTNLWltd58R2o3aTV93Uw9buriT03De9DY387TgfFh4vsVxMHQiyJGLKZz+ukgS6bdH/iTEBOIy5lQvcHL6NiRKRSsXS+Ahq+7Scqn/8sSt9EIP912GwcMow130unklDaq90JopsMkkIZveiC+o6GA4reMp9b2oBphI2jqtPepjR3ItsXH9JsuoWl5Hz8y1v+Omp1pQdxlWj3AR+/3CdsYNIRW39J/UQVj7L9TESXs+Jzeal5TVy5oBucm1OOznZSgKmRy6dS0BsXKCdTqQV+LhZ30wR6a3FZ8N5c4GNTqSnOPp2vfG0IyoRxb3Jd8DPW+QygP6769kE6kKZeSUfLuD8jfQDffpN5gWnbsCE0J1kwzpIDh6+jckS+opd47GZT1Q/CIdbRjUkvdu22Ug2kwjdisKSfZ43IpNrInNappopeW6sEuuD31Gj6P/lK/fqSEArr68wQa+nY78lO+d0h/XVNfiugzkmbtT9Lt+xIy9/UlJysvqlfHlgxNvSli4FiKXLKClkSOptc9Lcil1ShaGauXd5Semn/UCuK30PjWQl6sEUYjpk6j99vYEWxb0Me/XRffbSKnjMPjKUz1DhTNYEheESNocbHKWyB9QHsmty1ezxvUoq5zj1N6WRv3qpNn0vl1E6mLr5m4TY4U2LI9dWhdnzxsTMm+YV+asfXmY++BeXq6FtDZLwOohqc/+QW2pX6jP6NJH/YkfzMzChjyM12XEOWcnEJtlO8B0qanCQUO30TxF58tDlSHJ1J6sGcytS22Hw2oVte5dPwl7Jzc2JnUI8SteEylHCw8qUHThuRf24O86oVSj3//Hx2Iz9W+WybvwnfUv6k7mTy2ngcFh71GoQ18yMVSf14t+vdfuco/SJE9G1FNE/15ysGCPIJCqU3LRuTvYVfs91j12EGaty5qSO7spFn9G5GtuIyJawA1b9uWmvl7UM2ALvTZrxdLvHOn4hko/xH++CtDlnENJ47G4UZCOiTmbvD2D0KTZvXhbqlpFT5OIUnBtVNncFfhKSwbBLcnLFsZJPf+wHefjsIXWzWPLHyc23tHcfP7turHCsqzEH8qDleybFCveRP4OQDJZ88ju1YI6jqbPcdlNAkSz57AmVQr+DdrDD9H5XcoIEm+iJjzeXBv3gwBDno9MaWpuHrmMlKMPNCwiX/5n9imkCDl2imcuauAZ5NmCHKzfI7fyhhjz0OO3ITLOHXmLqSOAWjeIkD9WN6SCjNw6+zfuJRqglohYWjiZVWsnJIknsWJM6mw8m+Gxn6OqvdtKCTJuBhzHnnuzdEswKEc90iwV1nh3T+xK6UZ3gq1R1HSBRw5ehrxKQUwr+mHoAaN0TjAVfuEz8c8Jf+oCfVryjVVXlR4NkGzIDe8SNghz03AZWUMI3VEQPMWQn1d3kr5VSZDxrUTOBp3AwnpEpi7ecM/SEir+u5PSKsnpasCWdfikOTWDPWENk9m/Gn8fTUH9vWaoomvPSotxeS5SLisjHukcAxojhZC+fDfsHcql7Afk67g1NkruHknGYW2dRAQ3ACNGnjD7iUk3ivXsKl2Cu9g/Zi+GLs+C73XbMaEpjZiX2GCNO0mTm6KxEcLT8Kw5y78s7175T4djTHGGGOMsf9R3LB5QYrEn9HKYzhinYbgwK01eF1zD5wo/+wUNGyyBPU2XMO2Ae5l3iDJGGOMMcYYe37csHlR8hQcmNYX/eceg6L5uxjTvw0C3KyFFk067l88hv3RCfAcvAD/Gfea7qkTjDHGGGOMsQrFDZsKIsu8jr+OxOFmcjqypaawc3FFzTohaBXqB1tu0DDGGGOMMVapuGHDGGOMMcYYq/Ze4DkejDHGGGOMMfZq4IYNY4wxxhhjrNrjhg1jjDHGGGOs2uOGDWOMMcYYY6za44YNY4wxxhhjrNrjhg1jjDHGGGOs2quwxz2fP38e48aNE8cYY4wxxhhjrGIsWrQIDRs2FMdKV2ENm7S0NBw9elQcY4wxxhhjjLGKER4eDicnJ3GsdPyCTsYYY4wxxli1x/fYMMYYY4wxxqo9btgwxhhjjDHGqj1u2DDGGGOMMcaqPW7YMMYYY4wxxqo9btgwxhhjjDHGqj1u2DDGGGOMMcaqPW7YMMYYY4wxxqo9btgwxhhjjDHGqj2jGQLx80slz76NS1fvIjE5Gcn6Q0oG8skUVlbmMDYQF65iCkkyzu//Das2XIJzaEM4GaumIvvcasz++gAK6jWHv62Ratkqo8jExWO3YebpAvOKSjdFNk6v+ho/nrZASGMPWDzv98qzcfvSVdxNLLmv05BDlrC1MXuOFnYeru6OQq6XH+xV+6M8ZMi8Fo1dO3Zhz979OHbmGu5nGcGhpitqmObiwuY9yPSpp9q/0rvRiM12RW27cn85Y9WIDBmXDmPH1q3YFX0V2dZ14ONqUf7jUJGL28d3YcvWnYi6mAiZozc87Uzw1CJCmoorMQexd/tW7DkjhW9jH9R47I8qkHt9P/5IckZdV/Onf2dpSisPZRm4dHgHtm7dheir2bCu4wNXi2coeZ5zfWnqFcQc3IvtW/fgjNQXjX1q6NJZnoM7cfuxY/M2HDyXBANXX3jYGuu2WXoX0bHZcK1th6osiWQZl3B4x1Zs3RWNq9nWqOPjimdJOrXy7FcJ/ondh507duKPv64jVe4Ar1p2MHlaJihXvipDleYVIU1uH8euLVuxM+oiEmWO8PYsY3uFejT+5J/YsWUXjt3IhIFTbXjU0M8VUtyNjkW2a228qtXWi+YjeVa8EDfe04sbE4Tj508clwWggYuJuJTSc5Zvhfexd+kqXHRugnrlDyyqRhWVZ4X392LpqotwblLv8djreeuFikZVRJoYTRuWTqU+fgak/BmACdUN70JdOrSmJv5uJIS6ZF+/O/17yQG6JxFXeumkdHfnXBrawl79Gx2H0KFH4izKoB1vWqqm1512nqrsJwpkacdp4dB+NHlXAhWJ0ypE6lbqYQ3y+jSW8sRJz0WaQFGr59KIphbivgbV8G9JEeGh1LCuK1ma2ZJHUASN+Gov3S1nQsoSfqHOti40cG+6OOVJpHR//3x6J8RG+NuWVKdZZxow+jOaPG4E9W7rI+Q1c3KtJexjk9doQ6p6DXlmDC3o9yaN3/6gYtOUsaomvUdbxoaRu39/Wrj7JMXuW0wD/Z2o8Ydb6b5UXOYJZKlRNL2jO5mY2JCdhfp4BmrR2z/dEo60MkgTKXrpKGpTy42aj/iGtvz9gPLk4jwtOeXe3EXz3m1MtsJ3Nv6/OyQT5zyL0spD6b0tNDbMnfz7L6TdJ2Np3+KB5O/UmD7cer/s36znedZX1nFLR7WhWm7NacQ3W+jvB3nCFuoUJeyjqa8HUpuPVtLuw3tpzayBVM/Wg7rO/4syNAvKMylmQT96c/x2elAlBZGU7m0ZS2Hu/tR/4W46GbuPFg/0J6fGH9LW8mQWlfLtV3l6NM18ox41eWcObThwjKK2LqH3mzlRrTcW0KkccaGSypWvylaleUWWSlHTO5K7iQnZ2Onqxlpv/0S3Svwh6YM9NCXCUbuMajDwpt6LTtEj7fbKKTNmAfV7czxtr5rM8gQVkI/kabRrgEPxNFAODgOpWBjw3OWbhK4uakvmsKMB+7PEaa+mqijPVCRXaVFbc4LdACqZRM9VL1QKov8Hi/ZQ9ro+OFAAAAAASUVORK5CYII="
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"1. 首先生成几个针对question.txt的结果,每行一个,存储在txt中;\n",
"2. 选择哪几个模型?\n",
"\n",
"- GPT系列\n",
"- GLM3\n",
"- 百度\n",
"- Qwen1.5-72b-chat \n",
"\n",
"\n",
"\n",
"https://github.com/yuyouyu32/LLMQAEvaluate?tab=readme-ov-file"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[2025-01-08 16:01:01,433] [INFO] [real_accelerator.py:158:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
]
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"from transformers import AutoTokenizer,AutoModel\n",
"import torch\n",
"from sklearn.metrics.pairwise import cosine_similarity\n",
"from sentence_transformers import SentenceTransformer\n",
"import pandas as pd\n",
"import os\n",
"\n",
"device = \"cuda\"\n",
"os.environ[\"CUDA_DEVICE_ORDER\"] = \"PCI_BUS_ID\" \n",
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"1,0\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"model_name = \"/home/zhangxj/models/acge_text_embedding\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"# model = AutoModel.from_pretrained(model_name)\n",
"model = SentenceTransformer(model_name)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(2, 1792)\n"
]
}
],
"source": [
"def embedding(text):\n",
" # inputs = tokenizer(text,return_tenors=\"pt\",padding=True,truncation=True,max_length=512)\n",
" # with torch.no_grad():\n",
" # outputs = model(**inputs)\n",
" \n",
" # embeddings = outputs.last_hidden_state.mean(dim=1)\n",
" embeddings = model.encode(text,normalize_embeddings=True)\n",
" \n",
" return embeddings\n",
"\n",
"emb1 = embedding([\"你好,这里是中国\",\"欢迎你来到中国!\"])\n",
"\n",
"# from numpy.linalg import norm\n",
"\n",
"# cos_sim = lambda a,b:(a@b.T)/(norm(a)*norm(b))\n",
"print(emb1.shape)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"\n",
"def remove_punctuation(text):\n",
" # 正则表达式匹配中文标点和英文标点\n",
" pstr = r\""#$&'()*+,-/:;@[\]^_`{|}~⦅⦆「」、 、〃〈〉《》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏﹑﹔·!?。。\"\n",
" return re.sub(pstr, ' ', text)\n",
"\n",
"def get_ans_list(file_path):\n",
" answers = []\n",
" with open(file_path,\"r\",encoding=\"utf-8\") as file:\n",
" for line in file.readlines():\n",
" answers.append(line.strip())\n",
" results = [remove_punctuation(ans) for ans in answers]\n",
" return results"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"answers = get_ans_list(\"/home/zhangxj/WorkFile/LCA-GPT/QA/filters/answers.txt\")\n",
"answer_rag = get_ans_list(\"/home/zhangxj/WorkFile/LCA-GPT/QA/eval/RAGpred.txt\")\n",
"answer_qwen72 = get_ans_list(\"/home/zhangxj/WorkFile/LCA-GPT/QA/eval/Qwen72bpred.txt\")\n",
"answer_glm = get_ans_list(\"/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLMpred.txt\")\n",
"answer_baidu = get_ans_list(\"/home/zhangxj/WorkFile/LCA-GPT/QA/eval/ERNIEpred.txt\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" question | \n",
" answer | \n",
" 子类别 | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 什么是生命周期分析(LCA)的主要目标? | \n",
" 生命周期分析旨在评估产品或服务从原材料获取到最终处置的环境影响。 | \n",
" LCA理论与相关知识 | \n",
"
\n",
" \n",
" 1 | \n",
" 在LCA中,如何确定研究的范围? | \n",
" 研究范围包括定义系统边界,如输入、输出、功能单位和分析阶段。 | \n",
" 研究和试验发展 | \n",
"
\n",
" \n",
" 2 | \n",
" 文档中提到的医疗废物如何处理? | \n",
" 文档未直接说明医疗废物的具体处理方法,只提及了与之相关的能源消耗。 | \n",
" 卫生和社会工作 | \n",
"
\n",
" \n",
" 3 | \n",
" LCA数据清单收集阶段需要哪些信息? | \n",
" 数据清单需收集所有过程的输入输出数据,包括资源消耗、排放和能源使用。 | \n",
" LCA理论与相关知识 | \n",
"
\n",
" \n",
" 4 | \n",
" 生命周期影响评价阶段的目标是什么? | \n",
" 该阶段旨在量化每个阶段对环境的各种影响,如气候变化、水耗和土地使用。 | \n",
" 生态保护和环境治理业 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" question answer 子类别\n",
"0 什么是生命周期分析(LCA)的主要目标? 生命周期分析旨在评估产品或服务从原材料获取到最终处置的环境影响。 LCA理论与相关知识\n",
"1 在LCA中,如何确定研究的范围? 研究范围包括定义系统边界,如输入、输出、功能单位和分析阶段。 研究和试验发展\n",
"2 文档中提到的医疗废物如何处理? 文档未直接说明医疗废物的具体处理方法,只提及了与之相关的能源消耗。 卫生和社会工作\n",
"3 LCA数据清单收集阶段需要哪些信息? 数据清单需收集所有过程的输入输出数据,包括资源消耗、排放和能源使用。 LCA理论与相关知识\n",
"4 生命周期影响评价阶段的目标是什么? 该阶段旨在量化每个阶段对环境的各种影响,如气候变化、水耗和土地使用。 生态保护和环境治理业"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 获取每个类别的答案和文本\n",
"data_class = pd.read_excel(\"/home/zhangxj/WorkFile/LCA-GPT/QA/classify_new.xlsx\")\n",
"data_class.head()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def classify_ans(answer,class_name):\n",
" '''从全部的答案列表中筛选出目标类别的答案'''\n",
" ans_class = []\n",
" for idx,item in data_class.iterrows():\n",
" if item['子类别'] == class_name:\n",
" ans_class.append(answer[idx])\n",
" return ans_class\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"790\n",
"790\n",
"754\n",
"754\n",
"321\n",
"321\n",
"295\n",
"295\n",
"183\n",
"183\n",
"174\n",
"174\n",
"157\n",
"157\n",
"131\n",
"131\n",
"126\n",
"126\n",
"87\n",
"87\n"
]
}
],
"source": [
"# 字典存储分类别的内容\n",
"ans_gold = dict()\n",
"ans_rag = dict()\n",
"ans_qwen72 = dict()\n",
"ans_glm = dict()\n",
"ans_baidu = dict()\n",
"\n",
"class_top10 = [\"LCA理论与相关知识\",\"生态保护和环境治理业\",\"研究和试验发展\",\"建筑业\",\"非金属矿物制品业\",\"化学原料和化学制品制造业\",\"废弃资源综合利用业\",\"农、林、牧、渔业\",\"电力、热力生产和供应业\",\"汽车制造业\"]\n",
"\n",
"for clas in class_top10:\n",
" ans_gold[clas] = classify_ans(answers,clas)\n",
" ans_rag[clas] = classify_ans(answer_rag,clas)\n",
" ans_qwen72[clas] = classify_ans(answer_qwen72,clas)\n",
" ans_glm[clas] = classify_ans(answer_glm,clas)\n",
" ans_baidu[clas] = classify_ans(answer_baidu,clas)\n",
"\n",
" print(len(ans_gold[clas]))\n",
" print(len(ans_glm[clas]))"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# 以字典形式获取每个类别的文本向量\n",
"emb_ans = dict()\n",
"emb_rag = dict()\n",
"emb_qwen72 = dict()\n",
"emb_glm = dict()\n",
"emb_baidu = dict()\n",
"\n",
"for clas in class_top10:\n",
" emb_ans[clas] = embedding(ans_gold[clas])\n",
" emb_rag[clas] = embedding(ans_rag[clas])\n",
" emb_qwen72[clas] = embedding(ans_qwen72[clas])\n",
" emb_glm[clas] = embedding(ans_glm[clas])\n",
" emb_baidu[clas] = embedding(ans_baidu[clas])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"### 指标1:余弦相似度,计算所有回答的cos_sim,取平均\n",
"def cos_sim(target,pred):\n",
" ''' ans,pred的数据格式是numpy.narray'''\n",
"\n",
" cos_sim_list = []\n",
" for i in range(target.shape[0]):\n",
" dot_product = np.dot(target[i],pred[i])\n",
" norm_target = np.linalg.norm(target[i])\n",
" norm_pred = np.linalg.norm(target[i])\n",
"\n",
" cos = dot_product/(norm_target*norm_pred)\n",
" cos_sim_list.append(cos)\n",
" avg_cos_sim = np.mean(cos_sim_list)\n",
"\n",
" return avg_cos_sim"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"类别: LCA理论与相关知识\n",
"{'LCA-GPT': 0.7563889, 'GLM-4': 0.72979796, 'ERNIE-3.5-8K': 0.73387533, 'Qwen1.5-72b': 0.7237778}\n",
"类别: 生态保护和环境治理业\n",
"{'LCA-GPT': 0.76573056, 'GLM-4': 0.7285658, 'ERNIE-3.5-8K': 0.73159605, 'Qwen1.5-72b': 0.7110586}\n",
"类别: 研究和试验发展\n",
"{'LCA-GPT': 0.74416304, 'GLM-4': 0.706629, 'ERNIE-3.5-8K': 0.6975246, 'Qwen1.5-72b': 0.68896115}\n",
"类别: 建筑业\n",
"{'LCA-GPT': 0.76548576, 'GLM-4': 0.7384504, 'ERNIE-3.5-8K': 0.7213398, 'Qwen1.5-72b': 0.71236473}\n",
"类别: 非金属矿物制品业\n",
"{'LCA-GPT': 0.7918446, 'GLM-4': 0.74560964, 'ERNIE-3.5-8K': 0.7342301, 'Qwen1.5-72b': 0.7142454}\n",
"类别: 化学原料和化学制品制造业\n",
"{'LCA-GPT': 0.80663353, 'GLM-4': 0.75003314, 'ERNIE-3.5-8K': 0.73770964, 'Qwen1.5-72b': 0.72282004}\n",
"类别: 废弃资源综合利用业\n",
"{'LCA-GPT': 0.78028744, 'GLM-4': 0.73390573, 'ERNIE-3.5-8K': 0.7344841, 'Qwen1.5-72b': 0.716429}\n",
"类别: 农、林、牧、渔业\n",
"{'LCA-GPT': 0.7865737, 'GLM-4': 0.7173627, 'ERNIE-3.5-8K': 0.7319357, 'Qwen1.5-72b': 0.69628036}\n",
"类别: 电力、热力生产和供应业\n",
"{'LCA-GPT': 0.7891359, 'GLM-4': 0.7410214, 'ERNIE-3.5-8K': 0.7426608, 'Qwen1.5-72b': 0.7154095}\n",
"类别: 汽车制造业\n",
"{'LCA-GPT': 0.7961327, 'GLM-4': 0.7537849, 'ERNIE-3.5-8K': 0.7584841, 'Qwen1.5-72b': 0.72462904}\n"
]
}
],
"source": [
"class_cos = dict()\n",
"for clas in class_top10:\n",
" print(\"类别:\",clas)\n",
" cos_dict = dict()\n",
" cos_dict['LCA-GPT'] = cos_sim(emb_ans[clas],emb_rag[clas])\n",
" cos_dict['GLM-4'] = cos_sim(emb_ans[clas],emb_glm[clas])\n",
" cos_dict['ERNIE-3.5-8K'] = cos_sim(emb_ans[clas],emb_baidu[clas])\n",
" cos_dict['Qwen1.5-72b'] = cos_sim(emb_ans[clas],emb_qwen72[clas])\n",
" class_cos[clas] = cos_dict\n",
" print(cos_dict)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"df_cos = pd.DataFrame.from_dict(class_cos,orient='index').T\n",
"df_cos.to_csv(\"/home/zhangxj/WorkFile/LCA-GPT/LCA_RAG/data/eval/cos.csv\",index=False,encoding=\"utf-8\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"### f1值\n",
"import jieba\n",
"import collections\n",
"\n",
"def cal_f1(target,pred):\n",
" target_token = list(jieba.cut(target,cut_all=False))\n",
" pred_token = list(jieba.cut(pred,cut_all=False))\n",
"\n",
" common = collections.Counter(target_token) & collections.Counter(pred_token)\n",
" num_same = sum(common.values())\n",
" if len(target_token) == 0 or len(pred_token) == 0:\n",
" return int(target_token == pred_token)\n",
" if num_same == 0:\n",
" return 0\n",
" precision = 1.0*num_same/len(pred_token)\n",
" recall = 1.0*num_same/len(target_token)\n",
" f1 = (2.0*recall*precision) /(precision+recall)\n",
"\n",
" return f1\n",
"\n",
"def calf1_all(target,pred):\n",
" f1s = []\n",
" for tar,pre in zip(target,pred):\n",
" f1 = cal_f1(tar,pre)\n",
" f1s.append(f1)\n",
" return np.mean(f1s)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Building prefix dict from the default dictionary ...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"类别: LCA理论与相关知识\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Dumping model to file cache /tmp/jieba.cache\n",
"Loading model cost 0.679 seconds.\n",
"Prefix dict has been built successfully.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'LCA-GPT': 0.3437605081212203, 'GLM-4': 0.30454084953051963, 'ERNIE-3.5-8K': 0.30268024101560764, 'Qwen1.5-72b': 0.2682497767547755}\n",
"类别: 生态保护和环境治理业\n",
"{'LCA-GPT': 0.3483626691289569, 'GLM-4': 0.2788926668662055, 'ERNIE-3.5-8K': 0.27761325010853644, 'Qwen1.5-72b': 0.2302952772337834}\n",
"类别: 研究和试验发展\n",
"{'LCA-GPT': 0.3430343943468575, 'GLM-4': 0.2821541495127059, 'ERNIE-3.5-8K': 0.2729394816189532, 'Qwen1.5-72b': 0.23015648181836218}\n",
"类别: 建筑业\n",
"{'LCA-GPT': 0.39371906828313225, 'GLM-4': 0.31389786788066487, 'ERNIE-3.5-8K': 0.28676175803618814, 'Qwen1.5-72b': 0.2204392856411433}\n",
"类别: 非金属矿物制品业\n",
"{'LCA-GPT': 0.4130349692057703, 'GLM-4': 0.297081206460411, 'ERNIE-3.5-8K': 0.25563488130229556, 'Qwen1.5-72b': 0.21248638601796016}\n",
"类别: 化学原料和化学制品制造业\n",
"{'LCA-GPT': 0.4185145863497029, 'GLM-4': 0.2931829455107586, 'ERNIE-3.5-8K': 0.2694429593634037, 'Qwen1.5-72b': 0.22850507493329048}\n",
"类别: 废弃资源综合利用业\n",
"{'LCA-GPT': 0.38042435656104256, 'GLM-4': 0.28198554328062225, 'ERNIE-3.5-8K': 0.2718793531798568, 'Qwen1.5-72b': 0.2066845950860928}\n",
"类别: 农、林、牧、渔业\n",
"{'LCA-GPT': 0.39036740247556595, 'GLM-4': 0.27194804107827547, 'ERNIE-3.5-8K': 0.27189044583195743, 'Qwen1.5-72b': 0.20235451922007622}\n",
"类别: 电力、热力生产和供应业\n",
"{'LCA-GPT': 0.41114581401949746, 'GLM-4': 0.26988029172611805, 'ERNIE-3.5-8K': 0.2713352793043654, 'Qwen1.5-72b': 0.18898670597783235}\n",
"类别: 汽车制造业\n",
"{'LCA-GPT': 0.4130216859020192, 'GLM-4': 0.3179324748633672, 'ERNIE-3.5-8K': 0.3088808476140809, 'Qwen1.5-72b': 0.2327820200502282}\n"
]
}
],
"source": [
"class_f1 = dict()\n",
"for clas in class_top10:\n",
" print(\"类别:\",clas)\n",
" f1_dict = dict()\n",
" f1_dict['LCA-GPT'] = calf1_all(ans_gold[clas],ans_rag[clas])\n",
" f1_dict['GLM-4'] = calf1_all(ans_gold[clas],ans_glm[clas])\n",
" f1_dict['ERNIE-3.5-8K'] = calf1_all(ans_gold[clas],ans_baidu[clas])\n",
" f1_dict['Qwen1.5-72b'] = calf1_all(ans_gold[clas],ans_qwen72[clas])\n",
" class_f1[clas] = f1_dict\n",
" print(f1_dict)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"df_f1 = pd.DataFrame.from_dict(class_f1,orient='index').T\n",
"df_f1.to_csv(\"/home/zhangxj/WorkFile/LCA-GPT/LCA_RAG/data/eval/f1.csv\",index=False,encoding=\"utf-8\")"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"### 指标2:BLEU 支持中文?\n",
"import nltk\n",
"from nltk.translate.bleu_score import sentence_bleu,SmoothingFunction\n",
"import jieba\n",
"\n",
"''' 到时候需要遍历整个文档的每一行进行计算,之后统计平均值'''\n",
"def Recall(target,pred):\n",
" ''' 直接传入文本格式的答案和预测结果'''\n",
" # 文本分解为句子\n",
" target_list = list(target)\n",
" pred_list = list(pred)\n",
" \n",
" # print(target_list)\n",
"\n",
" smooth = SmoothingFunction()\n",
" # 计算bleu\n",
" score = sentence_bleu([target_list],pred_list,smoothing_function=smooth.method2)\n",
" return score\n",
"\n",
"def bleu_mean(target,pred):\n",
" ''' 列表'''\n",
" bleu = []\n",
"\n",
" for tar,pre in zip(target,pred):\n",
" recall = Recall(tar,pre)\n",
" bleu.append(recall)\n",
" return np.mean(bleu)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"类别: LCA理论与相关知识\n",
"{'LCA-GPT': 0.1805466558991861, 'GLM-4': 0.11554456962082649, 'ERNIE-3.5-8K': 0.12240250499083317, 'Qwen1.5-72b': 0.10443194919613479}\n",
"类别: 生态保护和环境治理业\n",
"{'LCA-GPT': 0.1936086630791969, 'GLM-4': 0.10723241319036586, 'ERNIE-3.5-8K': 0.11146362502253516, 'Qwen1.5-72b': 0.08702864761847347}\n",
"类别: 研究和试验发展\n",
"{'LCA-GPT': 0.18237757004342872, 'GLM-4': 0.10627954683010601, 'ERNIE-3.5-8K': 0.1053829450454662, 'Qwen1.5-72b': 0.08501998659280752}\n",
"类别: 建筑业\n",
"{'LCA-GPT': 0.22567381216712698, 'GLM-4': 0.1310207093784512, 'ERNIE-3.5-8K': 0.11733150982192744, 'Qwen1.5-72b': 0.08621213867998642}\n",
"类别: 非金属矿物制品业\n",
"{'LCA-GPT': 0.26680615981340805, 'GLM-4': 0.13232836478838658, 'ERNIE-3.5-8K': 0.10948499320594085, 'Qwen1.5-72b': 0.08474905129676888}\n",
"类别: 化学原料和化学制品制造业\n",
"{'LCA-GPT': 0.26724369675199966, 'GLM-4': 0.12509640511891365, 'ERNIE-3.5-8K': 0.11269336039381148, 'Qwen1.5-72b': 0.09118967633955695}\n",
"类别: 废弃资源综合利用业\n",
"{'LCA-GPT': 0.22468697711112326, 'GLM-4': 0.11250649617963052, 'ERNIE-3.5-8K': 0.11120199316111042, 'Qwen1.5-72b': 0.07802856134904246}\n",
"类别: 农、林、牧、渔业\n",
"{'LCA-GPT': 0.2464707549734943, 'GLM-4': 0.10604667409601695, 'ERNIE-3.5-8K': 0.1091459446440835, 'Qwen1.5-72b': 0.07117894187328233}\n",
"类别: 电力、热力生产和供应业\n",
"{'LCA-GPT': 0.25818318417049985, 'GLM-4': 0.11724440564237175, 'ERNIE-3.5-8K': 0.12456420117921357, 'Qwen1.5-72b': 0.07637114311250687}\n",
"类别: 汽车制造业\n",
"{'LCA-GPT': 0.254561556379476, 'GLM-4': 0.1415682454400737, 'ERNIE-3.5-8K': 0.14866059993668507, 'Qwen1.5-72b': 0.09549466792936462}\n"
]
}
],
"source": [
"for clas in class_top10:\n",
" print(\"类别:\",clas)\n",
" bleu_dict = dict()\n",
" bleu_dict['LCA-GPT'] = bleu_mean(ans_gold[clas],ans_rag[clas])\n",
" bleu_dict['GLM-4'] = bleu_mean(ans_gold[clas],ans_glm[clas])\n",
" bleu_dict['ERNIE-3.5-8K'] = bleu_mean(ans_gold[clas],ans_baidu[clas])\n",
" bleu_dict['Qwen1.5-72b'] = bleu_mean(ans_gold[clas],ans_qwen72[clas])\n",
" print(bleu_dict)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"### 指标3:Rouge-l,Rouge-w\n",
"from rouge_chinese import Rouge\n",
"import jieba\n",
"\n",
"def calRouge(target,pred):\n",
" ''' 传入的是文档列表,越大越好''' \n",
" f = 0.0\n",
" p = 0.0\n",
" r = 0.0\n",
" for targ,pre in zip(target,pred):\n",
" target_cut = ' '.join(jieba.cut(targ,cut_all=False))\n",
" pred_cut = ' '.join(jieba.cut(pre,cut_all=False))\n",
"\n",
" rouger = Rouge()\n",
" scores = rouger.get_scores(pred_cut,target_cut)\n",
"\n",
" rougeL = scores[0]['rouge-l']\n",
"\n",
" f += rougeL['f']\n",
" p += rougeL['p']\n",
" r += rougeL['r'] \n",
" length = len(answer_rag)\n",
" return f/length,p/length,r/length"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"## 指标3:rouge\n",
"from rouge_score import rouge_scorer\n",
"\n",
"def rouge(predict, target):\n",
"\n",
" scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], use_stemmer=True)\n",
" # Calculate the ROUGE score\n",
" score = scorer.score(predict, target)\n",
" # Extract the F1 score for ROUGE-1\n",
" rouge_score = score['rougeL'].fmeasure\n",
" return rouge_score\n",
"\n",
"def rouge_all(target,pred):\n",
" rouges = []\n",
" for tar,pre in zip(target,pred):\n",
" score = rouge(pre,tar)\n",
" rouges.append(score)\n",
" return np.mean(rouges)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"类别: LCA理论与相关知识\n",
"{'LCA-GPT': 0.39498794454490654, 'GLM-4': 0.2213504786974626, 'ERNIE-3.5-8K': 0.30471539483857785, 'Qwen1.5-72b': 0.2724725275577533}\n",
"类别: 生态保护和环境治理业\n",
"{'LCA-GPT': 0.33244458401218807, 'GLM-4': 0.1579393502684968, 'ERNIE-3.5-8K': 0.19627007847801298, 'Qwen1.5-72b': 0.1618331729529683}\n",
"类别: 研究和试验发展\n",
"{'LCA-GPT': 0.32609547773099173, 'GLM-4': 0.17042631995903024, 'ERNIE-3.5-8K': 0.20333817273069607, 'Qwen1.5-72b': 0.1632025416542098}\n",
"类别: 建筑业\n",
"{'LCA-GPT': 0.29661873962970675, 'GLM-4': 0.11762091016328305, 'ERNIE-3.5-8K': 0.1457537942283705, 'Qwen1.5-72b': 0.09701429611918969}\n",
"类别: 非金属矿物制品业\n",
"{'LCA-GPT': 0.40538367218695087, 'GLM-4': 0.13737843819811033, 'ERNIE-3.5-8K': 0.16863152027086453, 'Qwen1.5-72b': 0.11709287878162374}\n",
"类别: 化学原料和化学制品制造业\n",
"{'LCA-GPT': 0.3627170721998308, 'GLM-4': 0.08316912972085386, 'ERNIE-3.5-8K': 0.13428285147352084, 'Qwen1.5-72b': 0.08392393366531298}\n",
"类别: 废弃资源综合利用业\n",
"{'LCA-GPT': 0.2940372790691262, 'GLM-4': 0.10792134263471842, 'ERNIE-3.5-8K': 0.13910282923021774, 'Qwen1.5-72b': 0.10455685503456204}\n",
"类别: 农、林、牧、渔业\n",
"{'LCA-GPT': 0.348491457651763, 'GLM-4': 0.1357506361323155, 'ERNIE-3.5-8K': 0.17828388744419277, 'Qwen1.5-72b': 0.131476254623987}\n",
"类别: 电力、热力生产和供应业\n",
"{'LCA-GPT': 0.32386475957904526, 'GLM-4': 0.06020408163265306, 'ERNIE-3.5-8K': 0.10913031879418433, 'Qwen1.5-72b': 0.0647123664280527}\n",
"类别: 汽车制造业\n",
"{'LCA-GPT': 0.3455275567344533, 'GLM-4': 0.09315818281335522, 'ERNIE-3.5-8K': 0.1705906011713634, 'Qwen1.5-72b': 0.12014164935057432}\n"
]
}
],
"source": [
"class_roug = dict()\n",
"for clas in class_top10:\n",
" print(\"类别:\",clas)\n",
" rou_dict = dict()\n",
" rou_dict['LCA-GPT'] = rouge_all(ans_gold[clas],ans_rag[clas])\n",
" rou_dict['GLM-4'] = rouge_all(ans_gold[clas],ans_glm[clas])\n",
" rou_dict['ERNIE-3.5-8K'] = rouge_all(ans_gold[clas],ans_baidu[clas])\n",
" rou_dict['Qwen1.5-72b'] = rouge_all(ans_gold[clas],ans_qwen72[clas])\n",
" class_roug[clas] = rou_dict\n",
" print(rou_dict)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"df_rouge = pd.DataFrame.from_dict(class_roug,orient='index').T\n",
"df_rouge.to_csv(\"/home/zhangxj/WorkFile/LCA-GPT/LCA_RAG/data/eval/rouge.csv\",index=False,encoding=\"utf-8\")"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/zhangxj/miniconda3/envs/Qwen/lib/python3.10/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n",
" return self.fget.__get__(instance, owner)()\n"
]
}
],
"source": [
"## 计算BERTscore\n",
"from transformers import BertTokenizer, BertModel\n",
"tokenizer = BertTokenizer.from_pretrained(\"/home/zhangxj/models/bert/bert-base-chinese\")\n",
"model2 = BertModel.from_pretrained(\"/home/zhangxj/models/bert/bert-base-chinese\")\n",
"\n",
"def cosine_similarity(a, b):\n",
" return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))\n",
"\n",
"def bert_score(reference, candidate, return_similarity_matrix=False):\n",
" # 计算余弦相似度\n",
" cosine_similarities = np.zeros((reference.shape[0], candidate.shape[0]))\n",
" for i, c in enumerate(candidate):\n",
" for j, r in enumerate(reference):\n",
" cosine_similarities[i, j] = cosine_similarity(c, r)\n",
" # 取每一行数据的最大余弦相似度\n",
" max_similarities = cosine_similarities.max(axis=1)\n",
" # 取所有余弦相似度的均值\n",
" bertscore = max_similarities.mean()\n",
" if return_similarity_matrix:\n",
" return bertscore, cosine_similarities\n",
" else:\n",
" return bertscore"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"类别: LCA理论与相关知识\n",
"{'LCA-GPT': 0.8285459900958628, 'GLM-4': 0.8031236508979073, 'ERNIE-3.5-8K': 0.8069283152682871, 'Qwen1.5-72b': 0.80836640302139}\n",
"类别: 生态保护和环境治理业\n",
"{'LCA-GPT': 0.8278908556430978, 'GLM-4': 0.7980815338993579, 'ERNIE-3.5-8K': 0.7964145340400919, 'Qwen1.5-72b': 0.7882782395543724}\n",
"类别: 研究和试验发展\n",
"{'LCA-GPT': 0.8031791591570013, 'GLM-4': 0.762518234991953, 'ERNIE-3.5-8K': 0.7619536520907441, 'Qwen1.5-72b': 0.757611659642692}\n",
"类别: 建筑业\n",
"{'LCA-GPT': 0.8203105013249284, 'GLM-4': 0.7842578558598534, 'ERNIE-3.5-8K': 0.7759484621427827, 'Qwen1.5-72b': 0.7679492297819105}\n",
"类别: 非金属矿物制品业\n",
"{'LCA-GPT': 0.825442724214877, 'GLM-4': 0.7794850773172952, 'ERNIE-3.5-8K': 0.7705819658894356, 'Qwen1.5-72b': 0.760956196511378}\n",
"类别: 化学原料和化学制品制造业\n",
"{'LCA-GPT': 0.8266749505338997, 'GLM-4': 0.7717763445843225, 'ERNIE-3.5-8K': 0.764714789459075, 'Qwen1.5-72b': 0.7494578895897701}\n",
"类别: 废弃资源综合利用业\n",
"{'LCA-GPT': 0.8150948574588557, 'GLM-4': 0.761772907653432, 'ERNIE-3.5-8K': 0.7655670039213387, 'Qwen1.5-72b': 0.7485851030440847}\n",
"类别: 农、林、牧、渔业\n",
"{'LCA-GPT': 0.8184339215282266, 'GLM-4': 0.7447150918363615, 'ERNIE-3.5-8K': 0.75926776605708, 'Qwen1.5-72b': 0.7276846668647445}\n",
"类别: 电力、热力生产和供应业\n",
"{'LCA-GPT': 0.811075790060891, 'GLM-4': 0.7617944805395036, 'ERNIE-3.5-8K': 0.769578997104887, 'Qwen1.5-72b': 0.7415060230663845}\n",
"类别: 汽车制造业\n",
"{'LCA-GPT': 0.8514739521618547, 'GLM-4': 0.798203267585272, 'ERNIE-3.5-8K': 0.8130694065970936, 'Qwen1.5-72b': 0.7754989156777832}\n"
]
}
],
"source": [
"class_bert = dict()\n",
"for clas in class_top10:\n",
" print(\"类别:\",clas)\n",
" bert_dict = dict()\n",
" bert_dict['LCA-GPT'] = bert_score(emb_ans[clas],emb_rag[clas])\n",
" bert_dict['GLM-4'] = bert_score(emb_ans[clas],emb_glm[clas])\n",
" bert_dict['ERNIE-3.5-8K'] = bert_score(emb_ans[clas],emb_baidu[clas])\n",
" bert_dict['Qwen1.5-72b'] = bert_score(emb_ans[clas],emb_qwen72[clas])\n",
" class_bert[clas] = bert_dict\n",
" print(bert_dict)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"df_bert = pd.DataFrame.from_dict(class_bert,orient='index').T\n",
"df_bert.to_csv(\"/home/zhangxj/WorkFile/LCA-GPT/LCA_RAG/data/eval/bert.csv\",index=False,encoding=\"utf-8\")"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"# 创建一个字典,将中文标签映射为英文\n",
"# x_labels = {\n",
"# \"LCA理论与相关知识\": \"LCA Theory and Related Knowledge\",\n",
"# \"生态保护和环境治理业\": \"Ecological Protection and Environmental Management\",\n",
"# \"研究和试验发展\": \"Research and Experimental Development\",\n",
"# \"建筑业\": \"Construction Industry\",\n",
"# \"非金属矿物制品业\": \"Non-metallic Mineral Products Industry\",\n",
"# \"化学原料和化学制品制造业\": \"Chemical Raw Materials and Products Manufacturing\",\n",
"# \"废弃资源综合利用业\": \"Waste Resource Recycling Industry\",\n",
"# \"农、林、牧、渔业\": \"Agriculture, Forestry, Animal Husbandry, and Fishery\",\n",
"# \"电力、热力生产和供应业\": \"Electricity and Heat Production and Supply\",\n",
"# \"汽车制造业\": \"Automobile Manufacturing Industry\"\n",
"# }\n",
"\n",
"x_labels_abbr = {\n",
" \"LCA理论与相关知识\": \"LCA Theory\",\n",
" \"生态保护和环境治理业\": \"Ecological Protection\",\n",
" \"研究和试验发展\": \"R&D\",\n",
" \"建筑业\": \"Construction\",\n",
" \"非金属矿物制品业\": \"Non-metallic Products\",\n",
" \"化学原料和化学制品制造业\": \"Chemicals Manufacturing\",\n",
" \"废弃资源综合利用业\": \"Waste Recycling\",\n",
" \"农、林、牧、渔业\": \"Agriculture & Fisheries\",\n",
" \"电力、热力生产和供应业\": \"Energy Production\",\n",
" \"汽车制造业\": \"Automobile Manufacturing\"\n",
"}\n",
"\n",
"\n",
"category_scores_list = [class_cos,class_bert,class_f1,class_roug]"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJoAAAPSCAYAAAAzxbAJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXjM5/7/8ddIIiGySmxtYl+LoiTWSIuittrSqNpj11CHauNorFXL0SKxVqmqqGrVUktVSxHVo0rtW+1LESVBZJ3fH/mZb6fZJplxBM/Hdc11Ovf2eX+mOcrL/bnHYDQajQIAAAAAAACslO9RFwAAAAAAAIAnA0ETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCftHXcDjLDU1VZcvX5aLi4sMBsOjLgcAAAAA8AQyGo2Ki4tTiRIlZDAYlJKSouTk5EddFp4SDg4OsrOzs3g8QZMVLl++LB8fn0ddBgAAAADgCWcwGHTixAmlpqYqJSXlUZeDp4y7u7uKFStm0SYbgiYruLi4SJIuXLggV1fXR1wNAAAAAOBJFBsbq/DwcCUkJMjd3V2urq6yt7fnyRo8dEajUffu3dO1a9ckScWLF892DkGTFR78n9rV1ZWgCQAAAADwUKSkpOiVV16Rt7e3ihQp8qjLwVOmQIECkqRr166pSJEi2T5Gx2HgAAAAAADkYSkpKSpYsKCcnZ0fdSl4ShUsWFCSlJSUlO1YgiYAAAAAAPI4HpPDo5STnz+CJgAAAAAAANgEQRMAAAAAAABsgsPAAQAAAAB4jK3+669HXYLae3jkal50dLQiIiIUFRWlUqVKacyYMWrXrp0KFy6c4fhDhw5p2rRpio+Pl6urq4xGoypWrKi7d+/qxRdfVGBgYLo5ly5d0pQpUzRr1qxc1fjNN9/ok08+kZeXl+zt7RUfH68yZcro1q1bmjlzpiTp66+/1qRJk7Rv3z5Vq1ZNPj4+OnXqlBo3bqyJEyeqSJEi2rZtm5o0aSJ/f3+5urrq1KlTOn36tF5++WUZjUYdPXpUdnZ2Onv2bK7qzCsImgAAAAAAwCNRv359ubu7KyoqSkOHDlXv3r0zHftgTFRUlJo0aWJqX7dunTp27KgXX3wxw3mLFi3S0qVLNWXKFNM3qFnCaDRq2LBh2rlzp9auXatnnnnGrJbu3btrwoQJcnV1VYcOHXT16lXt27dPX3/9tcqVK6cTJ07I399fu3bt0r59+yRJc+fOVb9+/SRJY8eO1bhx4/Ttt9/K3t5eCQkJ6tmzp8X15VUETQAAIM+xxd/M5vZvVgEAwP/Wg280K1SoUKZjDh48qJ49e2rGjBlmIZMktWnTRuPHj89wXkpKilatWqXbt2/ryy+/VPfu3S2ua968eZo7d65OnjxpFjJJUpcuXXTo0CHduHFDrq6uZvfxQIUKFRQSEqLp06dr9erVqlChgl5//fVMr+fo6KgBAwZYXF9exRlNAAAAAAAgTxszZozy5cunPn36ZNjfv3//DIOqjRs3qm/fvqpUqZI+/vhji68XFxenUaNGqUOHDipZsmSGY0JDQ+Xk5JTlOuXKlZMkXbhwQbVq1coyTJOkxo0bW1xjXsWOJgAAAAB4SrBjFI+jO3fuaMOGDfL398802PHw8FDt2rXTtS9fvlzz5s1TSkqK3nrrLZ04cUIVKlTI9pqrV69WXFxcpo/jSVLRokWzXefMmTOSpEqVKmU79klB0AQAgBX4DTsAPBz8+grggTNnzigpKcmiYOfvLl68KE9PT7m6uqpHjx4KCwvTxx9/rKlTp2Y79/fff5ck+fj4pOvbtWuXoqKidOPGDRUtWlT9+/dXlSpV0o07duyYFixYID8/P73yyis5qv1xRtAEAAAAWIFABAAerri4OElS/vz5czTv448/Np155OHhoaCgIH366aeaNGmSHBwcLLpmYmJiur4GDRro4sWLCg4OVlRUVLqQae7cubK3t9eZM2c0YsQIvfXWW7Kzs8tR7Y8zgiYAAICnBIEIAOBx9GBX0Z9//mnxnJSUFK1bt05nz541tV27dk3Xrl3T2rVr1bFjR0lp3yx39+5ds7nOzs4qXbq0JOnUqVMZrv9gd5WXl1e6voEDB5rOZnoa5enDwBMTEzVixAj5+fnJ399fYWFhSk5OznLOxIkTZTAYMnwNHTrUbGxSUpJ8fX3NxjwJB28BAAAAAPCkKFCggCpVqqQ9e/YoISEh03F/zws2bNigwYMHa8mSJabXhg0bVK5cObNDwc+dOycXFxez17lz59S2bVtJ0po1ax7ejT2h8nTQ1LlzZx07dky7d+9WdHS09u7dq5CQkCznLFmyRC4uLipfvrwqVqxoetnZ2aldu3ZmY5ctWyaj0Wg2LjQ09GHeEgAAAAAAsFBCQoLWr1+v0aNH6+7du5o1a1aG444dO6Zt27aZ3i9dulSdO3dON65r16767rvvdP78eUlS8eLFtWPHDrNX8eLFVaVKFfXs2VM7d+7Uli1bHsq9Pany7KNzX3zxhdauXasDBw6YnmV877331KhRI3Xp0kXNmzdPN2fHjh0KDg7W2LFjZW//f7d27tw51atXz2y3UmpqqubPn6+DBw/K3d39od8Pnkw8ggAAAAAA1rl3754kKTY21qw9JSVFw4YNU0hIiF544QXt2bNHYWFhyp8/vwYOHGg6s2nPnj3auXOn/vWvf0lKC50SEhLk4uKS7lqtW7fWuHHjFBERoalTp8rR0VENGzbMsK65c+fqypUrev3117VmzRrVr1/f1Hf79m1JksFgMLXFx8eb3U92HoyPj4/PsNbHVZ4NmiIjI+Xt7a3q1aub2vz8/OTk5KTIyMgMg6ZnnnlGEydOTNe+YsUKdezY0ezwrdWrV8vBwUGHDx9WvXr1lC9fnt7cBQBWIxgFAABAXhMdHW3apTR27FitXbtW9vb2SkhI0MmTJ2UwGDRnzhxJ0uzZs9WoUSNFRkbqo48+UtmyZVW8eHE1a9bMFDLt2bNHAwcO1NWrVxUVFaUuXbqYrnXjxg0tWbJEkjRz5kwVLlxYQ4cOlZOTU4a1OTk5aePGjVq2bJnCw8Pl6uoqLy8v3bp1S/fu3dOKFSv04osvSpK++uor0yN5kyZN0qBBgzI9micpKUkrV67Ul19+KUkaPXq0+vTpo+eff97KTzNvMBiNRuOjLuKf4uLi5OHhIX9/f+3atcusr0qVKrpy5Ypu3rxplhxmpWbNmpo9e7ZZSlmnTh3t3btXUlpANX78ePXu3TtHdcbGxsrNzU23b9+Wq6trjubiycAf3PE44ef14eBzfTj4XB8OPteHg8/14eBzfTjy1Od69pD1a5Sqav0aj4EbN25o7969atSokZydnR91OXgK3b9/X2fOnFHp0qUzDeYeyJM7mi5evKiUlBQVK1YsXZ+bm5uOHj2qW7duycOCX+COHTummJgYNWjQwNSWlJSkiRMn6urVq9q2bZuWL1+uPn366LffftPs2bMzXSshIcHs4LF/buvLy/LUf1AAAAAAPL7W2+i8mqrFbbMOgDwlTwZNN2/elCQVLFgwXd+Ds5fi4+MtCpqioqIUFBRktvvJwcHB9Ohdjx49FBYWpldeeUURERFq3ry5WrduneFakydP1rhx43J8PwAA4BGw1R+EWjezzToAAABPgTwZND3YhvXgYKy/u3//viTJ09PTorVWrFihZcuWZTmmfPny2rRpk6pUqaKoqKhMg6Z3331Xw4cPN72PjY2Vj4+PRXUAsBw78PDUsUUgQhgCAA8Pj3gBgMXyZNBUtmxZSVJMTEy6vpiYGHl7e2f7TKAk7du3T8nJyapTp45F13z11VdNu6ky4ujoKEdHx2zXAoAnFoEIAOBxwiNeAPA/lyeDJnd3d9WsWVPHjx83a09ISNCFCxcUFBRk0TorVqzQa6+9ZvF1fXx8LD5gHLlki78NkvgbIQD4J359fXjYyWAuL/3B/Un6XAEAeELkyaBJkgYNGqS+ffvq0KFDqlo17TcRu3btUnJysvr16ydJMhqNunPnjlxcXNLNNxqN+uKLL7Ru3TqLr3n06FHNnTvXNjfwJLLFbyz526CHgz9gAgAAiWAUAPDI5dmgqVevXvrss880depULV26VPHx8Ro7dqxCQkLUuHFjSVJoaKjmzZunHTt2qG7dumbzo6Oj5ezsrOrVq6dbe+vWrVq+fLnCwsJUtmxZpaamatq0aRo4cKB8fX3/J/cHmBDgAQAAALly9HpC9oOyUdmb41EAW8qzQZOdnZ3Wr1+v0NBQ+fn5yWAwqEOHDho5cqRpjJeXl1xdXeXs7JxuflRUVKaPzTk7O2v37t2qXr26XnrpJVWtWlX9+/dXqVKlHtbtwMb4DwrwGGMHHp5C/HcLAAA8LfJs0CRJLi4uWrx4cab94eHhCg8Pz7AvIiIi03l169bVkSNHrK4PAAAAj84TFeDlpbOv8FA8UT+vAJCFPB00Afjf4jdAeJzw8/pw8LkCAADAGgRNAJ5Mtvib4dbNrF8DAAAAAJ4iBE0AAAAAADzObPX4rTVs8Je0+/fv1/Tp05WamioXFxclJCSoUKFCKl++vOrUqSMp7ZicqKgolSpVSmPGjFG7du1UuHDhdOt8+OGHWrp0qWrVqqVff/0102u2atVKGzZs0JAhQ9SvXz9Vq1bNolpDQkKUnJysJUuW5Pp+n1QETQCQGQ6tBgA8hXiEFsCjEBUVpX/9619atWqV6tevb2rft2+fXn31VUVERKht27Zyd3dXVFSUhg4dqt69e2e4Vo0aNRQZGamlS5dq3759io6ONlvzgT/++EObNm2SJE2ePFmFChWyqNYdO3bok08+Uffu3XNxp0++fI+6AAAAAAAA8PQ6cOCAevTooenTp6cLhGrVqqVFixbpxo0bkqSCBQtKUrahUKFChVSrVi25uLho9uzZGY6ZO3euGjduLElycnKyqNbExETNmDFD/v7+Fo1/GrGjCQAeMv5mGAAAAMjcsGHDVKRIEQUFBWXY36xZM+3bty/H67q4uKhHjx6aP3++rly5ouLF/++bOePj4/Xf//5XgYGB+vHHHy1ec+rUqRo6dKjGjh2b43qeFuxoAgAAAAAAj8S5c+e0fft2NWrUSPb2me+FqVWrVq7WHzx4sJKSkjR//nyz9hUrVqhLly45WuvkyZO6fPmyAgMDc1XL04KgCQAAAAAAPBIHDx6U0WiUj49Pur5Tp04pPDxcwcHB6tGjh77//vscr1+pUiU1adJE8+fPV1JSkql92bJleuONN3K01pgxYzRhwoQc1/C0IWgCAAAAAACPRFxcnKS0s4/+qVy5cho0aJC++OILFShQQE2bNs3VNYYMGaKrV69q1apVkqQ9e/aoatWqcnZ2tniNpUuXqnXr1um+4Q7pETQBAAAAAIBHonTp0pLSdi9lpGjRopIkLy+vXF+jTZs28vX1NR0KPmfOHA0aNCjDsYmJibpz547pFR8fr5iYGG3cuDHHO6CeVgRNAAAAAADgkahdu7aeeeYZ/fDDD7pz547V6z34drq/s7Oz04ABA7R7925t3rxZN2/eVMWKFTOc//7778vFxcX0atmypdavX68VK1bIYDCYXtu3b9enn34qg8Ggs2fPWl33k4SgCQAAAAAAPBL29vaaNGmS4uPjNXnyZKvWSkhI0Pr16zPsCwkJkaOjo4KDgxUSEpLpGr1799aOHTtMr9mzZ6tNmzb67bffzF4vvPCCqb1EiRJW1f2kyfxIdwAAAAAAgIesR48e+uOPP/T+++/Lx8dH/fv3l8FgkCTdvn1bkkzv7927J0mKjY01WyMlJUXDhg0zhUjx8fGKj4839Xt7eysoKEjbt29X69atTe0PxsTHx8vFxUW+vr7y9fVNV6Onp6fZ+0KFCsnT01M1atSw5tafSARNAAAAAADgkRo3bpyaNWumiIgIffXVVypTpozu3bunP//8U//5z3/Ut29fRUdHa9asWZKksWPHau3atbK3t1dCQoJOnjwpg8GgOXPm6ODBg/r444+1f/9+RUZGqkOHDipevLiGDBmiypUry87OTikpKVqxYoW+/PJLSdLo0aPVt29fVatW7VF+DE8EgiYAAAAAAB5nrZs96gpsomHDhmrYsGGm/fXr11f9+vW1YsWKLNepVq2aZs6cqZkzZ5q1+/n5yc/PT1LauU1du3ZV165dc1Xrtm3bcjXvacAZTQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbsCpo2r9/v43KAAAAAAAAwOPOqqApMDBQp06dslUtAAAAAAAAeIxZFTTFxsbqueeeU+fOnfXjjz/aqiYAAAAAAAA8hqwKmp577jldv35db7zxhqZNm6aqVatq1qxZio2NtVV9AAAAAAAAeExYFTQdPHhQrq6uateunTZs2KD169fr6tWrqlGjhvr27avffvvNVnUCAAAAAAAgj7Ppt86VKlVK77//vqKjo7Vv3z7Vrl1b9erV09KlS5WYmGjLSwEAAAAAACCPsSpoMhqNZu+vXbumt99+WxUqVNBvv/0mb29vtWvXTkePHlWNGjU0YcIE3bt3z6qCAQAAAADAkyE6Olo9evSQwWBQgwYN1LNnT/Xs2VPdu3dX7dq1VaNGDf3+++8KDQ2VwWDQs88+q6CgIAUGBqpWrVqKjIw0W2/VqlVq2LChDAaD3n///XTX++GHH9SiRQuVKVNGn3/+uc6dO6fp06fL0dFRDg4O+uijj3Tp0iV9/fXXqlu3rgwGgzp27Giq64033pCvr6+GDRuW7b3NmzdPvr6+8vT0VK9evXT37t1s56xZs0YGg8H0GjBgQLZzNm/erIEDB2rixIkaMGCAvv76a1PfihUrVKNGDRkMBnXo0EHR0dGSpF9//VXVqlWTvb29QkNDdfLkyWyvYyl7aya/8MIL2rdvny5cuKBp06Zp0aJFio+Pl6+vryZPnqw+ffrIyclJkjRu3Dj95z//Uf369fX999/Ly8vLJjcAAAAAAMBT7eyhR12BVKpqrqbVr19fHh4eWrp0qXr16qWQkBBTX1JSkgYMGKDq1avrgw8+0OzZs9WzZ09NnDhRkhQWFqYhQ4YoMTFRb731liSpU6dOatOmjapVq6bw8HAFBgaqfv36pjVfeuklJSQkaPv27erataskacSIEVq1apUSExNNAVKHDh30559/as+ePZoyZYrKlStnWuPy5cuaPXt2lve1Zs0a3bp1S+vXr9e3336rsLAwFStWTJMnT85y3ooVK/Thhx+a3rdv3z7L8ceOHdO///1v/fzzz7Kzs1NKSopq1KghX19f1a5dW8HBwbp165YGDhyoCRMm6LnnnpMkVapUSUlJSfr222/VvHnzLK+RU1YFTfv371fJkiV1+fJlpaSkqGLFiho1apTeeOMN2dubL50/f369++67+vzzzzVs2DAtW7bMqsIBAAAAAMDjr0CBAhm2Ozg4qHPnzpKkggULput/7733NG3aNH300UemoEmSHB0dVaJECd2+fVtdunTR/v375eHhYXa9B5tiHnByckqXY2RWV4kSJdS4ceMs78nHx0ft2rWTJFWvXl2bN2/WwYMHs5yzc+dO1atXT6GhoVmO+7uNGzfK29tbdnZ2kiQ7Ozs999xz2r59u2rXri1Jpnt1dHSUJKWmpqp3796aNm2azUMmyQZnNF24cEHVqlXTypUrdeTIEfXs2TPdv5wHbt26pWPHjmn9+vXWXhYAAAAAADzhWrRokWmfk5OT3N3dFRMTk2H/559/rosXL6pPnz7/07okqVatWmbvCxcurLZt22Y5Z8qUKZoyZYr69eunU6dOWVSHl5eXtm7dql9++UWSlJiYqF9//VUBAQEZjjcajRowYIBefvlltWnTxqJr5JTVQdP06dP166+/qlOnTjIYDFmONRgMcnZ2Vr169ay9LAAAAAAAeIKNGzcuy/6zZ8/qxo0bmWYMTZs21ZgxY7R69WpFRETYpKbk5GRNmjQpR3MuX74sLy8v9e3bN9Mxd+/elbu7u5599lktWrRI1apV09q1a7Ndu1OnTipfvrxefvllbd68WYMHD9bIkSNVp06dDMe/+eabKl269EMJ3x6w6tG5kSNHavjw4Zn237t3z2x7m5ubmy5dupThljcAAAAAAPD0Wrx4sXbu3ClJOnr0qK5du6bw8PAMx168eFHdunVTsWLFzM40+qf33ntPu3bt0ogRI9SoUSM9//zzOa5r1KhRcnFxUUpKinbt2pXpbqF/SkhI0PLlyzV27Fjlz59fv//+e6bXd3Z21meffSZJOnjwoF5//XV16dJFx44dk4+PT6bXKFCggDZv3qxmzZqpRYsW+te//qV+/fplOHbkyJH673//qxMnTlhUf25ZtaPp0KGsDxz7+eeftXnzZrO2QoUKKV8+qzdSAQAAAACAJ0ivXr20ZMkSLVmyRDt27Ej3+JkkbdmyRZ07d1aZMmVUoUIFHTlyRFWrZn4Qeb58+fT555+rcOHCCgoKsuib3/5pypQpWrJkiT777DNt27ZNhQoVsmieg4ODmjZtqqFDh+ry5ctq3769kpOTs51XrVo1bdmyRY6OjqbwKSs3b95UzZo1FRAQoP/85z+aMmVKhuPKly+vS5cuqVOnTkpKSrLoHnLDqsQnPj4+y/6XXnpJCxcutOYSAAAAAADgKZM/f361bNkyXXudOnW0fPlyVa9eXVu3brVoI0uRIkUUFRWl06dPa9CgQVbV5evrqxo1apjeJyYm6s6dO6bX33OSfPnyycfHR8OHD9fMmTN15swZHT582KLrFCtWTL1799bZs2ezvM6ff/6p9u3ba8aMGfruu+/Utm1bvfPOO9q6dWu6Nfv166fJkydr48aN6tmzp4xGY+4/iCzk+NG5sLAwXb16VVLa1+j17t07w3Gpqak6e/as9u/fb1WBAAAAAADg6RMSEpJhu4ODg5YvX65atWpp8ODBFn2rfUBAgCZOnKh3331XdnZ28vX1tUld77//vtlZUo0bN9a2bdvSzenUqZP69u2r/PnzW3ydMmXK6MaNG1leZ968eapUqZKKFi0qSVq5cqXq1q2rjz/+WE2aNEm35jvvvKOYmBhNnz5dhQsX1qxZsyyux1I5DprGjh2rCRMmaNKkSTIYDFqyZEmmYx0cHPTBBx9YUx8AAAAAAHhKpaSk6PPPP1f37t3N2itUqKCZM2cqJCREr7zyil5//fVs1xo1apR27typxYsXZ3r2k6XOnTun06dPq3fv3mratKmp3c3NLcPx9+/fV7FixVSuXDmLr3Hw4EH961//kqRMr3P79m05Ojqa2h0dHdW7d2/TWVcZmTZtmv766y/Nnj1bXl5eeu+99yyuyRI5Dpry58+vCRMmyNfXV4sXL1ZUVFSG4+zs7OTt7W12wwAAAAAAAH+XkJAgSRmeGxQeHq6mTZvq3r17ktICmwf69OmjTZs2qV+/fqpcubJq1qxp6ouPj1d8fLwKFChgajMYDFq6dKnZuAcerG9JXQkJCRoyZIi++OILFSxYMMPdUQsWLNBzzz2nBg0ayGg0auzYsZoxY4YcHBwkSVevXlWrVq00depUNWnSRGvWrNG6des0ceJEFStWTMuXL1eVKlVMwZSvr2+G1wkODlbr1q1169Ytubu7S5KOHDmibt26pbu3xMREU9v8+fN15swZU+Bmy7Ap198692DLV8mSJW1WDAAAAAAAeHrs2rVLM2bMkJS202bPnj2S0nYyHT9+XGfPnlXnzp319ttvS5I2bNigZcuWqXPnznJ0dNSCBQv0/PPPq3Hjxho8eLDatm2rvXv36sCBAwoLC1OfPn3MDgv39PTUypUrTWcYXb58WatWrdKBAwckSVOnTlXXrl21Y8cOzZkzR1JaoFWhQgVJaSHTnj17VLNmTRUsWDDT+/r22281dOhQ1apVSxUrVlSnTp30yiuvmPoTEhJ09uxZ3b59W5Lk4eGh77//XitXrlT9+vU1ZMgQi3Zp+fn5KSIiQj169JC/v79SU1PVqFEjtW7dWpL0+eefa968eZLSHpsbPny4AgMDdf78eVOQFh4erm3btqlPnz7q2rVrttfMTq6DJknq0aNHtmMiIiI0ZMgQay4DAAAAAAAyUyrzb13L6xo0aKAGDRpkOy4iIkIRERHp2j08PHT+/Hmztnr16unNN9/MdC1/f3/5+/tLkkqUKKHQ0FCFhoaajQkODlZwcLAlt5ChNWvWZNlfsmRJxcTEmN4HBASYDv7OqaCgIAUFBWXY17Vr1wzDo9KlS2f5eJ01LP7WuZiYmHT/8rJz+vRpTZw4McdFAQAAAAAA4PFjcdBUu3ZtPffcc7p165apzc3NTXZ2dpm+KlSooOvXr+eqsMTERI0YMUJ+fn7y9/dXWFiYkpOTLZobHBwsg8Fgerm4uCguLs5sTHR0tAIDAxUQEKDAwEDt3bs3V3UCAAAAAAAgjcWPzlWuXFlnz541O0irU6dOioqKUrVq1VSgQAEZDAZTX2pqqs6ePauLFy/mqrDOnTsrJSVFu3fvliS1bNlSISEhWX7LnSSdOnVKP/zwgypWrGhqa9eunVxcXEzvd+3apRYtWmjTpk1q0KCBfvrpJzVp0kQ7d+5UtWrVclUvAAAAAADA087ioGnDhg3p2nr16qU6depowIABGc5JSkrSc889l+OivvjiC61du1YHDhyQnZ2dpLQT0Bs1aqQuXbqoefPmmc6dOnWqVq5cqcDAwAz7U1JSNGDAADVr1sz0HGhAQIDq1Kmjfv36mYItAAAAAAAA5IzFj85lpGHDhgoICMi038HBQYsXL87xupGRkfL29lb16tVNbX5+fnJyclJkZGSm865cuaINGzbo3r17unv3boZjtm/frkOHDqlJkyZm7QEBAfr555+1b9++HNcLAAAAAAAAK4OmoKAgjR49Ossxlpwe/3dxcXGKjo5W+fLlzdrz58+v0qVLa8eOHTIajRnOnTFjhi5duqRWrVqpaNGievvtt3X//n2zMZs3b5Yk01cTPlCpUiVJaUEUAAAAAAAAcs6qoGnjxo1KSUmxVS2SpIsXLyolJUXFihVL1+fm5qZbt26ZHUj+dx07dtTKlSs1YsQIFSxYUNOmTVNgYKDZ7qYHXxf4z/Xd3NzM+jOSkJCg2NhYsxcAAAAAAADSWBU0de7cWUOHDs1yzMCBA3O05s2bNyVJBQsWTNdnb592pFR8fHyGc+vWravOnTtr2rRpOnnypNq2bas9e/YoPDw82/WzW1uSJk+eLDc3N9PLx8cnB3cGAAAAAADwZLMqaJozZ462bt2q33//PV2f0WjUzp07tXTp0hyt6eTkJCnjwOfBY3Cenp7ZruPm5qYvv/xSVapUUVRUVLbrW7L2u+++q9u3b5teFy5cyLYOAAAAAACAp4XF3zqXkSJFiuju3buaMmWKrepR2bJlJUkxMTHp+mJiYuTt7W0Ki7KTP39+DRkyRMOHD892/QfvfX19M13P0dFRjo6OFl0bAAAAAADgaWNV0NSyZUt9//33qly5shwcHNL1X7hwQWfOnMnRmu7u7qpZs6aOHz9u1p6QkKALFy4oKCgoR+v5+PioatWqpvcvvfSSZs6cqePHj6tx48am9lOnTkmSmjVrlqP1AQAAAAAAkMaqoKljx44aNmyY6tWrl2F/UlJSum+Ps8SgQYPUt29fHTp0yBQS7dq1S8nJyerXr5+ktEfz7ty5IxcXlyzXio6O1pgxY0zvW7ZsqVKlSum7774zrSVJ27ZtU2BgYK7qBQAAAAAAgJVnNLVq1UqlS5fOtP/QoUNatmxZjtft1auXAgICNHXqVElp5ymNHTtWISEhpl1IoaGh8vT01M8//yxJOn/+vLp166atW7ea1lm/fr0KFSqktm3bmtocHBw0b948bdiwQUeOHDGNO3TokGbPnp3jWgEAAAAAeJSOXk945C9b+PHHH9WhQwd16dJFr776ql5++WVt2rTJJmtb488//9SwYcM0YMAAi8YnJCSoePHiMhgMMhgMKly4sO7du5flnObNm5vG//21bt06SVJcXJxCQkJUuHBh+fr6avz48UpJSZEknTt3Tu+88468vb2tu1EbsWpHk7Ozs5ydnTPtP336tOLj49WwYcMcrWtnZ6f169crNDRUfn5+MhgM6tChg0aOHGka4+XlJVdXV9P1CxYsqIsXL6p169aqVauW6tSpow4dOigsLCzd+s2bN9fKlSvVs2dPFShQQM7Ozvrpp5/MHrEDAAAAAAD/GzNmzNDChQu1ZcsWPfvss5Kk48ePq1mzZho8eLBGjRr1SOq6cuWKvv76ay1YsMDio3w+/fRT9ezZU0WLFpUkVaxYUQULFsx0/MWLF/XXX39p1qxZpqe2kpKS9NZbb6lJkyaSpKFDh8rDw0MRERFavXq1wsPDZTAYNGbMGOXPn18JCQm6ceOGlXdrG1YFTUajUUuWLNGvv/6q+Ph4GY1Gs76jR4/q4sWL6tatW47XdnFx0eLFizPtDw8PV3h4uOm9l5eXfvzxR4vXb926tVq3bp3jugAAAAAAgO1s2rRJI0aM0I4dO0whk5QW0ERGRqpt27Z6/vnn1aJFi/95bcWLF9fgwYP12WefWTQ+NTVVP/74o6Kioiy+xuHDh7V9+3YVKFDA1LZlyxY1bdpUBQsWVGxsrKpVq6a33npLktSlSxc1bdpUCxcu1JgxY1S8ePE8tXHGqqBp/PjxGjduXJZjqlevbs0lAAAAAADAE2zUqFGqUKGCGjRokK6vVatWKly4sN55551HEjQ94OTkZNG41atXa82aNWrWrJkGDhyoDh06ZDunefPm6drWrFmjV199VVJaePXPx/batGmj0aNHm97b2dlZVN//glVnNC1btkwjRozQ3r179dVXXyk8PFxnzpzRmTNndPr0abVo0UJ79uyxVa0AAAAAAOAJcvLkSf3++++qU6dOhv358uVTQECADhw4oClTpshgMCgwMFA3b97Uxo0bVbx4cbm5uWnNmjWSpIMHD6pUqVKaNGmSpP8783nQoEGqUaOGevXqpdjYWMXExGjKlCkqVaqUjhw5ot69e5vOeE5KSsr1/Vy8eFGBgYH65Zdf1LFjR3Xr1k2pqak5XmfDhg1q06aNJMnd3d1st5MkJScnq27duunmnThxQv7+/vLw8FD//v11//793N2IFawKmlxcXDR16lTVqlVL7du318GDB1WyZEmVLFlSpUuXVnBwsCIjI21VKwAAAAAAeIIcPnxYklSiRIlMxzzoq1y5slq0aCEPDw95enqqZcuWGjVqlOzt7fXKK69IkqpWraoGDRqYdvu8/fbb6tu3r+bMmaMff/xR3377rYYPH66UlBQVKlRI586d04IFCzRy5Eh99dVXWrdunb755ptc38/QoUO1YcMGXb58WYMGDdKyZcv00Ucf5WiNffv2qWTJkipcuHCmY7Zs2WJ2jvUDH3/8sSZMmKAhQ4Zo4cKFZrue/lesenTO3d3d7H3VqlW1adMm03a2SpUqqVevXho+fLg1lwEAAAAAAE+gB9/Glj9//kzHPMge4uLi1KNHD9OuJFdXV1WtWlU3b97UunXr1KFDB/3000+mR9HOnTundevW6ZlnnjGt1ahRIyUkJKhIkSKqXLmypLRvtS9TpowqV64sLy8vnTx50ur7cnZ2VmRkpP766y/NmzcvR7nImjVr1L59+0z79+3bpwIFCmT4yN3UqVMlSS+//LIuXLigBQsW6D//+U/Ob8AKVgVNXl5eCgoKUq1atdSjRw8NGDBAdevW1dy5c1W8eHG9++67unDhgq1qBQAAAAAATxAvLy9JaSFSZh48/uXl5aXGjRurf//++uqrr9SrVy99/fXXat68uRYvXqwOHTpo9erVpsfmDh8+LCcnJ73zzjsZrpsvXz6z/5XSAqLExESb3JskhYWFqVatWpLSvjTt7t27Zv3Ozs4yGAxmbWvXrjU9CvhPiYmJmjRpkj755JNsr92yZUt9+umnunbtmooUKZLLO8g5q4KmCRMmqFGjRvrqq68kSe+8847efPNNtWrVSgaDQUaj0XR4FQAAAAAAwN/VqFFD+fLl04kTJzIdc+bMGdnZ2al27dpycnJS586d9fnnn+vFF19U8eLF1axZMwUFBenMmTMyGo1ydnaWJCUkJOjs2bO6efOmPD09TevduHHDFHA9bGXKlDF9k965c+dUunTpdPdWqlQp0/tz584pX7588vX1zXC9sLAwjR07Vh4eHtle28XFRQaDQQULFsz9DeSCVUFTxYoVdfjwYe3cuVPNmjWTJP3rX/9SgQIF9O2336py5cr697//bZNCAQAAAADAk6VIkSJq2rSpdu7cqfv376f7dreUlBTt2rVL7dq1M51Z1K1bN7300ksKDw/X1KlT5enpKXd3d3Xp0kWTJ082za1SpYoSEhI0adIks8fHFi1apFGjRv1P7m/v3r3q3bu3JKl48eLasWOHWX/x4sXN3v/92+b+acaMGWratKmqVatmastqt9LJkydVt25dFSpUyIo7yDmrgiZJ8vb2Tvfs4KBBgzRo0CBrlwYAAAAAAE+46dOnq27dupo3b56GDRtm1rds2TLFx8ebzh6SpICAAPn6+spgMKho0aKSpNdff11r1qxRYGCgaVzFihXVvn17zZgxQ1evXlWjRo303XffmfKKB98u989vhUtJSUlXY1JSkpKTk9O1Dx48WPny5dPs2bN169Yt9erVS4MHD1bTpk11+vRpLV68WPPnz5ckOTo6qmHDhll+FmvWrNHMmTPTtS9YsED79+9XlSpVtGnTJqWkpOj333+Xl5eX+vbtaxp35swZlS5dWnFxcVq0aJEWLFiQ5fUeBquDpuw0bNhQO3fufNiXAQAAAAAAj6Fq1arpm2++UY8ePVS4cGG9/vrrkqSVK1dq7Nix+vbbb1W2bFnTeIPBoG7duqlDhw6mtl69esnV1TXdeUeffPKJnJ2dtXr1au3evVtjx45V06ZNdf78eS1cuFCSNHPmTI0cOVIbNmzQpUuXtH79erVu3Vr+/v6Ki4vTihUr9Pvvv+vcuXNaunSpunXrZrrOpUuXTP/s5OSku3fvqnXr1qpSpYpeeeUVzZs3L8uDzv/ur7/+0uXLl1W1alWz9pUrV2rAgAEyGo367LPPTO12dna6fPmyJKlTp046c+aMOnXqpIoVKyp//vxauHCh/P39Lbq2LVkcNC1dujRHCxuNRp05c0a//PJLjosCAAAAAACWqezt+KhLsFqzZs104MABjR492rRDp02bNvr111/Nzld6YPz48Wbva9SooRo1aqQb5+7ubhbOPODr66uVK1eatfXr10/9+vUza3NxcVHfvn3Ndg393TfffGP6ZycnJ3333XcZjrOEh4eHjh49mq49KChIQUFBWc4tVKiQxo0bp3HjxuX6+rZicdA0ZcoUHTt2LEeLG43GdGkiAAAAAADAP3l7e2vBggUqWbKkxowZo19//TXdmU3I+ywOmvr06aN169YpODhYjo6O2QZIRqNRp0+f1rRp06wuEgAAAAAAPB1Gjx6t2rVra+DAgQoODtaqVassfvwMj57FQVOPHj3k4eGhXr165egCp06dynFRAAAAAADg6dW8eXMdO3ZMK1as0Ntvv60XXnhBLVq0kLe396MuDdmwOGgqXLhwjkMmSYqKisrxHAAAAAAA8HTLnz+/unfvru7duz/qUpAD+R72BUaPHv2wLwEAAAAAAIA8wOIdTceOHdOtW7dUt25dU9v58+czHW80GnXq1CnNmTNHkyZNsq5KAAAAAAAA5HkWB02NGzfWrVu3dOnSJXl5eUmSateurZiYmIdWHAAAAAAASNvMATwqOfn5szhoat++vc6fPy8PDw9TW5cuXbRy5UoFBASoQIECZt9El5qaqpMnT2rPnj0WFwMAAAAAAMzZ2dnp3r17unv3rpydnR91OXgK3bt3T5Lk4OCQ7ViLg6Z58+ala+vVq5eee+459evXL9N51atXt/QSAAAAAADgH+zs7LRhwwZVqlRJSUlJcnV1lb29vdlmD+BhMBqNunfvnq5duyZ3d3fZ2dllO8fioCkjNWrUUOHChbMcs3r1amsuAQAAAADAU2/x4sWaMGGC7ty5o9jY2EddDp4y7u7uKlasmEVjrQqaJMnHxyfL/hEjRhA2AQAAAABgBaPRqEKFCql48eJKSUlRcnLyoy4JTwkHBweLdjI9YHXQFBMTo+joaN2+fVupqammdqPRqDNnzujbb7+19hIAAAAAAECSwWCQvb297O2t/uM88FBY9ZO5YcMGBQcH6+7duxn2G41GnhkFAAAAAAB4SlgVNL311luqX7++2rRpo0KFCqXrP3nypKZMmWLNJQAAAAAAAPCYsHqv3caNG7PctfTdd99ZewkAAAAAAAA8BvJZMzkgICDbR+N27dplzSUAAAAAAADwmLAqaGrSpImOHDmS5ZhWrVpZcwkAAAAAAAA8Jqx6dC44OFgjR45U69at0+1sMhqNOnv2rHbs2GFVgQAAAAAAAHg8WBU0LVmyRB9++KFmzJhhq3oAAAAAAADwmLIqaBo/frzKlCmj1q1by83NLV3/yZMnFRUVZc0lAAAAAAAA8Jiw+lvn9u3bp0KFCmXaf/jwYWsvAQAAAAAAgMeAVYeBt2nTJsuQSZI2bdpkzSUAAAAAAADwmLAqaGrWrJmOHj2a5ZghQ4ZYcwkAAAAAAAA8Jqx6dM7V1VWzZ8/Wa6+9luG3zp05c0YbN260qkAAAAAAAAA8HqwKmjp27KibN29q/vz5tqoHAAAAAAAAjymrgqaGDRuqYMGCKl26tBwcHMz6UlNTdeLECa1cudKqAgEAAAAAAPB4sCpoatGihfr375/lmJMnT1pzCQAAAAAAADwmrDoMvGfPntmO+eGHH6y5BAAAAAAAAB4TVgVNjo6O2Y5p0qSJNZcAAAAAAADAY8LiR+emTJmiCxcuKCIiwtQ2YcIEGY3GDMcbjUadPn1a+/bts75KAAAAAAAA5HkWB00ffPCBYmNjNWbMGBUtWlSStGbNGv3222+Zhk2SZDAYcl1cYmKiwsLC9NNPP8lgMKhJkyYaP3687O0zL/v27dt67733tHr1al2/fl21a9fW+++/r0aNGqUbm5SUpLJly+rChQumtoCAAG3fvj3XNQMAAAAAADytLA6avv76a12/ft0UMklpZzT5+PioX79+KlCggFmolJqaqpMnT+qtt97KdXGdO3dWSkqKdu/eLUlq2bKlQkJCtGTJkgzHG41G9ezZU3Xr1tXXX3+t48ePa+TIkWrSpIm2bdum+vXrm41ftmyZjEajKlasaGoLDQ3Ndb0AAAAAAABPM4uDphdffDFd2+uvvy43Nze1bNky0znR0dG5KuyLL77Q2rVrdeDAAdnZ2UmS3nvvPTVq1EhdunRR8+bN082Jjo7Wa6+9puDgYElS7dq1VblyZdWpU0fjx4/Xpk2bTGNTU1M1f/58HTx4UO7u7rmqEQAAAAAAAP/HqsPAPT091a1bN7O2pKQkXb9+3fQ+s91H2YmMjJS3t7eqV69uavPz85OTk5MiIyMznOPu7q7XXnvNrK1WrVqqUKGCzp49a9a+evVqOTg46PDhw0pNTc1VjQAAAAAAAPg/OQqajhw5ku71gNFo1LvvvisPDw8VK1ZMlStX1q5du3JVVFxcnKKjo1W+fHmz9vz586t06dLasWNHhudCPffccxmeCVWwYEGVLVvWrO2DDz7Qzp071bBhQ/n6+uqTTz7JVa0AAAAAAABIk6Ogaf78+apWrZoaNWqkhQsX6sSJE6a+t99+W1OnTtW9e/dUsmRJJScnq3nz5jp27FiOi7p48aJSUlJUrFixdH1ubm66deuWbt26ZdFasbGxOnTokLp3725qS0pK0sSJE7VkyRL17NlT169fV58+ffTmm29muVZCQoJiY2PNXgAAAAAAAEiTo6CpUqVKqlixog4ePKgPP/xQr776qiTpwIED+vDDDyVJI0eO1B9//KGTJ0/qzTff1IQJE3Jc1M2bNyWl7UT6pwffOBcfH2/RWgsWLFCtWrUUFBRkanNwcFDz5s3Vo0cPLV68WIcOHVK5cuUUERGh9evXZ7rW5MmT5ebmZnr5+Pjk5LYAAAAAAACeaDkKmjZs2KAlS5aoRIkSZu3vvvuuUlNTVatWLU2ZMsXUPn78eB04cCDHRTk5OUnKOEy6f/++pLTzobJz6dIlRURE6NNPP83wkboHypcvr02bNil//vyKiorKdNy7776r27dvm14XLlzItgYAAAAAAICnhcXfOidJMTEx8vPzM2uLjo7Wpk2bZDAY9P7775v1OTg4yNXVNcdFPThPKSYmJsMavL29TWFUZhITE9W1a1fNnTtXFSpUsOiar776qmk3VUYcHR3l6OiY7VoAAAAAAABPoxwFTXZ2duna3n33XUlSw4YN1axZs3T9lp6l9Hfu7u6qWbOmjh8/btaekJCgCxcumD0GlxGj0ajevXurW7duatmypcXX9fHxyXLnEwAAAAAAADKXo0fn7ty5YxYcffbZZ9qxY4cMBoM++OCDdONPnz6dLiyy1KBBg3TlyhUdOnTI1LZr1y4lJyerX79+ktICpbi4uHRzBw8erOrVq6tPnz5m7VevXs3ymkePHs32QHAAAAAAAABkLEdBU6tWrdSpUyft27dPX3zxhQYNGiSDwaAuXbqoXr16ZmNTU1M1ePDgXBfWq1cvBQQEaOrUqZLSzmsaO3asQkJC1LhxY0lSaGioPD099fPPP0tKC54GDx6s27dvq23btjp27JiOHTum3377TRMnTtSWLVskSVu3blWfPn10+vRpU61TpkzRwIED5evrm+uaAQAAAAAAnmY5enRu9OjRaty4serUqSMpLdh5/vnnNWfOHNOYu3fvauvWrZoyZYp2796d60fR7OzstH79eoWGhsrPz08Gg0EdOnTQyJEjTWO8vLzk6uoqZ2dnSVL//v21cOFCSdLy5cvN1vPw8NDly5clSc7Oztq9e7eqV6+ul156SVWrVlX//v1VqlSpXNUKAAAAAACAHAZNBQoU0I4dO7Rw4UIdPnxYlSpVUt++fVWwYEHTmIiICCUnJ+uVV17RK6+8YlVxLi4uWrx4cab94eHhCg8PN71fsGCBFixYkO26devW1ZEjR6yqDQAAAAAAAOZyFDRJad+8NmTIkEz7R40aZVVBAAAAAAAAeDzl6IwmAAAAAAAAIDMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2ARBEwAAAAAAAGyCoAkAAAAAAAA2QdAEAAAAAAAAmyBoAgAAAAAAgE0QNAEAAAAAAMAmCJoAAAAAAABgEwRNAAAAAAAAsAmCJgAAAAAAANgEQRMAAAAAAABsgqAJAAAAAAAANkHQBAAAAAAAAJsgaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2ARBEwAAAAAAAGyCoAkAAAAAAAA2QdAEAAAAAAAAm8izQVNiYqJGjBghPz8/+fv7KywsTMnJydnOu3Tpkjp27KiGDRuqbt26WrZsWYbjjh49qhYtWiggIEANGjTQ5s2bbX0LAAAAAAAAT5U8GzR17txZx44d0+7duxUdHa29e/cqJCQkyzk3btxQQECA6tSpo507d2rt2rUaNWqUFi9ebDbu5MmTCggIUM+ePfXTTz/pk08+UVBQkLZs2fIwbwkAAAAAAOCJlieDpi+++EJr167V+++/Lzs7O9nZ2em9997Tp59+muXOozFjxiguLk4jRoyQJBUpUkQDBw7U0KFDdePGDdO40NBQ+fj4KDg4WJJUsWJFde7cWSEhIUpKSnq4NwcAAAAAAPCEypNBU2RkpLy9vVW9enVTm5+fn5ycnBQZGZnhnHv37mnJkiVq3Lix7O3tTe0BAQGKi4vT0qVLJUl//PGHNm3apCZNmpjNDwgI0Pnz57Vu3bqHcEcAAAAAAABPvjwXNMXFxSk6Olrly5c3a8+fP79Kly6tHTt2yGg0ppu3fft23b9/XxUqVDBrr1SpkqlfkmlHVHbjAAAAAAAAkDP22Q/537p48aJSUlJUrFixdH1ubm46evSobt26JQ8PD7O+s2fPSlK6eW5ubmb9lo7LSEJCghISEkzvb9++LUmKjY3N+qbygHs2qDH23l3rC4m7Y/0aku6k2uB+HB2tXoPPNT0+1/T4XP+BzzV9HXyu6eSZz1WyyWfL55oBPlfzOvhc0+FzTY/PNb288rk+bA/+zJnRpgsgr8lzQdPNmzclSQULFkzX9+CRuPj4+HRBU2bz/j4nJ+MyMnnyZI0bNy5du4+PT6ZzAAAAAACwhbi4ONMmCSCvynNBk5OTk6SMA5/79+9Lkjw9PS2e9885lo7LyLvvvqvhw4eb3qempurmzZsqXLiwDAZDFncFAAAAAEDuGI1GxcXFqUSJEo+6FCBbeS5oKlu2rCQpJiYmXV9MTIy8vb1NYZEl8x689/X1zdG4jDg6OsrxH9sq3d3dMx0PAAAAAIAtsJMJj4s8dxi4u7u7atasqePHj5u1JyQk6MKFC2rWrFmG8wICAmRvb59u3qlTpyTJNO+ll16SpGzHAQAAAAAAIGfyXNAkSYMGDdKVK1d06NAhU9uuXbuUnJysfv36Sfq/rYMPeHp66rXXXtP3339vdkDatm3b5OHhoU6dOkmSqlevrgYNGui7774zu+a2bdtUvnx5BQYGPsQ7AwAAAAAAeHLlyaCpV69eCggI0NSpUyWlnac0duxYhYSEqHHjxpKk0NBQeXp66ueffzbNmzZtmiTpk08+kZT2DXILFizQzJkzzQ4PnzNnjo4cOaKtW7dKkn799VetXbtWc+fOlYODw//kHgEAAAAAAJ40BmMe/X7EuLg4hYaG6vDhwzIYDOrQoYNGjhypfPnSsrFx48Zp1qxZ2rZtm6pVq2aad+zYMQ0ZMkSJiYlKTU3VyJEj1a5du3Tr7969WyNHjpSdnZ3s7Ow0fvx4NWzY8H92fwAAAAAAAE+aPBs0AQAAAAAA4PGSJx+dAwAAAAAAwOOHoAkAAAAAAAA2QdAEAAAAAAAAmyBoAgAAAAAAgE0QNAEAAAAAAMAmCJoAAAAAAABgEwRNAAAAAAAAsAmCJgAAAAAAANgEQRMAAAAAAABsgqAJAAAAAAAANkHQBAAAAAAAAJsgaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCftHXcDjLDU1VZcvX5aLi4sMBsOjLgcAAAAA8AQyGo2Ki4tTiRIllC9fPiUlJSklJeVRl4WnhIODg+zs7CweT9BkhcuXL8vHx+dRlwEAAAAAeAqcOnVKBoNBCQkJj7oUPEUMBoPc3NxUrFgxizbZEDRZwcXFRZJ04cIFubq6PuJqAAAAAABPotjYWHXq1En379+Xq6urvLy85ODgwJM1eOiMRqPu3r2r69evq0CBAnJ3d892DkGTFR78n9rV1ZWgCQAAAADw0HTq1EmFChXSs88+S8CE/6kCBQooISFB165dk5ubW7Y/fxwGDgAAAABAHpacnKyKFSta9Id84GFwdXVVSkqKRWeDETQBAAAAAJCHpaamyt7eXg4ODo+6FDyl7O3THohLTk7OdixBEwAAAAAAeRw7mfAo5eTnj6AJAAAAAAAANsFh4AAAAAAAPMaO3Lv4qEtQlYLP5mpedHS0IiIiFBUVpVKlSmnMmDFq166dChcunOH4Q4cOadq0aYqPj5erq6uMRqMqVqyou3fv6sUXX1RgYGC6OZcuXdKUKVM0a9asXNX4zTff6JNPPpGXl5fs7e0VHx+vMmXK6NatW5o5c6Yk6euvv9akSZO0b98+VatWTT4+Pjp16pQaN26siRMnqkiRItq2bZuaNGkif39/ubq66tSpUzp9+rRefvllGY1GHT16VHZ2djp79myu6swrCJoAAAAAAMAjUb9+fbm7uysqKkpDhw5V7969Mx37YExUVJSaNGlial+3bp06duyoF198McN5ixYt0tKlSzVlyhQVKFDA4tqMRqOGDRumnTt3au3atXrmmWfMaunevbsmTJggV1dXdejQQVevXtW+ffv09ddfq1y5cjpx4oT8/f21a9cu7du3T5I0d+5c9evXT5I0duxYjRs3Tt9++63s7e2VkJCgnj17WlxfXkXQBAAAAABPCVvsfMntzhUgMwULFpQkFSpUKNMxBw8eVM+ePTVjxgyzkEmS2rRpo/Hjx2c4LyUlRatWrdLt27f15Zdfqnv37hbXNW/ePM2dO1cnT540C5kkqUuXLjp06JBu3LghV1dXs/t4oEKFCgoJCdH06dO1evVqVahQQa+//nqm13N0dNSAAQMsri+v4owmAAAAAACQp40ZM0b58uVTnz59Muzv379/hkHVxo0b1bdvX1WqVEkff/yxxdeLi4vTqFGj1KFDB5UsWTLDMaGhoXJycspynXLlykmSLly4oFq1amUZpklS48aNLa4xr2JHEwAAAAAAyLPu3LmjDRs2yN/fP9Ngx8PDQ7Vr107Xvnz5cs2bN08pKSl66623dOLECVWoUCHba65evVpxcXGZPo4nSUWLFs12nTNnzkiSKlWqlO3YJwU7mgAAAAAAQJ515swZJSUlWRTs/N3Fixfl6ekpV1dX9ejRQwUKFLB4V9Pvv/8uSfLx8UnXt2vXLg0ZMkTBwcEaOnSojhw5kuEax44d04IFC+Tn56dXXnklR7U/ztjRBAAAAAAA8qy4uDhJUv78+XM07+OPPzadeeTh4aGgoCB9+umnmjRpkhwcHCy6ZmJiYrq+Bg0a6OLFiwoODlZUVJSqVKli1j937lzZ29vrzJkzGjFihN566y3Z2dnlqPbHGUHTU4JD/x4OPlcA/DrwcPC5AgCABx7sKvrzzz8tnpOSkqJ169bp7NmzprZr167p2rVrWrt2rTp27Cgp7Zvl7t69azbX2dlZpUuXliSdOnUqw/Uf7K7y8vJK1zdw4EDT2UxPI4ImAHhK8Ad3AAAAPI4KFCigSpUqac+ePUpISJCjo2OG45KTk2VvnxZzbNiwQYMHD1bv3r3NxpQvX14ff/yxKWg6d+6cKVR64MyZM2rbtq3effddrVmzRiNGjHgId/XkImgCAAAArECQDwAPT0JCgtavX6/Ro0erW7dumjVrlkaOHJlu3LFjx3Tx4kU1bdpUkrR06VJ98skn6cZ17dpVEyZM0Pnz5+Xr66vixYtrx44dZmOKFy8uR0dH9ezZU0uWLNGWLVvUrFmzh3ODTyCCJgAAgKcEgQgeJ/y8PvlWnt1m9RpBpQKtXgOP3r179yRJsbGxZu0pKSkaNmyYQkJC9MILL2jPnj0KCwtT/vz5NXDgQNOZTXv27NHOnTv1r3/9S1Ja6JSQkCAXF5d012rdurXGjRuniIgITZ06VY6OjmrYsGGGdc2dO1dXrlzR66+/rjVr1qh+/fqmvtu3b0uSDAaDqS0+Pt7sfrLzYHx8fHyGtT6uCJrwP2WL/5hIUvU/ylq9RqWX0n97AAAAAADgfyc6OlqzZs2SJI0dO1Zr166Vvb29EhISdPLkSRkMBs2ZM0eSNHv2bDVq1EiRkZH66KOPVLZsWRUvXlzNmjUzhUx79uzRwIEDdfXqVUVFRalLly6ma924cUNLliyRJM2cOVOFCxfW0KFD5eTklGFtTk5O2rhxo5YtW6bw8HC5urrKy8tLt27d0r1797RixQq9+OKLkqSvvvrK9I12kyZN0qBBg9S4ceMM101KStLKlSv15ZdfSpJGjx6tPn366Pnnn7fy08wbDEaj0fioi3hcxcbGys3NTbdv35arq+ujLidLtvgbofLnt1q9xmqnklavIeWdoIm/aXs4+FwfDj7Xh4PP9eHgc304+FwfDj7Xh4PP9eHIS58rO5osd+PGDe3du1eNGjWSs7Pzoy4HT6H79+/rzJkzKl26dKbB3APsaAIesaRjn1q9hq0CvKflP9QAAADIPVv8/lWSZKPfwwLIW/I96gIAAAAAAADwZGBHEwCTYz9csHoNzr4CAAAAgKcXQRMAwGK22CrvUKmHDSoBAAAAkBfl6aApMTFRYWFh+umnn2QwGNSkSRONHz9e9vaZlz1x4kSNGTMmw77Q0FDNnDnT9D4pKUlly5bVhQv/t4sjICBA27dvt91NAACQDQI8AAAAPCnydNDUuXNnpaSkaPfu3ZKkli1bKiQkxPR1hBlZsmSJXFxcVKxYMeXL939HUJ06dUrt2rUzG7ts2TIZjUZVrFjR1BYaGmrbmwAAmLHFN8xIHF6P7NnqsFpCPADIuzj6Ach78mzQ9MUXX2jt2rU6cOCA7OzsJEnvvfeeGjVqpC5duqh58+bp5uzYsUPBwcEaO3as2a6nc+fOqV69emrcuLGpLTU1VfPnz9fBgwfl7u7+0O8HAGBb/MbSHAEeADw8tvg1ll9fATwt8mzQFBkZKW9vb1WvXt3U5ufnJycnJ0VGRmYYND3zzDOaOHFiuvYVK1aoY8eOpsBKklavXi0HBwcdPnxY9erVM9v9BODxZ4udDKtt9JW7/MYSeLzxB0xzttopZotfY5+kzxUPh61+XmWj3xMAwNMgTwZNcXFxio6Olr+/v1l7/vz5Vbp0ae3YsUNGo1EGg8Gsv0yZMhmut2LFCs2ePdus7YMPPtDevXvVsGFDPfPMMxo/frx69+5t2xsBALHzBo8Xfl6BxxvBKADgUcuT23guXryolJQUFStWLF2fm5ubbt26pVu3blm01rFjxxQTE6MGDRqY2pKSkjRx4kQtWbJEPXv21PXr19WnTx+9+eabWa6VkJCg2NhYsxcAAAAAAADS5MkdTTdv3pQkFSxYMF3fg7OX4uPj5eHhke1aUVFRCgoKMtv95ODgYHr0rkePHgoLC9Mrr7yiiIgINW/eXK1bt85wrcmTJ2vcuHE5vh8AAPB0Y6fYw8HnCgBA3pMngyYnJydJaWHSP92/f1+S5OnpadFaK1as0LJly7IcU758eW3atElVqlRRVFRUpkHTu+++q+HDh5vex8bGyseH35wAAADAOpwlBADS/v37NX36dKWmpsrFxUUJCQkqVKiQypcvrzp16kiSIiIiFBUVpVKlSmnMmDFq166dChcunG6dDz/8UEuXLlWtWrX066+/ZnrNVq1aacOGDRoyZIj69eunatWqWVRrSEiIkpOTtWTJklzf75MqTwZNZcuWlSTFxMSk64uJiZG3t7cpjMrKvn37lJycbPqBzO6ar776qmk3VUYcHR3l6OiY7VoAAAAA8HfswMPDZLOw2goOlXpYNT8qKkr/+te/tGrVKtWvX9/Uvm/fPr366quKiIhQ27Zt5e7urqioKA0dOjTTc5Zr1KihyMhILV26VPv27VN0dLTZmg/88ccf2rRpk6S0J5gKFSpkUa07duzQJ598ou7du+fiTp98efKMJnd3d9WsWVPHjx83a09ISNCFCxfUrFkzi9ZZsWKFXnvtNYuv6+Pjo6pVq+aoVgAAAAAAkHsHDhxQjx49NH369HSBUK1atbRo0SLduHFD0v8dsZNdKFSoUCHVqlVLLi4u6b4c7IG5c+eqcePGkmTRZhZJSkxM1IwZM9J9eRn+T57c0SRJgwYNUt++fXXo0CFT+LNr1y4lJyerX79+kiSj0ag7d+7IxcUl3Xyj0agvvvhC69ats/iaR48e1dy5c21zAwAAAMBjiJ03AP7Xhg0bpiJFiigoKCjD/mbNmmnfvn05XtfFxUU9evTQ/PnzdeXKFRUvXtzUFx8fr//+978KDAzUjz/+aPGaU6dO1dChQzV27Ngc1/O0yJM7miSpV69eCggI0NSpUyWl/RCMHTtWISEhpsQxNDRUnp6e+vnnn9PNj46OlrOzs6pXr56ub+vWrerTp49Onz4tSUpNTdWUKVM0cOBA+fr6PsS7AgAAAAAAD5w7d07bt29Xo0aNTF/+lZFatWrlav3BgwcrKSlJ8+fPN2tfsWKFunTpkqO1Tp48qcuXLyswMDBXtTwt8mzQZGdnp/Xr18vOzk5+fn4KDAxUq1atzH44vLy85OrqKmdn53Tzo6KiMn1sztnZWbt371b16tXVpk0bjR49Wq+99lqmh4ADAAAAAADbO3jwoIxGY4ZftHXq1CmFh4crODhYPXr00Pfff5/j9StVqqQmTZpo/vz5SkpKMrUvW7ZMb7zxRo7WGjNmjCZMmJDjGp42efbROSltm9vixYsz7Q8PD1d4eHiGfREREZnOq1u3ro4cOWJ1fQAAAAAAIPfi4uIkpZ199E/lypXToEGDVKxYMfXv319NmzbV2bNnc3yNIUOGqH379lq1apW6dOmiPXv2qGrVqhluWsnM0qVL1bp163TfcIf08uyOJgAAAAAA8GQrXbq0pLTdSxkpWrSopLQnmnKrTZs28vX1NR0KPmfOHA0aNCjDsYmJibpz547pFR8fr5iYGG3cuDHHO6CeVgRNAAAAAADgkahdu7aeeeYZ/fDDD7pz547V6z34drq/s7Oz04ABA7R7925t3rxZN2/eVMWKFTOc//7778vFxcX0atmypdavX68VK1bIYDCYXtu3b9enn34qg8GQq11WTzKCJgAAAAAA8EjY29tr0qRJio+P1+TJk61aKyEhQevXr8+wLyQkRI6OjgoODlZISEima/Tu3Vs7duwwvWbPnq02bdrot99+M3u98MILpvYSJUpYVfeTxqozmv7880/Nnj1bV65c0aJFiyRJM2bMUMWKFdWqVSubFAgAAAAAAJ5cPXr00B9//KH3339fPj4+6t+/vwwGgyTp9u3bkmR6f+/ePUlSbGys2RopKSkaNmyYKUSKj49XfHy8qd/b21tBQUHavn272ReBPRgTHx8vFxcX+fr6Zvht9J6enmbvCxUqJE9PT9WoUcOaW38i5TpoOn36tBo2bKg///xTpUqVMrU/+Bf7+eefa+nSpVl+PSEAAAAAAMC4cePUrFkzRURE6KuvvlKZMmV07949/fnnn/rPf/6jvn37Kjo6WrNmzZIkjR07VmvXrpW9vb0SEhJ08uRJGQwGzZkzRwcPHtTHH3+s/fv3KzIyUh06dFDx4sU1ZMgQVa5cWXZ2dkpJSdGKFSv05ZdfSpJGjx6tvn37qlq1ao/yY3gi5DoFGjlypPLly6fhw4frhx9+MLXny5dPH330kYoWLarw8HBNmjTJJoUCAAAAAID0HCr1eNQl2ETDhg3VsGHDTPvr16+v+vXra8WKFVmuU61aNc2cOVMzZ840a/fz85Ofn5+ktHObunbtqq5du+aq1m3btuVq3tMg12c07dy5U9HR0Zo+fbrc3NzM+lxdXVW8eHF9+umnVhcIAAAAAACAx0OudzRVrVpVJUuWlPR/z0o+cPfuXV25csW6ygAAAAAAAPBYyfWOJnd3dyUkJEiSjEajWd+ECROUkJCgKlWqWFcdAAAAAAAAHhu5Dpr69u2r7t2766+//jLtaLp06ZLefPNNTZs2TQaDQSNHjrRZoQAAAAAAAMjbcv3oXMuWLXX27Fk9++yzSklJUdGiRXXjxg0ZjUbly5dP48aNU3BwsC1rBQAAAAAAQB6W66BJkgYOHKh27drp66+/1rFjx5SSkqLSpUurQ4cOKleunK1qBAAAAAAAwGMg10HTqlWrdP/+fb3xxhsaMmSILWsCAAAAAADAYyjXZzSFhIRo+vTptqwFAAAAAAAAj7FcB01ly5bN9rDvDRs25HZ5AAAAAAAAPGZyHTR9/PHHOnHiRKb9CQkJGjBgQG6XBwAAAAAAwGMm12c0RUZG6o8//tALL7yg559/3qwvJSVF+/bt06VLl6wuEAAAAAAAAI+HXAdNR44c0c8//yxJ+u233zIcYzAYcrs8AAAAAAAAHjO5Dpo6dOigDh066NVXX5WDg0O6/tOnT6tdu3ZWFQcAAAAAALK28uy2R12CgkoF5mpedHS05s+fr6VLl6p+/foqX768JCk1NVVHjhxRcnKyli5dqo8//lizZ8/WM888o/r16+vatWuKjY1Vnz59NHjwYNN6q1at0kcffaRdu3Zp0qRJCgsLM7veDz/8oKlTp+rEiROaMGGCGjZsqC+//FKjR49Wamqqpk2bps6dO2vPnj2aOnWq9uzZow4dOsjFxUWSlJycrJ9++kkdOnTQRx99lOW9zZs3T++//77u3Lmjdu3aKSIiQs7OzlnOWbNmjV599VXT+/79+2vevHlZztm8ebO++eYbPfPMM7p48aJefvlldejQQZK0YsUKffDBBzpw4IDat2+vESNGqH79+vr111/Vs2dPHT16VIMGDdKbb75p+uytZVXQFB8fr3LlymXYX7JkSbN/2QAAAAAAAH9Xv359eXh4aOnSperVq5dCQkJMfUlJSRowYICqV6+uDz74QLNnz1bPnj01ceJESVJYWJiGDBmixMREvfXWW5KkTp06qU2bNqpWrZrCw8MVGBio+vXrm9Z86aWXlJCQoO3bt6tr166SpBEjRmjVqlVKTEzUsGHDJKVlHn/++af27NmjKVOmmGUfly9f1uzZs7O8rzVr1ujWrVtav369vv32W4WFhalYsWKaPHlylvNWrFihDz/80PS+ffv2WY4/duyY/v3vf+vnn3+WnZ2dUlJSVKNGDfn6+qp27doKDg7WrVu3NHDgQE2YMEHPPfecJKlSpUpKSkrSt99+q+bNm2d5jZzKddBUpkwZ0z/fvn1bx48fl5ubm8qXL698+dLOGP/ggw+srxAAAAAAADyxChQokGG7g4ODOnfuLEkqWLBguv733ntP06ZN00cffWQKmiTJ0dFRJUqU0O3bt9WlSxft379fHh4eZtdzcnIyW8vJyUn29uYRSWZ1lShRQo0bN87ynnx8fExPeVWvXl2bN2/WwYMHs5yzc+dO1atXT6GhoVmO+7uNGzfK29tbdnZ2kiQ7Ozs999xz2r59u2rXri1Jpnt1dHSUlLZbrHfv3po2bZrNQybJim+dk6QbN26oa9eu8vLyUr169VSlShWVKFFCY8eOVVJSkq1qBAAAAAAAT6EWLVpk2ufk5CR3d3fFxMRk2P/555/r4sWL6tOnz/+0LkmqVauW2fvChQurbdu2Wc6ZMmWKpkyZon79+unUqVMW1eHl5aWtW7fql19+kSQlJibq119/VUBAQIbjjUajBgwYoJdffllt2rSx6Bo5leug6datW2rUqJGioqJkNBpVrlw5+fn5qVixYpo6daqaNGlC2AQAAAAAAHJl3LhxWfafPXtWN27cUL169TLsb9q0qcaMGaPVq1crIiLCJjUlJydr0qRJOZpz+fJleXl5qW/fvpmOuXv3rtzd3fXss89q0aJFqlatmtauXZvt2p06dVL58uX18ssva/PmzRo8eLBGjhypOnXqZDj+zTffVOnSpR9K+PZAroOmCRMm6NKlS5o+fbpiYmJ0/Phx7d69W/v379eNGzdUvXp1TZ8+3Za1AgAAAACAJ9TixYvVs2dP9ezZU/7+/lqyZEmmYy9evKhu3bqpWLFiZmca/dN7772npk2basSIETpw4ECu6ho1apR69uypbt26qUKFCjp58qRF8xISErR48WLVq1dPP/zwg37//fdMxzo7O+uzzz7Tnj17tH//fpUrV05dunTRhQsXsrxGgQIFtHnzZpUoUUItWrSQm5ub+vXrl+HYkSNH6ptvvtHQoUMtqj+3ch00ffPNN1q7dq2GDx8uNzc3s76CBQtq1qxZ+vHHH60uEAAAAAAAPPl69eqlJUuWaMmSJdqxY0e6x88kacuWLercubPKlCmjChUq6MiRI6patWqma+bLl0+ff/65ChcurKCgIN29ezfHdU2ZMkVLlizRZ599pm3btqlQoUIWzXNwcFDTpk01dOhQXb58We3bt1dycnK286pVq6YtW7bI0dFRn332Wbbjb968qZo1ayogIED/+c9/NGXKlAzHlS9fXpcuXVKnTp0e6hNouQ6a3NzcFBgYmPnC+fIpISEht8sDAAAAAICnVP78+dWyZct07XXq1NHy5ctVvXp1bd261fRlZFkpUqSIoqKidPr0aQ0aNMiqunx9fVWjRg3T+8TERN25c8f0io+PN/Xly5dPPj4+Gj58uGbOnKkzZ87o8OHDFl2nWLFi6t27t86ePZvldf7880+1b99eM2bM0Hfffae2bdvqnXfe0datW9Ot2a9fP02ePFkbN25Uz549ZTQac/9BZCHXQdPfT2zPyO+//64//vgjt8sDAAAAAICnWEhISIbtDg4OWr58uW7cuKHBgwdbtFZAQIAmTpyopUuXaunSpTar6/3335eLi4vplVE4JqWdpSSlBWiWKlOmjJ599tksrzNv3jxVqlRJRYsWlaOjo1auXKkaNWro448/znDNd955RyNGjNDy5csf2iN0uQ6aatWqpbFjx6ZLwOLj47Vo0SI1a9ZMzZo1s7pAAAAAAADwdEpJSckwGKpQoYJmzpypzz//XMuXL7dorVGjRqlVq1ZavHix1XWdO3dOP/zwg3r37q0dO3aYXrNnz85w/P3791WsWDGVK1fO4mscPHhQr7/+uiRlep3bt2/L0dHRNMfR0VG9e/dWampqputOmzZNffr00ezZszV+/HiL67GUfW4n/vvf/1bt2rW1cOFC1a5dW46Ojrp06ZIOHz6suLg4FS1aVBMmTLBlrQAAAAAA4Anz4NidjM4NCg8PV9OmTXXv3j1JaYHNA3369NGmTZvUr18/Va5cWTVr1jT1xcfHKz4+XgUKFDC1GQwGLV261GzcAw/Wt6SuhIQEDRkyRF988YUKFiwoX1/fdHMXLFig5557Tg0aNJDRaNTYsWM1Y8YMOTg4SJKuXr2qVq1aaerUqWrSpInWrFmjdevWaeLEiSpWrJiWL1+uKlWqmIIpX1/fDK8THBys1q1b69atW3J3d5ckHTlyRN26dUt3b4mJiaa2+fPn68yZMwoPD5eUdmi6reQ6aHJzc9PPP/+sIUOGaNWqVUpJSTH1BQYGatGiRXrmmWdsUiQAAAAAAHjy7Nq1SzNmzJCUttNmz549ktJ2Mh0/flxnz55V586d9fbbb0uSNmzYoGXLlqlz585ydHTUggUL9Pzzz6tx48YaPHiw2rZtq7179+rAgQMKCwtTnz59zA4L9/T01MqVK01nGF2+fFmrVq0yfSPd1KlT1bVrV+3YsUNz5syRlBZoVahQQVJayLRnzx7VrFlTBQsWzPS+vv32Ww0dOlS1atVSxYoV1alTJ73yyium/oSEBJ09e1a3b9+WlHY80ffff6+VK1eqfv36GjJkiGk3U1b8/PwUERGhHj16yN/fX6mpqWrUqJFat24tSfr88881b948SWmPzQ0fPlyBgYE6f/68KUgLDw/Xtm3b1KdPH3Xt2jXba2Yn10GTJBUuXFhRUVH68MMPtXfvXt27d0/Vq1dXpUqVrC4MAAAAAABkL6hU4KMuIdcaNGigBg0aZDsuIiJCERER6do9PDx0/vx5s7Z69erpzTffzHQtf39/+fv7S5JKlCih0NBQhYaGmo0JDg5WcHCwJbeQoTVr1mTZX7JkScXExJjeBwQEmA7+zqmgoCAFBQVl2Ne1a9cMw6PSpUtr586dubpedqwKmh4oVqyYKS37+1YsAAAAAAAAPD1yfRh4SkqKhg0bpqZNm5rakpKSNH36dA0YMEC3bt2yRX0AAAAAAAB4TOQ6aJo6dapmzZqlXbt2mQ6WcnBwUFhYmCpXrqwXXnhBV65csVmhAAAAAAAAyNtyHTQtXrxYo0aN0u7du9MdgDVkyBD9+eefpsO6AAAAAAAA8OTL9RlNhQsX1uTJkzPss7Ozk7e3t9avX5/rwgAAAAAAAPB4yfWOpqy+xu/kyZM6f/68jEZjbpcHAAAAAADAYybXQVOdOnU0derUdO1HjhxRp06dJMnsoPCcSkxM1IgRI+Tn5yd/f3+FhYUpOTnZornBwcEyGAyml4uLi+Li4szGREdHKzAwUAEBAQoMDNTevXtzXSsAAAAAAACseHRu9OjR8vf314oVK9SgQQM5ODjo0KFD+uGHH5SamqrChQtrypQpuS6sc+fOSklJ0e7duyVJLVu2VEhIiJYsWZLlvFOnTumHH35QxYoVTW3t2rWTi4uL6f2uXbvUokULbdq0SQ0aNNBPP/2kJk2aaOfOnapWrVquawYAAAAAAHia5TpocnFx0c6dOzVkyBDNnz/ftNvIYDCoadOmioiIUNmyZXO19hdffKG1a9fqwIEDsrOzkyS99957atSokbp06aLmzZtnOnfq1KlauXKlAgMDM+xPSUnRgAED1KxZMzVo0ECSFBAQoDp16qhfv36mYAsAAAAAAAA5k+tH5yTJ09NTy5cvV0xMjPbs2aOff/5Z169f13fffacKFSrket3IyEh5e3urevXqpjY/Pz85OTkpMjIy03lXrlzRhg0bdO/ePd29ezfDMdu3b9ehQ4fUpEkTs/aAgAD9/PPP2rdvX67rBgAAAAAAeJpZFTQ94OLiojp16sjPz0+enp5WrRUXF6fo6GiVL1/erD1//vwqXbq0duzYkekh4zNmzNClS5fUqlUrFS1aVG+//bbu379vNmbz5s2SlC4Iq1SpkqS0IAoAAAAAAAA5l+tH5/7p4MGDmjlzpq5cuaKAgAANHTpUTk5OOV7n4sWLSklJUbFixdL1ubm56ejRo7p165Y8PDzS9Xfs2FF+fn765Zdf9Omnn2ratGn66aeftHXrVjk7O0uSzp49K0np1ndzczPrz0hCQoISEhJM72NjY3N6ewAAAAAA2NSxHy486hJU6SUfq9f48ccfNXv2bDk6Oio+Pl737t3T8OHD1aJFCxtUmHt//vmnJk+erPv372vevHnZjk9ISFCpUqV09epVSWlPg124cEEFCxbMdE7z5s313XffpWtfu3at2rRpo7i4OL311ltavXq1nJ2dFRISotGjR8vOzk7nzp3T3LlztWjRIl2/fj33N2ojFgdNvXv31qFDhyRJ3t7eqlevnv79739Lkr7//nu1adNGiYmJMhqN2rhxo7755htt27ZNjo6OOSro5s2bkpThvwB7+7Ry4+PjMwya6tatq7p166pz587697//re7du2vt2rUKDw/X9OnTs1z/72tnZvLkyRo3blyO7gcAAAAAAGRtxowZWrhwobZs2aJnn31WknT8+HE1a9ZMgwcP1qhRox5JXVeuXNHXX3+tBQsWKCgoyKI5n376qXr27KmiRYtKkipWrJhlyHTx4kX99ddfmjVrlumLzJKSkvTWW2+Zjv0ZOnSoPDw8FBERodWrVys8PFwGg0FjxoxR/vz5lZCQoBs3blh5t7ZhcdDUvHlzLV++XB999JFCQkJMwUxcXJy6d++uhIQEVa1aVbNmzZKdnZ3eeustTZs2zRRGWerBLqiMAp8Hj8FZ8niem5ubvvzyS9WsWVNRUVGmoCmz9S1Z+91339Xw4cNN72NjY+XjY31qCwAAAADA02rTpk0aMWKEduzYYQqZpLSAJjIyUm3bttXzzz//SHY2FS9eXIMHD9Znn31m0fjU1FT9+OOPioqKsvgahw8f1vbt21WgQAFT25YtW9S0aVMVLFhQsbGxqlatmt566y1JUpcuXdS0aVMtXLhQY8aMUfHixVW1atWc3dhDZPEZTdu2bdPUqVM1YMAAU8gkSVOmTNHVq1fl7u6u7777ToGBgWrUqJG++uorffXVVzku6ME31cXExKTri4mJkbe3t8WP5OXPn19Dhgwx7WLKav0H7319fTNdz9HRUa6urmYvAAAAAACQe6NGjVKFChVM3wz/d61atVLhwoX1zjvvPILK/o+lOcTq1au1Zs0aNWvWTF9//bVFc5o3b24WMknSmjVr9Oqrr0pKC68GDBhg1t+mTRuzrMPOzs6ia/0vWBw07du3TwMHDjRru3HjhmbOnCmDwaBRo0aZnXtUsmRJs0DKUu7u7qpZs6aOHz9u1p6QkKALFy6oWbNmOVrPx8fHLNl76aWXJCnd+qdOnZKkHK8PAAAAAABy5+TJk/r9999Vp06dDPvz5cungIAAHThwQFOmTJHBYFBgYKBu3rypjRs3qnjx4nJzc9OaNWskpZ0fXapUKU2aNElS2tNMY8eO1aBBg1SjRg316tVLsbGxiomJ0ZQpU1SqVCkdOXJEvXv3VqFChdS2bVslJSXl+n4uXryowMBA/fLLL+rYsaO6deum1NTUHK+zYcMGtWnTRlJaTvLPICo5OVl169ZNN+/EiRPy9/eXh4eH+vfvn+4L0v4XLA6aChQoIAcHB7O2yZMn6+7duypSpIhCQ0PTzTEYDLkqatCgQbpy5YrpTChJ2rVrl5KTk9WvXz9JktFoVFxcXLZrRUdHa8yYMab3LVu2VKlSpdIdsrVt2zYFBgam+7Y7AAAAAADwcBw+fFiSVKJEiUzHPOirXLmyWrRoIQ8PD3l6eqply5YaNWqU7O3t9corr0iSqlatqgYNGmj06NGSpLffflt9+/bVnDlz9OOPP+rbb7/V8OHDlZKSokKFCuncuXNasGCBRo4cqa+++krr1q3TN998k+v7GTp0qDZs2KDLly9r0KBBWrZsmT766KMcrbFv3z6VLFlShQsXznTMli1bNHLkyHTtH3/8sSZMmKAhQ4Zo4cKFps/hf8nioOn27dtm70+cOKHIyEgZDAaFhYWlS9fu3bunY8eO5aqoXr16KSAgQFOnTpX0fwlkSEiIGjduLEkKDQ2Vp6enfv75Z0nS+fPn1a1bN23dutW0zvr1602J5AMODg6aN2+eNmzYoCNHjpjGHTp0SLNnz85VvQAAAAAAIOfu3bsnKe3om8y4u7tLSjsjukePHtq0aZPpW+CrVq2qmzdvat26dZKkn376Sc2bN5cknTt3TuvWrdNnn32mDz74QPPnz1ejRo2UkJCgIkWKqHLlypLS8oXKlSurefPm8vLy0smTJ62+L2dnZ0VGRqpLly4WfVPd361Zs0bt27fPtH/fvn0qUKCA6T7/burUqXr55Zc1YcIEde/eXQsWLMhx7dayOGgqW7asZs2aJUm6c+eO3njjDSUmJqp8+fLpHqmTpIiICN29ezdXRdnZ2Wn9+vWys7OTn5+fAgMD1apVK82fP980xsvLS66urnJ2dpaU9i1yFy9eVOvWrdWgQQMNGzZMrq6uCgsLS7d+8+bNtXLlSvXs2VONGzfWnDlz9NNPP+Wpw7MAAAAAAHjSeXl5SVKWTyw9ePzLy8tLr776qvLnz286E/rrr79W8+bNtXjxYklpZyR17NhRUtpuKScnJ73zzjum11dffWU62Dtfvnxm/yulBUSJiYk2u7+wsDCdPXtWUtqTWXfu3DF7GY3GdHPWrl1rOp/pnxITEzVp0iR98skn2V67ZcuWunPnjq5du2bNLeSYxYcohYeHq27dulq4cKGuXbum69evy9HRUYsXLzY7iyklJUXz5883e1wtN1xcXEw/KJnVEx4ebnrv5eWlH3/80eL1W7durdatW1tVIwAAAAAAyL0aNWooX758OnHiRKZjzpw5Izs7O9WuXVtOTk7q3LmzPv/8c7344osqXry4mjVrpqCgIJ05c0ZGo9G0ISUhIUFnz57VzZs3zb5h/saNG6aA62ErU6aM6Zv0zp07p9KlS6e7t1KlSpnenzt3Tvny5cv0i8rCwsI0duxYeXh4ZHttFxcXGQwGFSxYMPc3kAsW72iqVq2aNm/eLEdHR8XGxur555/Xt99+q3r16pnGjB49WgEBAfrwww/l6+urMmXKPJSiAQAAAADA469IkSJq2rSpdu7cmeHB1SkpKdq1a5fatWtnOrOoW7du+vHHHxUeHq5+/fqpdevWcnd3V5cuXcx2AlWpUkUJCQmmg8EfWLRo0UO9p7/bu3evevfuLUkqXry4duzYYfYqXry42fi/f9vcP82YMUNNmzZVtWrVTG1Z7VY6efKk6tatq0KFCll/IzmQo6+Fa9iwofbu3Ztp/z//5QEAAAAAAGRl+vTpqlu3rubNm6dhw4aZ9S1btkzx8fGmM5wlKSAgQL6+vjIYDCpatKgk6fXXX9eaNWsUGBhoGlexYkW1b99eM2bM0NWrV9WoUSN99913GjRokCSZvl3un98Kl5KSkq7GpKQkJScnp2sfPHiw8uXLp9mzZ+vWrVvq1auXBg8erKZNm+r06dNavHix6RggR0dHNWzYMMvPYs2aNZo5c2a69gULFmj//v2qUqWKNm3apJSUFP3+++/y8vJS3759TePOnDmj0qVLKy4uTosWLXokZzTlKGgCAAAAAACwpWrVqumbb75Rjx49VLhwYb3++uuSpJUrV2rs2LH69ttvVbZsWdN4g8Ggbt26qUOHDqa2Xr16ydXVVQaDwWztTz75RM7Ozlq9erV2796tsWPHqmnTpjp//rwWLlwoSZo5c6ZGjhypDRs26NKlS1q/fr1at24tf39/xcXFacWKFfr999917tw5LV26VN26dTNd59KlS6Z/dnJy0t27d9W6dWtVqVJFr7zyiubNm5flQed/99dff+ny5cvpzo9euXKlBgwYIKPRaDpfSko73/ry5cuSpE6dOunMmTPq1KmTKlasqPz582vhwoXy9/e36Nq2ZHHQ5OnpKW9vb/Xt21dvvvmmHB0dH2ZdAAAAAADAApVe8nnUJVitWbNmOnDggEaPHm3aodOmTRv9+uuvZucrPTB+/Hiz9zVq1FCNGjXSjXN3dzcLZx7w9fXVypUrzdr69eunfv36mbW5uLiob9++ZruG/u6bb74x/bOTk5O+++67DMdZwsPDQ0ePHk3XHhQUpKCgoCznFipUSOPGjdO4ceNyfX1bsThoio2NVXR0tCpVqvQw6wEAAAAAAE8hb29vLViwQCVLltSYMWP066+/ysnJ6VGXhRzK0WHghEwAAAAAAOBhGj16tDZu3ChJCg4OVmJi4iOuCDlhcdDk7u6e48WDg4NzPAcAAAAAADzdmjdvrmPHjqlTp056++239dlnn+n69euPuixYwOJH5/55oFZ27t27p23btuW0HgAAAAAAAOXPn1/du3dX9+7dH3UpyAGLg6Z9+/YpICDAorFJSUk6ffq0YmJicl0YAAAAAAAAHi85Ogx8586dOVo8p7ugAAAAAAAA8PiyOGh6/vnn9dFHH1k0Njk5Wfv379c777yT27oAAAAAAMD/ZzQaH3UJeIrl5OfP4qDJw8NDjRs3tnjhJk2aKCoqyuLxAAAAAAAgvXz58ik5OVlJSUmPuhQ8pZKTkyVJ9vbZx0gWf+tcbn6gZ8yYkeM5AAAAAADg/9jb2+v48eO6ffs2O5vwSMTGxsrOzk52dnbZjrV4R9PJkyeVkpJi0aIPWHp4OAAAAAAAyNyqVavUsmVLXbx4UW5ubnJwcOBcZDx0RqNRd+/eVWxsrIoXL27Rz5zFQdO1a9fUsWNHvffee6pVq5ZFc+bMmaNBgwZZegkAAAAAAJCBPXv2yNPTU/Hx8bp06dKjLgdPEYPBIHd3d7m5uVk03uKg6ccff5QkxcXFKSkpSQ4ODlmOT0pKUlhYGEETAAAAAAA24OzsrOLFiyspKUkpKSmPuhw8JRwcHHL0dJvFQVNODgKX0nYzxcXF5WgOAAAAAADImoODQ7abP4BHxeLDwB/49ddftXbtWt24cSPTMUuWLNGIESOsKgwAAAAAAACPlxwFTSEhIfLz81P79u1VsWJFbdu2zaw/MTFRgwYNUp8+fZSSkpLjXVAAAAAAAAB4fFkcNC1btkyffPKJjEajjEaj/vrrL/Xo0UP379+XJB0/flx+fn6aP3++7O3t9cEHH2jr1q0PrXAAAAAAAADkLRaf0fTpp5+qSJEimjFjhmrWrKlNmzZp1KhR+v7773X9+nWFhobq7t27qlSpkj7//HPVrFnzYdYNAAAAAACAPMbioOno0aOKiorSiy++KEmqXLmy7t69qz59+ujGjRsyGo0aOHCg/vOf/8jJyemhFQwAAAAAAIC8yeJH5wwGgylkeqBfv366fv26vL29tX79ekVGRpqFTFeuXLFdpQAAAAAAAMjTLA6aPD0907UVKVJEFSpU0KFDh/TKK6+k6+/UqZN11QEAAAAAAOCxYfGjc1evXjUdBP53RYoUUVJSki5fvmxqS0lJ0b59+7Rv3z7bVQoAAAAAAIA8zeKg6fr167K3z3j4s88+a7OCAAAAAAAA8HiyOGiSlG43U3YMBkOOxgMAAAAAAODxZfEZTc2aNdPVq1eVmpqa7SspKUk///yzChYs+DBrBwAAAAAAQB5icdD06quvqkiRIhaNtbOzk5+fn6pVq5brwgAAAAAAAPB4sTho6tmzZ44XX7t2bY7nAAAAAAAA4PFkcdBUoEABi8atX79eb775pn744Qd5eXnlujAAAAAAAAA8Xiw+DLxWrVoqWLCggoODNWTIkEzHtW7dWpUrV1abNm0UFxenCxcu2KRQAAAAAAAA5G0WB00HDx7U/v379dxzz0mSPvroI8XGxpr6PT09TQFU2bJltWbNGlWpUsXG5QIAAAAAACCvsvjRuXLlyplCJkkaNmyYypcvr3HjxqlMmTLpdjmVL19elStXtl2lAAAAAAAAyNMsDppcXFzStXXp0kWlSpXSG2+8keEcT0/P3FcGAAAAAACAx4rFQVNmfH19M188n9XLAwAAAAAA4DFhdRJkMBhsUQcAAAAAAAAecw91y1FiYqLV80eMGCE/Pz/5+/srLCxMycnJWc65ffu2hg4dKl9fXxUoUECNGjXSjh07MhyblJQkX19fGQwG06tx48ZW1QwAAAAAAPC0svhb5y5duqTw8HAZjUaz9jNnzui9995LN/6vv/7Sf//7X6uK69y5s1JSUrR7925JUsuWLRUSEqIlS5ZkON5oNKpnz56qW7euvv76ax0/flwjR45UkyZNtG3bNtWvX99s/LJly2Q0GlWxYkVTW2hoqFU1AwAAAAAAPK0sDpquXLmiiRMnpguaJGnixIlm7w0Gg4xGo1WP1X3xxRdau3atDhw4IDs7O0nSe++9p0aNGqlLly5q3rx5ujnR0dF67bXXFBwcLEmqXbu2KleurDp16mj8+PHatGmTaWxqaqrmz5+vgwcPyt3dPdd1AgAAAAAAII3FQZO7u7u6d+8uDw+PbMcajUbdunVLixYtynVhkZGR8vb2VvXq1U1tfn5+cnJyUmRkZIZBk7u7e7pdS7Vq1VKFChV09uxZs/bVq1fLwcFBhw8fVr169Ti4HAAAAAAAwEoWB03Dhw/Xv//97xwtXrRo0RwXJElxcXGKjo6Wv7+/WXv+/PlVunRp7dixI8MdU88991yG6xUsWFDFihUza/vggw+0d+9eNWzYUM8884zGjx+v3r1756peAAAAAAAA5OAw8MDAwBwv/tJLL+V4jiRdvHhRKSkp6cIhSXJzc9OtW7d069Yti9aKjY3VoUOH1L17d1NbUlKSJk6cqCVLlqhnz566fv26+vTpozfffDPLtRISEhQbG2v2AgAAAAAAQBqLg6aGDRtm2X/+/HmNGTNGw4cP1/fffy9J6XYkWermzZuS0nYi/ZO9fdomrPj4eIvWWrBggWrVqqWgoCBTm4ODg5o3b64ePXpo8eLFOnTokMqVK6eIiAitX78+07UmT54sNzc308vHxycntwUAAAAAAPBEy9HBRLGxsRo+fLhq1qypFi1a6KeffpIkHT16VDVq1ND777+vmTNnqnnz5tnuDsqKk5OTpIzDpPv370uSPD09s13n0qVLioiI0KeffprlweTly5fXpk2blD9/fkVFRWU67t1339Xt27dNrwsXLmRbAwAAAAAAwNPC4jOaEhMT9fLLL+u///2v6Zvntm/frh9//FHh4eG6deuWnJyc5OLiouvXr2vOnDlq3ry5WrduneOiypYtK0mKiYlJ1xcTEyNvb29TGJVVvV27dtXcuXNVoUIFi6756quvmnZTZcTR0VGOjo7ZrgUAAAAAAPA0snhH02effaZffvlFr7/+uubOnasePXooMTFRw4YN008//aQZM2bo9u3b+vPPP7Vjxw4VK1ZMCxcuzFVR7u7uqlmzpo4fP27WnpCQoAsXLqhZs2ZZzjcajerdu7e6deumli1bWnxdHx8fVa1aNVc1AwAAAAAAPO0sDppWrVqlESNG6LPPPlP//v21ePFijRs3Tr/88osGDx6sYcOGycHBQZLUoEEDzZo1S7///nuuCxs0aJCuXLmiQ4cOmdp27dql5ORk9evXT1JaoBQXF5du7uDBg1W9enX16dPHrP3q1atZXvPo0aNWPfIHAAAAAADwNLM4aDp58qTeffdds7bBgwfLYDCYgp+/69ixoxITE3NdWK9evRQQEKCpU6dKSjuvaezYsQoJCVHjxo0lSaGhofL09NTPP/8sKS14Gjx4sG7fvq22bdvq2LFjOnbsmH777TdNnDhRW7ZskSRt3bpVffr00enTpyVJqampmjJligYOHChfX99c1wwAAAAAAPA0s/iMJnd3d3l4eJi1eXh4yMfHJ9MzkEqUKJHrwuzs7LR+/XqFhobKz89PBoNBHTp00MiRI01jvLy85OrqKmdnZ0lS//79TY/rLV++PF2tly9fliQ5Oztr9+7dql69ul566SVVrVpV/fv3V6lSpXJdLwAAAAAAwNMuR0FTRp599tlM5+TPnz/HBf2di4uLFi9enGl/eHi4wsPDTe8XLFigBQsWZLtu3bp1deTIEatqAwAAAAAAgDmLH527du1ahu3JycmZzrly5UrOKwIAAAAAAMBjyeIdTX/88YfCw8NlNBrN2g8fPpxhu9Fo1Pnz521TJQAAAAAAAPI8i4Ome/fuaeLEiekCJUmaMGGC2XuDwSCj0SiDwWB9hQAAAAAAAHgsWBw0OTs76/XXX1exYsWUL1/WT9wZjUZduXJFn3/+udUFAgAAAAAA4PFgcdA0fPhwjRs3LkeLFylSJMcFAQAAAAAA4PFk8WHgTZs2zfHiL7/8co7nAAAAAAAA4PFkcdDUqFGjHC+emzkAAAAAAAB4PFkcNAEAAAAAAABZIWgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2ARBEwAAAAAAAGyCoAkAAAAAAAA2QdAEAAAAAAAAmyBoAgAAAAAAgE0QNAEAAAAAAMAmCJoAAAAAAABgEwRNAAAAAAAAsAmCJgAAAAAAANgEQRMAAAAAAABsgqAJAAAAAAAANkHQBAAAAAAAAJsgaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2ESeDZoSExM1YsQI+fn5yd/fX2FhYUpOTs523qVLl9SxY0c1bNhQdevW1bJlyzIcd/ToUbVo0UIBAQFq0KCBNm/ebOtbAAAAAAAAeKrk2aCpc+fOOnbsmHbv3q3o6Gjt3btXISEhWc65ceOGAgICVKdOHe3cuVNr167VqFGjtHjxYrNxJ0+eVEBAgHr27KmffvpJn3zyiYKCgrRly5aHeUsAAAAAAABPtDwZNH3xxRdau3at3n//fdnZ2cnOzk7vvfeePv300yx3Ho0ZM0ZxcXEaMWKEJKlIkSIaOHCghg4dqhs3bpjGhYaGysfHR8HBwZKkihUrqnPnzgoJCVFSUtLDvTkAAAAAAIAnVJ4MmiIjI+Xt7a3q1aub2vz8/OTk5KTIyMgM59y7d09LlixR48aNZW9vb2oPCAj4f+zdd3xO9///8eeVKyREppgtLa1ZFB+rarWorTVr1I5QUqtGUYQaH5TWKmLHVqVmtaqliGrVp1atKmoUDTJkXFnn94dfrm/TJGRcWTzut9t1+zTnnPf7vM77c0muPPM+76PQ0FD5+/tLkv744w/t2bNHDRs2TNC+Xr16+vPPP7Vjx44MuCIAAAAAAIAnX7YLmkJDQxUQEKBSpUol2J47d26VKFFCBw8elGEYidodOHBAkZGRKl26dILtZcuWte6XZJ0R9bjjAAAAAAAAkDr2jz8kc12/fl2xsbEqXLhwon2urq46e/asgoKC5O7unmDflStXJClRO1dX1wT7U3pcUiwWiywWi/Xr4OBgSVJISMijLyobeBAemu4+Qh5EpLuP8OiwdPchSQ/CbHA9Nvj/jXFNjHFNjHFNiHFNog7GNXEd2WRcJduMLeOaGOP6rzoY18R1MK6JMK6JZZdxzWjxNSY16QLIbrJd0HTv3j1JUt68eRPti78lLiIiIlHQlFy7f7ZJzXFJmTZtmiZOnJhoe7FixZJtAwAAAACALYSGhlonSQDZVbYLmhwdHSUlHfhERkZKkjw8PFLc7t9tUnpcUkaPHq1hw4ZZv46Li9O9e/eUP39+mUymR1wVAAAAAABpYxiGQkNDVbRo0awuBXisbBc0vfDCC5Kku3fvJtp39+5dFShQwBoWpaRd/NfFixdP1XFJcXBwkIODQ4Jtbm5uyR4PAAAAAIAtMJMJOUW2Wwzczc1NVapU0fnz5xNst1gsunbtmho3bpxku3r16sne3j5Ru99//12SrO1ef/11SXrscQAAAAAAAEidbBc0SdKAAQP0119/6fTp09Zthw8fVkxMjLy9vSX939TBeB4eHnr77bf17bffJlggbf/+/XJ3d1f79u0lSZUqVdKrr76qb775JsE59+/fr1KlSqlBgwYZeGUAAAAAAABPrmwZNPXq1Uv16tXTjBkzJD1cT8nX11deXl6qX7++JGnQoEHy8PDQjz/+aG03c+ZMSdLy5cslPXyCnJ+fn+bMmZNg8fDPPvtMv/32m/bt2ydJ+uWXX7R9+3YtXLhQuXLlypRrBAAAAAAAeNKYjGz6fMTQ0FANGjRIZ86ckclkUtu2bTVixAjZ2T3MxiZOnKi5c+dq//79qlixorXduXPn5OPjo6ioKMXFxWnEiBF68803E/V/5MgRjRgxQmazWWazWZMmTVKdOnUy7foAAAAAAACeNNk2aAIAAAAAAEDOki1vnQMAAAAAAEDOQ9AEAAAAAAAAmyBoAgAAAAAAgE0QNAEAAAAAAMAmCJoAAAAAAABgEwRNAAAAAAAAsAmCJgAAAAAAANgEQRMAAAAAAABsgqAJAAAAAAAANkHQBAAAAAAAAJsgaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2IR9VheQk8XFxenmzZtydnaWyWTK6nIAAAAAAE8gwzAUGhqqokWLymQyKTY2VjExMVldFp4SuXLlktlsTvHxBE3pcPPmTRUrViyrywAAAAAAPOFMJpMuXLiguLg4xcbGZnU5eMq4ubmpcOHCKZpkQ9CUDs7OzpKka9euycXFJYurAQAAAAA8iUJCQjRhwgRZLBa5ubnJxcVF9vb23FmDDGcYhsLDw3Xnzh1JUpEiRR7bhqApHeL/Ubu4uBA0AQAAAAAyRGxsrJo3b64CBQqoYMGCWV0OnjJ58uSRJN25c0cFCxZ87G10LAYOAAAAAEA2Fhsbq7x588rJySmrS8FTKm/evJKk6Ojoxx5L0AQAAAAAQDbHbXLISql5/xE0AQAAAAAAwCYImgAAAAAAAGATLAYOAAAAAEAOFv7DD1ldgvLWq5emdgEBAZo/f77Wr1+v559/XuPGjdObb76p/PnzJ3n86dOnNXPmTEVERMjFxUWGYahMmTIKCwvTa6+9pgYNGiRqc+PGDU2fPl1z585NU41ffvmlli9fLk9PT9nb2ysiIkIlS5ZUUFCQ5syZI0nasmWLpkyZouPHj6tixYoqVqyYfv/9d9WvX1+TJ09WwYIFtX//fjVs2FA1a9aUi4uLfv/9d126dElvvPGGDMPQ2bNnZTabdeXKlTTVmV0QNAEAAAAAgCxRu3Ztubm5af369Ro8eLB69+6d7LHxx6xfv14NGza0bt+xY4fatWun1157Lcl2y5Ytk7+/v6ZPn259glpKGIahIUOG6NChQ9q+fbueeeaZBLV0795dH330kVxcXNS2bVvdunVLx48f15YtW/Tiiy/qwoULqlmzpg4fPqzjx49LkhYuXChvb29Jkq+vryZOnKhdu3bJ3t5eFotFPXv2THF92RVBEwAAyHZs8ZfZtP5lFQAAZK74J5rly5cv2WNOnTqlnj17avbs2QlCJklq1aqVJk2alGS72NhYbd68WcHBwfr888/VvXv3FNe1aNEiLVy4UBcvXkwQMklS586ddfr0aQUGBsrFxSXBdcQrXbq0vLy89PHHH2vr1q0qXbq0unTpkuz5HBwc1L9//xTXl13l+DWaoqKiNHz4cNWoUUM1a9bUmDFjFBMTk6o+PvnkE1bwBwAAAAAgmxo3bpzs7OzUp0+fJPf369cvyaDqq6++Ut++fVW2bFktXbo0xecLDQ3VqFGj1LZtWz333HNJHjNo0CA5Ojo+sp8XX3xRknTt2jVVrVr1kWGaJNWvXz/FNWZXOX5GU4cOHRQbG6sjR45Ikpo1ayYvLy+tXLkyRe2PHz+u0aNHZ2CFAIAnGTNvAAA5CT+3kBM9ePBAu3fvVs2aNZMNdtzd3VWtWrVE29etW6dFixYpNjZWQ4cO1YULF1S6dOnHnnPr1q0KDQ1N9nY8SSpUqNBj+7l8+bIkqWzZso899kmRo4OmjRs3avv27Tpx4oTMZrMkafz48apbt646d+6sJk2aPLL9gwcP9MEHH6hp06batm1bZpQMAAAAIAUIRADEu3z5sqKjo1MU7PzT9evX5eHhIRcXF/Xo0UNjxozR0qVLNWPGjMe2PXnypCSpWLFiifYdPnxY69evV2BgoAoVKqR+/fqpfPnyiY47d+6c/Pz8VKNGDTVv3jxVtedkOfrWuQULFqhAgQKqVKmSdVuNGjXk6OioBQsWPLb94MGD5evrKzc3twysEgAAAAAApFVoaKgkKXfu3Klqt3TpUuuaR+7u7urYsaNWrVql6OjoFJ8zKioq0b5XX31VdevW1caNG/XKK68kCpkWLlyoUaNGafz48Ro+fLj2799vnRzzNMixM5pCQ0MVEBCgmjVrJtieO3dulShRQgcPHpRhGMmuvbR27VqVLFlStWvXlp+fX2aUDAAAAAAAUil+VtHt27dT3CY2NlY7duzQlStXrNvu3LmjO3fuaPv27WrXrp2kh0+WCwsLS9DWyclJJUqUkCT9/vvvSfYfP7vK09Mz0b53333XujbT0yjHzmi6fv26YmNjVbhw4UT7XF1dFRQUpKCgoCTbXrp0SZs2bUr12kwWi0UhISEJXgAAAAAAIOPkyZNHZcuW1dGjR2WxWJI97p8PBtu9e7cGDhyolStXWl+7d+/Wiy++mGBR8KtXr8rZ2TnB6+rVq2rdurUkscxOGuTYoOnevXuSEj8+UJLs7R9O1IqIiEi0Lzo6Wj4+Plq4cKHs7FJ3+dOmTZOrq6v1ldS9mgAAAAAAwDYsFot27typsWPHKiwsTHPnzk3yuHPnzmn//v3Wr/39/dWhQ4dEx3Xt2lXffPON/vzzT0lSkSJFdPDgwQSvIkWKqHz58urZs6cOHTqkvXv3Zsi1PalybNAUv9J8UmFSZGSkJMnDwyPRvjFjxmjgwIEqWrRoqs85evRoBQcHW1/Xrl1LdR8AAAAAAOD/hIeHS1Kiu4ZiY2M1ZMgQVaxYUe+88458fHw0ZswYzZkzJ8HaSUePHtWuXbvUqFEjSQ9DJ4vFImdn50TnatmypeLi4jR//nxJkoODg+rUqZPg5eDgIOnhWktNmjRRly5dFBAQkKCf4OBgSUqwXE98PhF/PY8Tf3xSuUZOlmPXaHrhhRckSXfv3k207+7duypQoECSjz2cNWuWPvnkkwTb4uLiJD2cCVW/fn3t27cvyXM6ODhY33AAAAAAACB9AgICrLOUfH19tX37dtnb28tisejixYsymUz67LPPJEnz5s1T3bp1tWDBAn366ad64YUXVKRIETVu3Fjvv/++pIeh07vvvqtbt25p/fr16ty5s/VcgYGBWrlypSRpzpw5yp8/vwYPHpxkdiA9nODy1Vdfac2aNZowYYJcXFzk6empoKAghYeHa8OGDXrttdckSV988YX1lrwpU6ZowIABql+/fpL9RkdHa9OmTfr8888lSWPHjlWfPn308ssvp3M0sweTYRhGVheRVlWrVtWtW7d08+ZN6zaLxaJ8+fKpY8eOWrt2baI2p0+fTrTtww8/1LZt23Tq1KkEi349TkhIiFxdXRUcHCwXF5e0XwgAZAIeE50xGNeMwbgC4PtAxmBcc6bAwEAdO3ZMdevWlZOTU1aXg6dQZGSkLl++rBIlSiQbzMXLsTOaJGnAgAHq27evTp8+rQoVKkiSDh8+rJiYGHl7e0t6uIL8gwcPrFPm4o/7Jzc3t2T3AQAAAI/CL+4AAPyfHLtGkyT16tVL9erV04wZMyQ9vK/R19dXXl5e1ilqgwYNkoeHh3788cesLBUAAAAAAOCJl6ODJrPZrJ07d8psNqtGjRpq0KCBWrRoocWLF1uP8fT0lIuLC9MLAQAAAAAAMliOvnVOkpydnbVixYpk90+YMEETJkx4ZB8rV660LggGAAAAAACAtMnxQRMAAABShrWEAABARsvRt84BAAAAAAAg+yBoAgAAAAAAgE0QNAEAAAAAAMAmCJoAAAAAAABgEwRNAAAAAAAAsAmCJgAAAAAAANiEfVYXAAAAAAAA0u5U+KasLkEV83ZMdx+//vqrPv74Y8XFxcnZ2VkWi0X58uVTqVKlVL16dUnS/PnztX79ej3//PMaN26c3nzzTeXPnz9RP5988on8/f1VtWpV/fLLL8mes0WLFtq9e7d8fHzk7e2tihUrpqhWLy8vxcTEaOXKlWm+3icVQRMAAAAAAMhS69ev1/vvv6/Nmzerdu3a1u3Hjx/XW2+9pfnz56t169Zyc3PT+vXrNXjwYPXu3TvJvipXrqwFCxbI399fx48fV0BAQII+4/3xxx/as2ePJGnatGnKly9fimo9ePCgli9fru7du6fhSp983DoHAAAAAACyzIkTJ9SjRw99/PHHiQKhqlWratmyZQoMDJQk5c2bV5IeGwrly5dPVatWlbOzs+bNm5fkMQsXLlT9+vUlSY6OjimqNSoqSrNnz1bNmjVTdPzTiKAJAAAAAABkmSFDhqhgwYLq2DHp2+8aN26sypUrp7pfZ2dn9ejRQ1988YX++uuvBPsiIiL0888/q169eqnqc8aMGRo8eLAcHBxSXc/TgqAJAAAAAABkiatXr+rAgQOqW7eu7O2TX92natWqaep/4MCBio6O1uLFixNs37Bhgzp37pyqvi5evKibN2+qQYMGaarlaUHQBAAAAAAAssSpU6dkGIaKFSuWaN/vv/+uCRMmqFOnTurRo4e+/fbbVPdftmxZNWzYUIsXL1Z0dLR1+5o1a/TOO++kqq9x48bpo48+SnUNTxuCJgAAAAAAkCVCQ0MlPVz76N9efPFFDRgwQBs3blSePHnUqFGjNJ3Dx8dHt27d0ubNmyVJR48eVYUKFeTk5JTiPvz9/dWyZctET7hDYjx1DkiH8B9+SHcfeVN5TzAAAAAAPClKlCgh6eHspaQUKlRIkuTp6Znmc7Rq1UrFixfXvHnz1LlzZ3322WcaM2ZMksdGRUUlCL3MZrPCw8P11Vdfaf369Wmu4WnCjCYAAAAAAJAlqlWrpmeeeUbfffedHjx4kO7+4p9O909ms1n9+/fXkSNH9PXXX+vevXsqU6ZMku2nTp0qZ2dn66tZs2bauXOnNmzYIJPJZH0dOHBAq1atkslk0pUrV9Jd95OEGU1PCWbeICfh/QoAAAA8Hezt7TVlyhT17NlT06ZN05QpU9Lcl8Vi0c6dO9WzZ89E+7y8vDRx4kR16tRJK1euTLaP3r17J7hFz9XVVc8884z+97//JeqvaNGimjRpkooWLZrmmp9EBE0AAAAAACDL9OjRQ3/88YemTp2qYsWKqV+/fjKZTJKk4OBgSbJ+HR4eLkkKCQlJ0EdsbKyGDBkiLy8vSVJERIQiIiKs+wsUKKCOHTvqwIEDatmypXV7/DERERFydnZW8eLFVbx48UQ1enh4JPg6X7588vDwUOXKldNz6U8kgiYAAAAAAJClJk6cqMaNG2v+/Pn64osvVLJkSYWHh+v27duaNWuW+vbtq4CAAM2dO1eS5Ovrq+3bt8ve3l4Wi0UXL16UyWTSZ599plOnTmnp0qX69ddftWDBArVt21ZFihSRj4+PypUrJ7PZrNjYWG3YsEGff/65JGns2LHq27evKlasmJXD8EQgaAIAAAAAIAermLdjVpdgE3Xq1FGdOnWS3V+7dm3Vrl1bGzZseGQ/FStW1Jw5czRnzpwE22vUqKEaNWpIerhuU9euXdW1a9c01bp///40tXsasBg4AAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGAT9lldAAAAAAAg5zgVvskm/VTM29Em/QDIXpjRBAAAAAAAAJtgRhMAIMVs8RdM/noJAAAAPLmY0QQAAAAAAACbYEYTAAAAACDTbToVnu4+OlbMa4NKANgSM5oAAAAAAECWCAgIUI8ePWQymfTqq6+qZ8+e6tmzp7p3765q1aqpcuXKOnnypAYNGiSTyaRnn31WHTt2VIMGDVS1alUtWLAgQX+bN29WnTp1ZDKZNHXq1ETn++6779S0aVOVLFlSa9eu1dWrV/Xxxx/LwcFBuXLl0qeffqobN25oy5YtqlWrlkwmk9q1a2et65133lHx4sU1ZMiQx17bokWLVLx4cXl4eKhXr14KCwt7bJtt27bJZDJZX/37939sm6+//lrvvvuuJk+erP79+2vLli3WfRs2bFDlypVlMpnUtm1bBQQESJJ++eUXVaxYUfb29ho0aJAuXrz42POkFDOakGKszQIAAAAA2Y8tZoelV1pnl9WuXVvu7u7y9/dXr1695OXlZd0XHR2t/v37q1KlSvrvf/+refPmqWfPnpo8ebIkacyYMfLx8VFUVJSGDh0qSWrfvr1atWqlihUrasKECWrQoIFq165t7fP111+XxWLRgQMH1LVrV0nS8OHDtXnzZkVFRVkDpLZt2+r27ds6evSopk+frhdffNHax82bNzVv3rxHXte2bdsUFBSknTt3ateuXRozZowKFy6sadOmPbLdhg0b9Mknn1i/btOmzSOPP3funD788EP9+OOPMpvNio2NVeXKlVW8eHFVq1ZNnTp1UlBQkN5991199NFHeumllyRJZcuWVXR0tHbt2qUmTZo88hypRdCETGWrb4BMkQUAAACAJ0OePHmS3J4rVy516NBBkpQ3b+LfAcePH6+ZM2fq008/tQZNkuTg4KCiRYsqODhYnTt31q+//ip3d/cE53N0dEzQl6Ojo+ztE0YkydVVtGhR1a9f/5HXVKxYMb355puSpEqVKunrr7/WqVOnHtnm0KFDeuWVVzRo0KBHHvdPX331lQoUKCCz2SxJMpvNeumll3TgwAFVq1ZNkqzX6uDgIEmKi4tT7969NXPmTJuHTBK3zgEAAAAAgGyqadOmye5zdHSUm5ub7t69m+T+tWvX6vr16+rTp0+m1iVJVatWTfB1/vz51bp160e2mT59uqZPny5vb2/9/vvvKarD09NT+/bt008//SRJioqK0i+//KJ69eolebxhGOrfv7/eeOMNtWrVKkXnSC1mNAEAkMW4NRkAACCxiRMnasKECcnuv3LligIDA9WoUaMk9zdq1Ejjxo3TxIkTNX/+fPn4+KS7ppiYGE2fPl1jx45NcZubN2/K09NTffv2TfaYsLAwubm56dlnn9WyZcu0evVqbdy48bHhVPv27TV9+nS98cYb2rhxozZv3qwRI0aoevXqSR7/3nvvqUSJEhkSvsUjaAIAAAAAAFluxYoVOnTokCTp7NmzunPnTrJB0/Xr19WtWzcVLlw4wZpG/zZ+/HgdPnxYw4cPV926dfXyyy+nuq5Ro0bJ2dlZsbGxOnz4cLKzhf7NYrFo3bp18vX1Ve7cuXXy5Mlkz+/k5KTVq1dLkk6dOqUuXbqoc+fOOnfunIoVK5bsOfLkyaOvv/5ajRs3VtOmTfX+++/L29s7yWNHjBihn3/+WRcuXEhR/WlF0AQAAJ5ItpgpJjFbDACAzPLPxcCjoqLUuXPnRMfs3btX58+f17Zt29StWzdt3749wfpL/2ZnZ6e1a9eqSpUq6tixo44fP57quv65GPiff/6pGTNmpKhdrly51KhRI92/f1/jxo1TmzZtdOHChURrQf1bxYoVtXfvXpUvX16rV6/WmDFjHnn8vXv3VKVKFRUoUECzZs1SgQIFNGrUqETHlSpVSl9++aXat2+vbdu2KVeuXCm6jtRijSYAAAAAAJCt5M6dW82aNUu0vXr16lq3bp0qVaqkffv2yc7u8bFGwYIFtX79el26dEkDBgxIV13FixdX5cqVrV9HRUXpwYMH1ldERIR1n52dnYoVK6Zhw4Zpzpw5unz5ss6cOZOi8xQuXFi9e/fWlStXHnme27dvq02bNpo9e7a++eYbtW7dWh988IH27duXqE9vb29NmzZNX331lXr27CnDMNI+EI/AjCYAQKbi6ZMAAABIifjZTf+WK1curVu3TlWrVtXAgQO1Zs2ax/ZVr149TZ48WaNHj5bZbFbx4sVtUtfUqVM1ceJE69f169fX/v37E7Vp3769+vbtq9y5c6f4PCVLllRgYOAjz7No0SKVLVtWhQoVkiRt2rRJtWrV0tKlS9WwYcNEfX7wwQe6e/euPv74Y+XPn19z585NcT0pRdAEAAAAAACypdjYWK1du1bdu3dPsL106dKaM2eOvLy81Lx5c3Xp0uWxfY0aNUqHDh3SihUrHrnIeEpcvXpVly5dUu/evRMsRu7q6prk8ZGRkSpcuLD1FryUOHXqlN5//31JSvY8wcHBcnBwsG53cHBQ7969rWtdJWXmzJm6f/++5s2bJ09PT40fPz7FNaUEQROAJxJP8QKAjMHaVwAAW7NYLJKk6OjoRPsmTJigRo0aKTz84az4yMhI674+ffpoz5498vb2Vrly5VSlShXrvoiICEVERChPnjzWbSaTSf7+/gmOixfff0rqslgs8vHx0caNG5U3b94kZ0f5+fnppZde0quvvirDMOTr66vZs2db10W6deuWWrRooRkzZqhhw4batm2bduzYocmTJ6tw4cJat26dypcvbw2mihcvnuR5OnXqpJYtWyooKEhubm6SpN9++03dunVLdG1RUVHWbYsXL9bly5etgZstwyaCJgAAAAAAkCUOHz6s2bNnS3o40+bo0aOSHs5kOn/+vK5cuaIOHTpo5MiRkqTdu3drzZo16tChgxwcHOTn56eXX35Z9evX18CBA9W6dWsdO3ZMJ06c0JgxY9SnTx9VqFDBej4PDw9t2rTJuobRzZs3tXnzZp04cUKSNGPGDHXt2lUHDx7UZ599JulhoFW6dGlJD0Omo0ePqkqVKsqbN/mlHHbt2qXBgweratWqKlOmjNq3b6/mzZtb91ssFl25ckXBwcGSJHd3d3377bfatGmTateuLR8fnxTN0qpRo4bmz5+vHj16qGbNmoqLi1PdunXVsmVLSdLatWu1aNEiSQ9vmxs2bJgaNGigP//80xqkTZgwQfv371efPn3UtWvXx57zcUxGRq3+9BQICQmRq6urgoOD5eLiktXlPFL4Dz+ku49L1W6lu4+zl1qmuw8p+6zNwrhmjOwyrk/aX9uzy7jyfk2M92ti2WVcpSdrbBnXjGGLcc2bwkdlP00Y14yRnb4P2OIzQXb5PJDRAgMDdezYMdWtW1dOTk5ZXQ6eQpGRkbp8+bJKlCghR0fHRx7LU+cAAAAAAABgE9w6BwDJ4OloAJBxbPE99kn6/mqrta+YIQIAyGoETQAAAI9AIALkXAR4AJD5CJqQI0WcT/+95XnKcM8+AAAAAAC2xBpNAAAAAAAAsAmCJgAAAAAAANgEQRMAAAAAAABsgqAJAAAAAAAANsFi4AAAPAFs8WQ0iaciAQAAIH2Y0QQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCayxRpNd+/eVf78+bO6DAAAAAAAcpyI8z9kdQnKU6Zeuvv4/vvvNW/ePDk4OCgiIkLh4eEaNmyYmjZtaoMK0+727duaNm2aIiMjtWjRosceb7FY9Pzzz+vWrVuSJA8PD127dk158ya/FmaTJk30zTffJNq+fft2tWrVSqGhoRo6dKi2bt0qJycneXl5aezYsTKbzbp69aoWLlyoZcuW6e+//077hdpItgiaWrVqpYCAgKwuAwAAAAAAZIHZs2dryZIl2rt3r5599llJ0vnz59W4cWMNHDhQo0aNypK6/vrrL23ZskV+fn7q2LFjitqsWrVKPXv2VKFChSRJZcqUeWTIdP36dd2/f19z586Vs7OzJCk6OlpDhw5Vw4YNJUmDBw+Wu7u75s+fr61bt2rChAkymUwaN26ccufOLYvFosDAwHRerW3YPGj64YeUJ6mGYej69es6ceKErcsAAAAAAAA5wJ49ezR8+HAdPHjQGjJJDwOaBQsWqHXr1nr55ZezZGZTkSJFNHDgQK1evTpFx8fFxen777/X+vXrU3yOM2fO6MCBA8qTJ4912969e9WoUSPlzZtXISEhqlixooYOHSpJ6ty5sxo1aqQlS5Zo3LhxKlKkiCpUqJC6C8tANg+aBg8erJMnT9q6WwAAAAAA8AQaNWqUSpcurVdffTXRvhYtWih//vz64IMPsvQWOkdHxxQdt3XrVm3btk2NGzfWu+++q7Zt2z62TZMmTRJt27Ztm9566y1JD8Or/v37J9jfqlUrjR071vq12WxOUX2ZweaLgQ8dOlROTk4aMGCAPvzwQ40fPz7Z14cffqju3bvbugQAAAAAAJADXLx4USdPnlT16tWT3G9nZ6d69erpxIkTmj59ukwmkxo0aKB79+7pq6++UpEiReTq6qpt27ZJkk6dOqXnn39eU6ZMkSRFRETI19dXAwYMUOXKldWrVy+FhITo7t27mj59up5//nn99ttv6t27t/Lly6fWrVsrOjo6zddz/fp1NWjQQD/99JPatWunbt26KS4uLtX97N69W61atZIkubm5JZjtJEkxMTGqVatWonYXLlxQzZo15e7urn79+ikyMjJtF5IONp/R1LlzZ508eVIff/xxittw6xwAAAAAAE+fM2fOSJKKFi2a7DHx+8qVK6emTZvK0dFRHh4eatasmUaNGqWPPvpIzZs3lyRVqFBBr776qnW2z8iRI/XBBx/omWee0f3791WmTBmZzWZNnTpV+fLl09WrV+Xn56cRI0bo7bffVtOmTfXll1+qQ4cOabqewYMHa/DgwQoLC9PIkSP12WefqUqVKho2bFiK+zh+/Liee+65Rz40be/evRoxYkSi7UuXLtVHH32kgwcPasqUKcqXL59mzZqVpmtJK5sHTbly5UrR1LB/mjx5sq3LAAAAAAA84WzxtDVbPC0NaRceHi5Jyp07d7LHuLm5SZJCQ0PVo0cP66wkFxcXVahQQffu3dOOHTvUtm1b/fDDD9Zb0a5evaodO3bomWeesfZVt25dWSwWFSxYUOXKlZMkDRo0SCVLllS5cuXk6empixcvpvu6nJyctGDBAt2/f1+LFi1KVdC0bds2tWnTJtn9x48fV548eZK85W7GjBmSpDfeeEPXrl2Tn59fzg+aJKl27dqpOj4+eQSQtfhBnTEYVwB8HwAAIGmenp6SHoZIyYm//cvT01P169dXv3799MUXX6hXr17asmWLmjRpohUrVqht27baunWr9ba5M2fOyNHRUR988EGS/drZ2SX4X+lhQBQVFWWTa5OkMWPGqGrVqpIePhAtLCwswX4nJyeZTKYE27Zv3269FfDfoqKiNGXKFC1fvvyx527WrJlWrVqlO3fuqGDBgmm8gtSz+RpNAAAAAAAAKVG5cmXZ2dnpwoULyR5z+fJlmc1mVatWTY6OjurQoYPWrl2rK1euqEiRIurXr5/27Nmjy5cvyzAMOTk5SZIsFouuXLmie/fuJegvMDAwQ6/pn0qWLGl9kt7Vq1fl7Oyc4HX16tUEx1+9elV2dnYqXrx4kv2NGTNGvr6+cnd3f+y5nZ2dZTKZlDdv3vRfSCoQNAEAAAAAgCxRsGBBNWrUSIcOHUpy4erY2FgdPnxYb775pnXNom7duun777/XhAkT5O3trZYtW8rNzU2dO3e2PqlNksqXLy+LxWKd4RRv2bJlGXpN/3Ts2DH17t1bklSkSBEdPHgwwatIkSIJjv/n0+b+bfbs2WrUqJEqVqxo3Xbnzp1kz33x4kXVqlVL+fLlS/+FpEKmB02NGjXSCy+8kNmnBQAAAAAA2dDHH3+s2NhYLVq0KNG+NWvWKCIiwrr2kCTVq1dPxYsXl8lkUqFChZQrVy516dJFt27dUoMGDazHlSlTRm3atNHs2bPVtWtXLVq0SG3bttV//vMfSbI+Xe7fT4WLjY1NVEd0dLRiYmISbR84cKDee+89SVJQUJDatGmjb7/9VpJ06dIlrVixQiNHjpQkOTg4qE6dOgleDg4OCfpLbn0mPz8//frrr5KkPXv2aNeuXZo2bVqiW+wuX74s6eGtiMuWLdPs2bMT9ZXRMmSNpke5ceOGrly5ktmnBQA8YVjzBgAA4MlQsWJFffnll+rRo4fy58+vLl26SJI2bdokX19f7dq1K8GEFZPJpG7duiV4EFmvXr3k4uKSaL2j5cuXy8nJSVu3btWRI0fk6+urRo0a6c8//9SSJUskSXPmzNGIESO0e/du3bhxQzt37lTLli1Vs2ZNhYaGasOGDTp58qSuXr0qf39/devWzXqeGzduWP/b0dFRYWFhatmypcqXL6/mzZtr0aJFj1zo/J/u37+vmzdvqkKFCgm2b9q0Sf3795dhGFq9erV1u9ls1s2bNyVJ7du31+XLl9W+fXuVKVNGuXPn1pIlS1SzZs0UnduWMj1oAgAAAAAAtvMk/PGscePGOnHihMaOHau+fftKklq1aqVffvlFHh4eiY6fNGlSgq8rV66sypUrJzrOzc0tQTgTr3jx4tq0aVOCbd7e3vL29k6wzdnZWX379rXW9G9ffvml9b8dHR31zTffJHlcSri7u+vs2bOJtnfs2FEdO3Z8ZNt8+fJp4sSJmjhxYprPbys5fo2mqKgoDR8+XDVq1FDNmjU1ZsyYJKez/VNwcLAGDx6s4sWLK0+ePKpbt64OHjyYSRUDAAAAAIB/K1CggPz8/DRu3DhFRUXpl19+kaOjY1aXhVTK8TOaOnTooNjYWB05ckTSw8f3eXl5aeXKlUkebxiGevbsqVq1amnLli06f/68RowYoYYNG2r//v2qXbt2JlYPAED2wi2JAAAgq40dO1bVqlXTu+++q06dOmnz5s0pvv0MWS/Tg6bq1aurcOHCNulr48aN2r59u06cOCGz2SxJGj9+vOrWravOnTurSZMmidoEBATo7bffVqdOnSRJ1apVU7ly5VS9enVNmjRJe/bssUltAAAAAAAgbZo0aaJz585pw4YNGjlypP7zn/+oadOmKlCgQFaXhsewedA0d+5cSQ+nvHXu3DnRfn9/f5uda8GCBSpQoIAqVapk3VajRg05OjpqwYIFSQZNbm5uiWYtVa1aVaVLl2aRcgAAAAAAsoncuXOre/fu6t69e1aXglSwedA0ZMgQtW/fXsuWLbN11wmEhoYqICAg0QrquXPnVokSJXTw4EEZhpFoxfmXXnopyf7y5s1rs5lWAAAAyHjc6gkAQPZj86ApT548Wrp0qZydnSVJM2bM0IULFxQXF6fcuXOrcuXK6t+/f7rPc/36dcXGxiYZDrm6uurs2bMKCgqSu7v7Y/sKCQnR6dOnNXLkyEceZ7FYZLFYErQDAAAAniQEeACA9LB50FSiRAm5uLhYvx45cqT27t2r5s2b69ChQ4lmIKXVvXv3JD2cifRv9vYPLysiIiJFQZOfn5+qVq362McFTps2LVs8KhAAAAAA8HQxDCOrS8BTLDXvPztbnzyp4Kdx48Z6+eWXbRYySbI+4jAiIiLRvsjISEmSh4fHY/u5ceOG5s+fr1WrViW6ze7fRo8ereDgYOvr2rVraagcAAAAAICUM5vNCg8PV1hYWFaXgqdUeHi4JClXrlyPPTbTnjr3z1lO//bBBx/ov//9b6r6e+GFFyRJd+/eTbTv7t27KlCggDWMSk5UVJS6du2qhQsXqnTp0o89p4ODgxwcHFJVJwAAAAAA6WE2m7V7926VLVtW0dHRcnFxkb29/WMnSwDpZRiGwsPDdefOHbm5uclsNj+2TaYFTY+yevXqVAdNbm5uqlKlis6fP59gu8Vi0bVr1x57G5xhGOrdu7e6deumZs2apbpmAAAAAAAyy4oVK/TRRx/pwYMHrBeMTOfm5pbiB6jZPGi6ceOGJkyYkOj+vcuXL2v8+PEJtsXGxurEiRO6detWms41YMAA9e3bV6dPn1aFChUkSYcPH1ZMTIy8vb0lPQyUHjx4YF2cPN7AgQNVqVIl9enTJ8H2W7du8fQ5AAAAAEC2YhiG8uXLpyJFiig2NlYxMTFZXRKeErly5UrRTKZ4Ng+a/vrrL02ePDnJhaImT56c4GuTySTDMNI83a9Xr15avXq1ZsyYIX9/f0VERMjX11deXl6qX7++JGnQoEFatGiRDh48qFq1askwDPn4+Cg4OFitW7fWuXPnJD1c62nXrl167rnn1K1btzTVAwAAAABJ4Wl+sBWTySR7e3vrQ7CA7Mbm78w8efKob9++cnNze2yAFB0drRMnTmj37t1pOpfZbNbOnTs1aNAg1ahRQyaTSW3bttWIESOsx3h6esrFxUVOTk6SpH79+mnJkiWSpHXr1iXoz93dXTdv3kxTLQAAAAAAAE87mwdNw4cP18SJE1N8vGEYKlOmTJrP5+zsrBUrViS7f8KECZowYYL1az8/P/n5+aX5fAAAAAAAAEiana07bNy4caqON5lM1vWUAAAAAAAAkHPZPGiqU6dOqtsMHz7c1mUAAAAAAAAgk9k8aAIAAAAAAMDTiaAJAAAAAAAANkHQBAAAAAAAAJsgaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2ARBEwAAAAAAAGyCoAkAAAAAAAA2QdAEAAAAAAAAmyBoAgAAAAAAgE0QNAEAAAAAAMAmCJoAAAAAAABgEwRNAAAAAAAAsAmCJgAAAAAAANgEQRMAAAAAAABsgqAJAAAAAAAANkHQBAAAAAAAAJsgaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2ARBEwAAAAAAAGyCoAkAAAAAAAA2QdAEAAAAAAAAmyBoAgAAAAAAgE0QNAEAAAAAAMAmCJoAAAAAAABgEwRNAAAAAAAAsAmCJgAAAAAAANgEQRMAAAAAAABsgqAJAAAAAAAANkHQBAAAAAAAAJsgaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2ARBEwAAAAAAAGyCoAkAAAAAAAA2QdAEAAAAAAAAm8jxQVNUVJSGDx+uGjVqqGbNmhozZoxiYmIe2+7GjRtq166d6tSpo1q1amnNmjWZUC0AAAAAAMCTK8cHTR06dNC5c+d05MgRBQQE6NixY/Ly8npkm8DAQNWrV0/Vq1fXoUOHtH37do0aNUorVqzIpKoBAAAAAACePDk6aNq4caO2b9+uqVOnymw2y2w2a/z48Vq1apW+/vrrZNuNGzdOoaGhGj58uCSpYMGCevfddzV48GAFBgZmVvkAAAAAAABPlBwdNC1YsEAFChRQpUqVrNtq1KghR0dHLViwIMk24eHhWrlyperXry97e3vr9nr16ik0NFT+/v4ZXjcAAAAAAMCTKMcGTaGhoQoICFCpUqUSbM+dO7dKlCihgwcPyjCMRO0OHDigyMhIlS5dOsH2smXLWvcDAAAAAAAg9ewff0j2dP36dcXGxqpw4cKJ9rm6uurs2bMKCgqSu7t7gn1XrlyRpETtXF1dE+xPisVikcVisX4dHBwsSQoJCUnLJWSq8LCwdPfxICQ8/XU8sM1YheRO//VE2+D/N8Y1McY1Mcb1X3Uwrokwrolll3GVbDO2jGtijGtCjGtijGtijGti2WVcM1r875xJTaYAspscGzTdu3dPkpQ3b95E++JviYuIiEgUNCXX7p9tkjNt2jRNnDgx0fZixYqlonIAAAAAAFIvNDTUOkkCyK5ybNDk6OgoKelgKDIyUpLk4eGR4naPahNv9OjRGjZsmPXruLg43bt3T/nz55fJZErlFQAAAAAA8HiGYSg0NFRFixbN6lKAx8qxQdMLL7wgSbp7926ifXfv3lWBAgWsoVJK2sV/Xbx48WTP6eDgIAcHhwTb3NzcUlU3AAAAAACpxUwm5BQ5djFwNzc3ValSRefPn0+w3WKx6Nq1a2rcuHGS7erVqyd7e/tE7X7//XdJSrYdAAAAAAAAHi3HBk2SNGDAAP311186ffq0ddvhw4cVExMjb29vSf83xTCeh4eH3n77bX377bcJFlLbv3+/3N3d1b59+8y7AAAAAAAAgCdIjg6aevXqpXr16mnGjBmSHq675OvrKy8vL9WvX1+SNGjQIHl4eOjHH3+0tps5c6Ykafny5ZIePmnOz89Pc+bMSbR4OAAAAAAAAFImRwdNZrNZO3fulNlsVo0aNdSgQQO1aNFCixcvth7j6ekpFxcXOTk5WbcVKVJEP/zwg9avX6969erpnXfe0eLFi9WtW7esuAwAAAAAAIAngsn45/1jAAAAAAAAQBrl6BlNAAAAAAAAyD4ImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2ARBEwAAAAAAAGyCoAkAAAAAAAA2QdAEAAAAAAAAmyBoAgAAAAAAgE0QNAEAAAAAAMAmCJoAAAAAAABgEwRNAAAAAAAAsAmCJgAAAAAAANgEQRMAAAAAAABsgqAJAAAAAAAANkHQBAAAAAAAAJsgaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbsM/qAnKyuLg43bx5U87OzjKZTFldDgAAAADgCWQYhkJDQ1W0aFHZ2dkpOjpasbGxWV0WnhK5cuWS2WxO8fEETelw8+ZNFStWLKvLAAAAAAA8BX7//XeZTCZZLJasLgVPEZPJJFdXVxUuXDhFk2wImtLB2dlZknTt2jW5uLhkcTUAAAAAgCdRSEiI2rdvr8jISLm4uMjT01O5cuXizhpkOMMwFBYWpr///lt58uSRm5vbY9sQNKVD/D9qFxcXgiYAAAAAQIZp37698uXLp2effZaACZkqT548slgsunPnjlxdXR/7/mMxcAAAAAAAsrGYmBiVKVMmRb/kAxnBxcVFsbGxKVobjKAJAAAAAIBsLC4uTvb29sqVK1dWl4KnlL39wxviYmJiHntsjg+aoqKiNHz4cNWoUUM1a9bUmDFjUnTh//TJJ5+QCgMAAAAAsi1+Z0VWSs37L8cHTR06dNC5c+d05MgRBQQE6NixY/Ly8kpx++PHj2v06NEZWCEAAAAAAMDTIUcvBr5x40Zt375dJ06ckNlsliSNHz9edevWVefOndWkSZNHtn/w4IE++OADNW3aVNu2bcuMkgEAAAAAsKk1N85ldQl655myaWoXEBCg+fPna/369Xr++ec1btw4vfnmm8qfP3+Sx58+fVozZ85URESEXFxcZBiGypQpo7CwML322mtq0KBBojY3btzQ9OnTNXfu3DTV+OWXX2r58uXy9PSUvb29IiIiVLJkSQUFBWnOnDmSpC1btmjKlCk6fvy4KlasqGLFiun3339X/fr1NXnyZBUsWFD79+9Xw4YNVbNmTbm4uOj333/XpUuX9MYbb8gwDJ09e1Zms1lXrlxJU53ZRY4OmhYsWKACBQqoUqVK1m01atSQo6OjFixY8NigafDgwfL19ZWfn19GlwoAAAAAAP6ldu3acnNz0/r16zV48GD17t072WPjj1m/fr0aNmxo3b5jxw61a9dOr732WpLtli1bJn9/f02fPl158uRJcW2GYWjIkCE6dOiQtm/frmeeeSZBLd27d9dHH30kFxcXtW3bVrdu3dLx48e1ZcsWvfjii7pw4YJq1qypw4cP6/jx45KkhQsXytvbW5Lk6+uriRMnateuXbK3t5fFYlHPnj1TXF92lWODptDQUAUEBKhmzZoJtufOnVslSpTQwYMHZRhGsvcRrl27ViVLllTt2rUJmgAAaWaLvyCm9S+AAAAAT4K8efNKkvLly5fsMadOnVLPnj01e/bsBCGTJLVq1UqTJk1Ksl1sbKw2b96s4OBgff755+revXuK61q0aJEWLlyoixcvJgiZJKlz5846ffq0AgMD5eLikuA64pUuXVpeXl76+OOPtXXrVpUuXVpdunRJ9nwODg7q379/iuvLrnLsGk3Xr19XbGysChcunGifq6urgoKCFBQUlGTbS5cuadOmTalem8lisSgkJCTBCwAAAAAAZKxx48bJzs5Offr0SXJ/v379kgyqvvrqK/Xt21dly5bV0qVLU3y+0NBQjRo1Sm3bttVzzz2X5DGDBg2So6PjI/t58cUXJUnXrl1T1apVHxmmSVL9+vVTXGN2lWODpnv37klKnBhK//fYvYiIiET7oqOj5ePjo4ULF8rOLnWXP23aNLm6ulpfxYoVS0PlAAAAAAAgpR48eKDdu3erWrVqyQY77u7uqlatWqLt69atU48ePdSvXz8dPHhQFy5cSNE5t27dqtDQ0GRvx5OkQoUKqWjRoo/s5/Lly5KksmWfnhnsOTZoin9zJRUmRUZGSpI8PDwS7RszZowGDhz42DdDUkaPHq3g4GDr69q1a6nuAwAAAAAApNzly5cVHR2tQoUKpard9evX5eHhIRcXF/Xo0UN58uRJ8aymkydPSlKSE0wOHz4sHx8fderUSYMHD9Zvv/2WZB/nzp2Tn5+fatSooebNm6eq9pwsx67R9MILL0iS7t69m2jf3bt3VaBAgSSTzlmzZumTTz5JsC0uLk7Sw5lQ9evX1759+5I8p4ODgxwcHNJbepZgDREAAAAAQE4UGhoq6eGazKmxdOlS65pH7u7u6tixo1atWqUpU6YoV65cKTpnVFRUon2vvvqqrl+/rk6dOmn9+vUqX758gv0LFy6Uvb29Ll++rOHDh2vo0KEym82pqj0ny7FBk5ubm6pUqaLz588n2G6xWHTt2jV17NgxyXbxqeQ/ffjhh9q2bZt+/fVXOTk5ZUi9AAAAAAAg9eJnFd2+fTvFbWJjY7Vjxw5duXLFuu3OnTu6c+eOtm/frnbt2kl6+GS5sLCwBG2dnJxUokQJSdLvv/+eZP/xs6s8PT0T7Xv33XetazM9jXJs0CRJAwYMUN++fXX69GlVqFBB0sMpbDExMdbHBRqGoQcPHsjZ2VmSrMf9k5ubW7L7AAAAAABA1smTJ4/Kli2ro0ePymKxJHunUUxMjHXN5t27d2vgwIHq3bt3gmNKlSqlpUuXWoOmq1evWkOleJcvX1br1q01evRobdu2TcOHD8+Aq3py5dg1miSpV69eqlevnmbMmCHp4XpNvr6+8vLysq7UPmjQIHl4eOjHH3/MylIBAAAAAEAqWSwW7dy5U2PHjlVYWJjmzp2b5HHnzp3T/v37rV/7+/urQ4cOiY7r2rWrvvnmG/3555+SpCJFiujgwYMJXkWKFFH58uXVs2dPHTp0SHv37s2Qa3tS5eigyWw2a+fOnTKbzapRo4YaNGigFi1aaPHixdZjPD095eLiwi1xAAAAAABkQ+Hh4ZKkkJCQBNtjY2M1ZMgQVaxYUe+88458fHw0ZswYzZkzJ8HaSUePHtWuXbvUqFEjSQ9DJ4vFYr2z6Z9atmypuLg4zZ8/X9LDtZjr1KmT4BU/Y2rhwoVq0qSJunTpooCAgAT9BAcHS5JMJpN1W/zDyuKv53Hij0/qIWc5mckwDCOri8ipQkJC5OrqquDgYLm4uGR1OY/EYuAAkDH4/goAADJaYGCgjh07prp16yY5icIWn0fSK62fZwICAjR37lxt3LhRzs7Oqlq1quzt7WWxWHTx4kWZTCbdvHnTGuhs2rRJCxYs0J9//qkXXnhBRYoUUePGjdW9e3dJD0Ond999V7du3dKsWbPUuXNn67kCAwPl6+urBQsWKHfu3Jo0aZIGDx6c5IPE4hmGoTVr1sjf318uLi7y9PRUUFCQwsPD9c4776hDhw6ys7PTF198oalTp+r48ePq2LGjBgwYYL3T6t+io6O1adMmjRs3TpcvX9Z7772nPn366OWXX07TGGaGyMhIXb58WSVKlHjkeEkETelC0AQA4PsrAADIaI8LmoCMlpqgKUffOgcAAAAAAIDsg6AJAAAAAAAANkHQBAAAAAAAAJsgaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJ+6wuAAAA4N/W3DiX7j7eeaasDSoBAABAajCjCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAACALPfrr7/qnXfeUZcuXdSvXz/17NlTPj4+mjNnjgICAhQQEKAuXbrIZDKpRIkSWr58ue7evZtkPz169JDJZNJ//vOfR56zRYsWMplMeu+993Tq1KkU1+rl5aWePXum9hKfCiwGDgAAAABADhZ5aUhWlyDHFz5NV/v169fr/fff1+bNm1W7dm3r9uPHj+utt97S/Pnz1bp1a7m5uWn9+vUaPHiwevfunWRflStX1oIFC+Tv76/jx48rICAgQZ/x/vjjD+3Zs0eSNG3aNOXLly9FtR48eFDLly9X9+7d03ClTz6CJgAAACAdeEoiAKTPiRMn1KNHD61cuTJRIFS1alUtW7ZM165dkyTlzZtXkh4bCuXLl09Vq1bVxYsXNW/evCSDpoULF6p+/fr6/vvv5ejomKJao6KiNHv2bNWsWTNFxz+NuHUOAAAAAABkmSFDhqhgwYLq2LFjkvsbN26sypUrp7pfZ2dn9ejRQ1988YX++uuvBPsiIiL0888/q169eqnqc8aMGRo8eLAcHBxSXc/TghlNAAAAAPCUYAYespurV6/qwIEDevvtt2Vvn3xEUbVq1TT1P3DgQM2fP1+LFy+Wr6+vdfuGDRvUuXPnRAHUo1y8eFE3b95UgwYN0lTL04IZTQAAAAAAIEucOnVKhmGoWLFiifb9/vvvmjBhgjp16qQePXro22+/TXX/ZcuWVcOGDbV48WJFR0dbt69Zs0bvvPNOqvoaN26cPvroo1TX8LQhaAIAAAAAAFkiNDRU0sO1j/7txRdf1IABA7Rx40blyZNHjRo1StM5fHx8dOvWLW3evFmSdPToUVWoUEFOTk4p7sPf318tW7ZU/vz501TD04SgCQAAAAAAZIkSJUpIejh7KSmFChWSJHl6eqb5HK1atVLx4sU1b948SdJnn32mAQMGJHlsVFSUHjx4YH1FRETo7t27+uqrr1I9A+ppRdAEAAAAAACyRLVq1fTMM8/ou+++04MHD9LdX2BgYKJtZrNZ/fv315EjR/T111/r3r17KlOmTJLtp06dKmdnZ+urWbNm2rlzpzZs2CCTyWR9HThwQKtWrZLJZNKVK1fSXfeThMXAgXRgMUUAAAAASDt7e3tNmTJFPXv21LRp0zRlypQ092WxWLRz50717Nkz0T4vLy9NnDhRnTp10sqVK5Pto3fv3glu0XN1ddUzzzyj//3vf4n6K1q0qCZNmqSiRYumueYnEUETAAAAAADIMj169NAff/yhqVOnqlixYurXr59MJpMkKTg4WJKsX4eHh0uSQkJCEvQRGxurIUOGyMvLS5IUERGhiIgI6/4CBQqoY8eOOnDggFq2bGndHn9MRESEnJ2dVbx4cRUvXjxRjR4eHgm+zpcvnzw8PFS5cuX0XPoTiaAJAAAAAABkqYkTJ6px48aaP3++vvjiC5UsWVLh4eG6ffu2Zs2apb59+yogIEBz586VJPn6+mr79u2yt7eXxWLRxYsXZTKZ9Nlnn+nUqVNaunSpfv31Vy1YsEBt27ZVkSJF5OPjo3LlyslsNis2NlYbNmzQ559/LkkaO3as+vbtq4oVK2blMDwRTIZhGFldRE4VEhIiV1dXBQcHy8XFJavLeSRu8coYjGvGYFyRk/B+zRiMK3IS3q/ISXi/5kyBgYE6duyY6tatm6onpQG2EhkZqcuXL6tEiRJydHR85LHMaAIAAACQ7RCIAEDOxFPnAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATdhndQF4uoTv2W6TfvI2bW2TfgAAAAAAgO0wowkAAAAAAAA2QdAEAAAAAAAAmyBoAgAAAAAAgE2wRhMAPCXW3DiX7j7eeaasDSoBAACALdlqLdz0SOs6ugEBAVq8eLH8/f1Vu3ZtlSpVSpIUFxen3377TTExMfL399fSpUs1b948PfPMM6pdu7bu3LmjkJAQ9enTRwMHDrT2t3nzZn366ac6fPiwpkyZojFjxiQ433fffacZM2bowoUL+uijj1SnTh19/vnnGjt2rOLi4jRz5kx16NBBR48e1YwZM3T06FG1bdtWzs7OkqSYmBj98MMPatu2rT799NNHXtuiRYs0depUPXjwQG+++abmz58vJyenR7bZtm2b3nrrLevX/fr106JFix7Z5uuvv9aXX36pZ555RtevX9cbb7yhtm3bSpI2bNig//73vzpx4oTatGmj4cOHq3bt2vrll1/Us2dPnT17VgMGDNB7771nHfv0ImgCAAB4ShA4AwCym9q1a8vd3V3+/v7q1auXvLy8rPuio6PVv39/VapUSf/97381b9489ezZU5MnT5YkjRkzRj4+PoqKitLQoUMlSe3bt1erVq1UsWJFTZgwQQ0aNFDt2rWtfb7++uuyWCw6cOCAunbtKkkaPny4Nm/erKioKA0ZMkSS1LZtW92+fVtHjx7V9OnT9eKLL1r7uHnzpubNm/fI69q2bZuCgoK0c+dO7dq1S2PGjFHhwoU1bdq0R7bbsGGDPvnkE+vXbdq0eeTx586d04cffqgff/xRZrNZsbGxqly5sooXL65q1aqpU6dOCgoK0rvvvquPPvpIL730kiSpbNmyio6O1q5du9SkSZNHniO1CJoAAAAAAECWyZMnT5Lbc+XKpQ4dOkiS8ubNm2j/+PHjNXPmTH366afWoEmSHBwcVLRoUQUHB6tz58769ddf5e7unuB8jo6OCfpydHSUvX3CiCS5uooWLar69es/8pqKFSumN998U5JUqVIlff311zp16tQj2xw6dEivvPKKBg0a9Mjj/umrr75SgQIFZDabJUlms1kvvfSSDhw4oGrVqkmS9VodHBwkPZwt1rt3b82cOdPmIZPEGk0AAAAAACCbatq0abL7HB0d5ebmprt37ya5f+3atbp+/br69OmTqXVJUtWqVRN8nT9/frVu/ejbC6dPn67p06fL29tbv//+e4rq8PT01L59+/TTTz9JkqKiovTLL7+oXr16SR5vGIb69++vN954Q61atUrROVKLoAkAAAAAAGQ7EydOfOT+K1euKDAwUK+88kqS+xs1aqRx48Zp69atmj9/vk1qiomJ0ZQpU1LV5ubNm/L09FTfvn2TPSYsLExubm569tlntWzZMlWsWFHbtz9+7a327durVKlSeuONN/T1119r4MCBGjFihKpXr57k8e+9955KlCiRIeFbPG6dAwAAAAAAWW7FihU6dOiQJOns2bO6c+eOJkyYkOSx169fV7du3VS4cOEEaxr92/jx43X48GENHz5cdevW1csvv5zqukaNGiVnZ2fFxsbq8OHDyc4W+jeLxaJ169bJ19dXuXPn1smTJ5M9v5OTk1avXi1JOnXqlLp06aLOnTvr3LlzKlasWLLnyJMnj77++ms1btxYTZs21fvvvy9vb+8kjx0xYoR+/vlnXbhwIUX1pxUzmgAAAAAAQJbr1auXVq5cqZUrV+rgwYOJbj+TpL1796pDhw4qWbKkSpcurd9++00VKlRItk87OzutXbtW+fPnV8eOHRUWFpbquqZPn66VK1dq9erV2r9/v/Lly5eidrly5VKjRo00ePBg3bx5U23atFFMTMxj21WsWFF79+6Vg4ODNXx6lHv37qlKlSqqV6+eZs2apenTpyd5XKlSpXTjxg21b99e0dHRKbqGtCBoAgAAAAAA2Uru3LnVrFmzRNurV6+udevWqVKlStq3b5/s7B4faxQsWFDr16/XpUuXNGDAgHTVVbx4cVWuXNn6dVRUlB48eGB9RUREWPfZ2dmpWLFiGjZsmObMmaPLly/rzJkzKTpP4cKF1bt3b125cuWR57l9+7batGmj2bNn65tvvlHr1q31wQcfaN++fYn69Pb21rRp0/TVV1+pZ8+eMgwj7QPxCARNAAAAAAAg2/Hy8kpye65cubRu3ToFBgZq4MCBKeqrXr16mjx5svz9/eXv72+zuqZOnSpnZ2frK6lwTHq4lpL0MEBLqZIlS+rZZ5995HkWLVqksmXLqlChQnJwcNCmTZtUuXJlLV26NMk+P/jgAw0fPlzr1q3T4MGDU1xLamTKGk2RkZFas2aNrl27Zl3Ma/Hixapdu7YqVqyYGSUAAAAAAIAcJjY2VmvXrlX37t0TbC9durTmzJkjLy8vNW/eXF26dHlsX6NGjdKhQ4e0YsWKZNd+SqmrV6/q0qVL6t27txo1amTd7urqmuTxkZGRKly4sF588cUUn+PUqVN6//33JSnZ8wQHB8vBwcG63cHBQb1797audZWUmTNn6v79+5o3b548PT01fvz4FNeUEhkeNP39999q0KCBzp07p+eee84aNMUvbPXyyy+nesV2YFN44mmAqdUxb0MbVAIAAAAASA+LxSJJSa4bNGHCBDVq1Ejh4eGSHgY28fr06aM9e/bI29tb5cqVU5UqVaz7IiIiFBERoTx58li3mUwm+fv7JzguXnz/KanLYrHIx8dHGzduVN68eVW8ePFEbf38/PTSSy/p1VdflWEY8vX11ezZs5UrVy5J0q1bt9SiRQvNmDFDDRs21LZt27Rjxw5NnjxZhQsX1rp161S+fHlrMFW8ePEkz9OpUye1bNlSQUFBcnNzkyT99ttv6tatW6Jri4qKsm5bvHixLl++bA3cbBk2ZXjQNHz4cP35559q06ZNgpXNnZ2dtWzZMhUrVkz58+fXsGHDMroUAAAAAACQjRw+fFizZ8+W9HCmzdGjRyU9nMl0/vx5XblyRR06dNDIkSMlSbt379aaNWvUoUMHOTg4yM/PTy+//LLq16+vgQMHqnXr1jp27JhOnDihMWPGqE+fPgkWC/fw8NCmTZusaxjdvHlTmzdv1okTJyRJM2bMUNeuXXXw4EF99tlnkh4GWqVLl5b0MGQ6evSoqlSporx58yZ7Xbt27dLgwYNVtWpVlSlTRu3bt1fz5s2t+y0Wi65cuaLg4GBJkru7u7799ltt2rRJtWvXlo+PT4pmadWoUUPz589Xjx49VLNmTcXFxalu3bpq2bKlJGnt2rVatGiRpIe3zQ0bNkwNGjTQn3/+aQ3SJkyYoP3796tPnz7q2rXrY8/5OCYjo1Z/+v8KFSqkPXv2qEqVKnrttdf0/fffJ9hfsmRJmUwmXbp0KSPLyBAhISFydXVVcHCwXFxcsrqcR1pz41y6+3jnmbLp7iN8z/Z09yFJO+s5pbsPW8xoyi7j+qRhXDMG45oxGNeMwbhmDMY1YzCuGYNxzRiMa84UGBioY8eOqW7dunJySv/vQkBqRUZG6vLlyypRooQcHR0feWyGz2gqXbq0dVqayWRKsC86Olp///13hj5WDwAAAAAAAJkjw5865+7ubn1k3r8nT82fP19hYWF64YUXMroMAAAAAAAAZLAMD5o6duyooUOHyjAM64ymqKgozZo1Sx988IFMJpPefffdjC4DAAAAAAAAGSzDb5175513dOrUKRUsWFAxMTGqWbOmfvvtN4WHh8swDHl5ecnHxyejywAAAAAAAEAGy/CgSZKmT5+uDh06aMOGDTp37pzq1KmjEiVKqEOHDnrttdcyowQAAAAAAABksEwJmiSpWrVqqlatWmadDgAAAAAAAJksw9dokqTWrVsnu88wDE2cOFGVK1dWu3bttHPnzswoCQAAAAAAADaWKUFTcHCwNm7cqEGDBmnq1Km6f/++dd9nn32mSZMm6YMPPtAXX3whDw8Pffnll5lRFgAAAAAAAGwoU26d++OPP9SlSxcZhiFJWr58uf73v//J2dnZGio1b95cklS7dm0dO3ZMJ06c0Msvv5wZ5QEAAAAAAMAGMnxG0yeffKKYmBhNmTJFO3bs0Lp161SoUCF9/PHHkqTAwEBJkouLi7VNtWrVtHXr1owuDQAAAAAAADaU4TOali1bpuPHj6tIkSLWbc2aNVPHjh0lSVFRUTKZTInaXbx4MaNLAwAAAAAAgA1leNDk6uqaIGSK3xYaGipJiouLk4ODQ6J2v/32W0aXBgAAAABAjrcpfF9Wl6COeRumu4/vv/9e8+bNk4ODgyIiIhQeHq5hw4apadOmNqgw7W7fvq1p06YpMjJSixYteuzxFotFzz//vG7duiVJ8vDw0LVr15Q3b95k2zRp0kTffPNNou3bt29Xq1atFBoaqqFDh2rr1q1ycnKSl5eXxo4dK7PZrKtXr2rhwoVatmyZ/v7777RfqI1keNAUFRWlCxcuqHTp0tZt//3vf1W0aFHrfldX1wRtIiMjdfv27YwuDQAAAAAAZAOzZ8/WkiVLtHfvXj377LOSpPPnz6tx48YaOHCgRo0alSV1/fXXX9qyZYv8/Pysd2Y9zqpVq9SzZ08VKlRIklSmTJlHhkzXr1/X/fv3NXfuXDk7O0uSoqOjNXToUDVs+DDAGzx4sNzd3TV//nxt3bpVEyZMkMlk0rhx45Q7d25ZLBbr0kRZLcODpl69eqlq1apq2LChcuXKpRMnTujKlSvq0KGDpk+frmvXril//vy6efOmNXxaunRpgmAKAAAAAAA8mfbs2aPhw4fr4MGD1pBJehjQLFiwQK1bt9bLL7+cJTObihQpooEDB2r16tUpOj4uLk7ff/+91q9fn+JznDlzRgcOHFCePHms2/bu3atGjRopb968CgkJUcWKFTV06FBJUufOndWoUSMtWbJE48aNU5EiRVShQoXUXVgGyvDFwAcMGCBvb2/t2rVLW7Zs0c2bN7VgwQKtXr1aZ86ckWEYGjVqlLp3767evXvLx8dHI0aMUI8ePTK6NAAAAAAAkMVGjRql0qVL69VXX020r0WLFsqfP78++OCDLKjs/zg6OqbouK1bt2rbtm1q3LixtmzZkqI2TZo0SRAySdK2bdv01ltvSXoYXvXv3z/B/latWunevXvWr81mc4rOlRkyPGiSHk6Bu379uo4cOaKbN2/K29tbZrNZ/v7+evDggYYMGaJdu3bJzc1NS5cuVcuWLdWzZ8/MKA0AAAAAAGSRixcv6uTJk6pevXqS++3s7FSvXj2dOHFC06dPl8lkUoMGDXTv3j199dVXKlKkiFxdXbVt2zZJ0qlTp/T8889rypQpkqSIiAj5+vpqwIABqly5snr16qWQkBDdvXtX06dP1/PPP6/ffvtNvXv3Vr58+dS6dWtFR0en+XquX7+uBg0a6KefflK7du3UrVs3xcXFpbqf3bt3q1WrVpIkNze3REFUTEyMatWqlajdhQsXVLNmTbm7u6tfv36KjIxM24WkQ6YETZJUuHBh1axZM9F6THZ2D0twcHDQ7NmzFR4ers8//zzJJ9EBAAAAAIAnx5kzZyTJupROUuL3lStXTk2bNpW7u7s8PDzUrFkzjRo1Svb29mrevLkkqUKFCnr11Vc1duxYSdLIkSPVt29fffbZZ/r++++1a9cuDRs2TLGxscqXL5+uXr0qPz8/jRgxQl988YV27NihL7/8Ms3XM3jwYO3evVs3b97UgAEDtGbNGn366aep6uP48eN67rnnlD9//mSP2bt3r0aMGJFo+9KlS/XRRx/Jx8dHS5YssY5DZsrwNZoe55dffpFhGHrllVck/V/wBAAAAAAAnmzh4eGSpNy5cyd7jJubmyQpNDRUPXr0sM5KcnFxUYUKFXTv3j3t2LFDbdu21Q8//KAmTZpIkq5evaodO3bomWeesfZVt25dWSwWFSxYUOXKlZMkDRo0SCVLllS5cuXk6empixcvpvu6nJyctGDBAt2/f1+LFi3SsGHDUtx227ZtatOmTbL7jx8/rjx58liv859mzJghSXrjjTd07do1+fn5adasWam/gHTI8KBp0qRJye6LiorSwYMHVaVKFWvQBAAAAAAAng6enp6SHoZIyYm//cvT01P169dXv3799MUXX6hXr17asmWLmjRpohUrVqht27baunWr9ba5M2fOyNHRMdn1neInuvxzwouTk5OioqJscm2SNGbMGFWtWlWSZBiGwsLCEux3cnJKdEfX9u3brbcC/ltUVJSmTJmi5cuXP/bczZo106pVq3Tnzh0VLFgwjVeQehkeNPn6+spkMskwjGSPuXTpUqqnkiHzRV4aYoNeXrdBHwAAAACAJ0HlypVlZ2enCxcuJHvM5cuXZTabVa1aNTk6OqpDhw5au3atXnvtNRUpUkSNGzdWx44ddfnyZRmGIScnJ0mSxWLRlStXdO/ePXl4eFj7CwwMtAZcGa1kyZLWJ+ldvXpVJUqUSHRtzz//vPXrq1evys7OTsWLF0+yvzFjxsjX11fu7u6PPbezs7NMJpPy5s2b9gtIgwwPmnLlyqXFixcnGkzp4SJZ+/fv1zvvvJPRZQAAAAAAgGymYMGCatSokQ4dOqTIyMhET3eLjY3V4cOH9eabb1rXLOrWrZtef/11TZgwQTNmzJCHh4fc3NzUuXNnTZs2zdq2fPnyslgsmjJlSoLbx5YtW6ZRo0ZlyvUdO3ZMvXv3liQVKVJEBw8eTLC/SJEiCb7+59Pm/m327Nlq1KiRKlasaN32qNlKFy9eVK1atZQvX750XEHqZXjQ9MYbbzzyCXLnzp1L8WMCAQAAAADAk+Xjjz9WrVq1tGjRIg0ZMiTBvjVr1igiIsK69pAk1atXT8WLF5fJZFKhQoUkSV26dNG2bdvUoEED63FlypRRmzZtNHv2bN26dUt169bVN998owEDBkiS9ely/34qXGxsbKIao6OjFRMTk2j7wIEDZWdnp3nz5ikoKEi9evXSwIED1ahRI126dEkrVqzQ4sWLJT18CFqdOnUeORbbtm3TnDlzEm338/PTr7/+qvLly2vPnj2KjY3VyZMn5enpqb59+1qPu3z5skqUKKHQ0FAtW7ZMfn5+jzxfRsjwoGnHjh2P3P/WW29p6NCh+uGHH9LUf1RUlMaMGaMffvhBJpNJDRs21KRJk2Rvn/ylBQcHa/z48dq6dav+/vtvVatWTVOnTlXdunXTVAMAAAAAAEibihUr6ssvv1SPHj2UP39+denSRZK0adMm+fr6ateuXXrhhResx5tMJnXr1k1t27a1buvVq5dcXFwSrXe0fPlyOTk5aevWrTpy5Ih8fX3VqFEj/fnnn1qyZIkkac6cORoxYoR2796tGzduaOfOnWrZsqVq1qyp0NBQbdiwQSdPntTVq1fl7++vbt26Wc9z48YN6387OjoqLCxMLVu2VPny5dW8eXMtWrTokQud/9P9+/d18+ZNVahQIcH2TZs2qX///jIMQ6tXr7ZuN5vNunnzpiSpffv2unz5stq3b68yZcood+7cWrJkiWrWrJmic9uSyXjU4kmZYPPmzerRo0eiBbFS6s0331RsbKx1oaxmzZqpaNGiWrlyZZLHG4ahtm3bqlatWmrYsKHOnz+vESNGKDAwUPv371ft2rVTfO6QkBC5uroqODhYLi4uaao/s6y5cS7dfbSPXJTuPuIu2maNpp31nNLdR8e8DdPdhy3G9Z1nyqa7jycN45oxGNeMwbhmDMY1YzCuGYNxzRiMa8ZgXHOmwMBAHTt2THXr1rWuP/Qk+vvvvzV27Fj5+/tLklq1aqXFixcnWF8JWSMyMtI6W+pxd6Vl2VPnDMPQjRs3tHHjxgTJZGps3LhR27dv14kTJ2Q2myVJ48ePV926ddW5c+ckH/UXEBCgt99+W506dZIkVatWTeXKlVP16tU1adIk7dmzJ021AAAAAACAtCtQoID8/Pz03HPPady4cfrll19YaicHyvKnzhUsWFCLFqVtpsyCBQtUoEABVapUybqtRo0acnR01IIFC5IMmtzc3BLNWqpatapKly6tK1eupKkOAAAAAABgG2PHjlW1atX07rvvqlOnTtq8eXOKbz9D1svwoCl37tz67LPPEs1aMpvNcnNzU9myZR+5nlJyQkNDFRAQkOh+w9y5c6tEiRI6ePCgDMNIdH/mSy+9lGR/efPmVeHChVNdBwAAAAAAsK0mTZro3Llz2rBhg0aOHKn//Oc/atq0qQoUKJDVpeExMjxoqlevnvVRfrZ0/fp1xcbGJhkOubq66uzZswoKCpK7u/tj+woJCdHp06c1cuTIRx5nsVhksVgStAPw5Arfs90m/eRt2tom/QAAAABPk9y5c6t79+7q3r17VpeCVLDL6BN888031v8ODg7WTz/9pPPnzyd6fGBq3bt3T9LDmUj/Fj9DKiIiIkV9+fn5qWrVqurYseMjj5s2bZpcXV2tr2LFiqWyagAAAAAAgCdXhgdN0sMV8rt27SpPT0+98sorKl++vIoWLSpfX19FR0enqc/4BcGSCpMiIyMlKUUr09+4cUPz58/XqlWrEt1m92+jR49WcHCw9XXt2rU0VA4AAAAAAPBkyvBb54KCglS3bl2dP39ednZ2evHFF+Xh4aGIiAjNmDFD3333nfbt26dcuXKlqt/4NZ/u3r2baN/du3dVoECBx65OHxUVpa5du2rhwoUqXbr0Y8/p4OAgBweHVNUJZAZu8QIAAACebMk9YAvIDKl5/2X4jKaPPvpIN27c0Mcff6y7d+/q/PnzOnLkiH799VcFBgaqUqVK+vjjj1Pdr5ubm6pUqaLz588n2G6xWHTt2jU1btz4ke0Nw1Dv3r3VrVs3NWvWLNXnBwAAAAAgM9jZ2SkmJibNdwQB6RUTEyNJKXqYW4YHTV9++aW2b9+uYcOGydXVNcG+vHnzau7cufr+++/T1PeAAQP0119/6fTp09Zthw8fVkxMjLy9vSU9DJRCQ0MTtR04cKAqVaqkPn36JNh+69atNNUCAAAAAEBGsLe31/nz5xUcHMzMJmSJkJAQmc1mmc3mxx6b4bfOubq6qkGDBsnut7OzS/Akt9To1auXVq9erRkzZsjf318RERHy9fWVl5eX6tevL0kaNGiQFi1apIMHD6pWrVoyDEM+Pj4KDg5W69atde7cOUkP13ratWuXnnvuOXXr1i1N9QAAAAAAkBE2b96sZs2a6fr163J1dVWuXLkeu84wkF6GYSgsLEwhISEqUqRIit5zGR40ubu7P3L/yZMn9ccff6Spb7PZrJ07d2rQoEGqUaOGTCaT2rZtqxEjRliP8fT0lIuLi5ycnCRJ/fr105IlSyRJ69atS1TrzZs301QLAAAAAAAZ5ejRo9b1jm/cuJHV5eApYjKZ5ObmluguteRkeNBUtWpV+fr6asKECQmSr4iICK1bt05jxoxRixYt0ty/s7OzVqxYkez+CRMmaMKECdav/fz85Ofnl+bzAQAAAACQFZycnFSkSBFFR0crNjY2q8vBUyJXrlwpumUuXoYHTR9++KGqVaumJUuWqFq1anJwcNCNGzd05swZhYaGqlChQvroo48yugwAAAAAAJ4IuXLlSvWT24HMkilrNP3444/y8fHR5s2bE6SuDRo00LJly1SoUKGMLgMAAAB44oXv2Z7uPvI2bW2DSgAAT6sMD5okKX/+/Fq/fr0++eQTHTt2TOHh4apUqZLKli0rSSpXrpzOnj2bGaUAAAAAAAAgg2RK0BSvcOHCatmyZYJt58+f18WLFzOzDAAAAAAAAGQAu6w8eVhYmLp16ybDMLKyDAAAAAAAANhAhsxoOnXqlMaMGaMbN26oRYsWGj9+fKKFyi5duqS33npLZ86ckZ1dluZdAJ5AkZeG2KCX123QB5A5bLEui8TaLACAzMOaYsCTyeZB09WrV9WgQQMFBQXJMAydOHFCN27c0PLly63HbNiwQf3791dISIieeeYZrVy50tZlAAAAAAAAIJPZfCrRrFmzdP/+fZUuXVodOnRQkSJFtGrVKl28eFERERHq06ePunbtqpCQELVr104nT55Uw4YNbV0GAAAAAAAAMpnNZzR9//336tOnj/z8/GQymfTgwQO9/vrrmjlzpg4fPqyzZ88qX758mjt3rnr27Gnr0wNIh03h+9LdR8e8BMf/xrgCAAAAeFrYPGi6ffu2Zs2aJZPJJEnKly+fZs6cqddee02S9Morr2j16tUqWbKkrU8NAAAAAACALGTzoMnT01MuLi4JttWtW1d58+bVqFGjNHbs2ESLf0+bNk2jR4+2dSlAjsCi1QAAAACAJ4XN12iKjo5OfBI7O1WpUkXjxo1LFDLFxsZqyZIlti4DAAAAAAAAmczmM5r+/PNPTZgwQYZhJNh+9epVeXt7J9gWGxurU6dO6erVq7YuAwAAAAAAAJnM5kFTdHS0Jk+enChokqSlS5cm2SZ+PScAAAAAAADkXDYPmpydndW1a1cVLFjwsQFSTEyM/ve//+mrr76ydRkAAAAAAADIZDYPmt5//32NHz8+xccbhqHSpUvbugwAQDYVvme7TfrJ27S1TfoBAAAAYDs2Xwz89ddT9/Qrk8mkfv362boMAAAAAAAAZDKbB0116tRJdZvhw4fbugwAAAAAAABkMpvfOgcAAAA8ji1uo+UWWgAAsh+CJgAAsljkpSE26CV1t64DAAAAGYGgCQAA4BGYeYPMYJvAWSJ0BgBkNYImAAAAAFabwvelu4+OeRvaoBIAQE5k88XAAQAAAAAA8HQiaAIAAAAAAIBNEDQBAAAAAADAJgiaAAAAAAAAYBMsBg4AAAAAyJFYvB7IfgiaAAApZpvHb/PobQAAAOBJRdAEAACs+MswAAAA0oM1mgAAAAAAAGATBE0AAAAAAACwCW6dAwAAQIrZZq02ifXakJOE79me7j7yNm1tg0oAIPtjRhMAAAAAAABsghlNAAAAyJFYvB4AgOyHGU0AAAAAAACwCYImAAAAAAAA2AS3zgEAciRumQEAAACyH2Y0AQAAAAAAwCaY0QQAAAAASLHIS0Ns1NPrNuoHQHbCjCYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADbBGk0AAOCJlJ3WEOEpiQAA4GnBjCYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGAT9lldAAAAAAA86TaF70t3Hx3zNrRBJQCQsZjRBAAAAAAAAJtgRhMAAACAJ1LkpSE26ul1G/UDAE8+ZjQBAAAAAADAJgiaAAAAAAAAYBMETQAAAAAAALAJgiYAAAAAAADYBEETAAAAAAAAbIKgCQAAAAAAADZB0AQAAAAAAACbIGgCAAAAAACATRA0AQAAAAAAwCYImgAAAAAAAGATBE0AAAAAAACwCYImAAAAAAAA2ARBEwAAAAAAAGyCoAkAAAAAAAA2QdAEAAAAAAAAmyBoAgAAAAAAgE0QNAEAAAAAAMAmCJoAAAAAAABgEwRNAAAAAAAAsIkcHzRFRUVp+PDhqlGjhmrWrKkxY8YoJibmse1u3Lihdu3aqU6dOqpVq5bWrFmTCdUCAAAAAAA8uXJ80NShQwedO3dOR44cUUBAgI4dOyYvL69HtgkMDFS9evVUvXp1HTp0SNu3b9eoUaO0YsWKTKoaAAAAAADgyZOjg6aNGzdq+/btmjp1qsxms8xms8aPH69Vq1bp66+/TrbduHHjFBoaquHDh0uSChYsqHfffVeDBw9WYGBgZpUPAAAAAADwRMnRQdOCBQtUoEABVapUybqtRo0acnR01IIFC5JsEx4erpUrV6p+/fqyt7e3bq9Xr55CQ0Pl7++f4XUDAAAAAAA8iXJs0BQaGqqAgACVKlUqwfbcuXOrRIkSOnjwoAzDSNTuwIEDioyMVOnSpRNsL1u2rHU/AAAAAAAAUs/+8YdkT9evX1dsbKwKFy6caJ+rq6vOnj2roKAgubu7J9h35coVSUrUztXVNcH+pFgsFlksFuvXwcHBkqSQkJC0XEKmigh9kO4+QiItjz/oMeLCwtPdhySF22DIQ2LS3wnjmhjjmhjjmhDjmkQdjGsi2WVcJduMLeOaGOP6rzoY10QY18QY18Syy7hmtPjfOZOaTAFkO0YOdejQIUOS8c477yTaV6dOHUOScePGjUT7Jk+ebEgyli5dmmB7TEyMIckoVapUsuecMGGCIYkXL168ePHixYsXL168ePHK9Ne1a9fS/8s0kMFy7IwmR0dHSVJERESifZGRkZIkDw+PFLd7VJt4o0eP1rBhw6xfx8XF6d69e8qfP79MJlMqr+DpExISomLFiunatWtycXHJ6nKeGIxrxmBcMwbjmjEY14zD2GYMxjVjMK4Zg3HNGIxr6hiGodDQUBUtWjSrSwEeK8cGTS+88IIk6e7du4n23b17VwUKFLCGSilpF/918eLFkz2ng4ODHBwcEmxzc3NLVd2QXFxc+GGSARjXjMG4ZgzGNWMwrhmHsc0YjGvGYFwzBuOaMRjXlItf7gXI7nLsYuBubm6qUqWKzp8/n2C7xWLRtWvX1Lhx4yTb1atXT/b29ona/f7775KUbDsAAAAAAAA8Wo4NmiRpwIAB+uuvv3T69GnrtsOHDysmJkbe3t6S/m+KYTwPDw+9/fbb+vbbbxMspLZ//365u7urffv2mXcBAAAAAAAAT5AcHTT16tVL9erV04wZMyQ9XHfJ19dXXl5eql+/viRp0KBB8vDw0I8//mhtN3PmTEnS8uXLJT180pyfn5/mzJmT6Cl1sB0HBwdNmDAh0e2HSB/GNWMwrhmDcc0YjGvGYWwzBuOaMRjXjMG4ZgzGFXhymQwjZz8fMTQ0VIMGDdKZM2dkMpnUtm1bjRgxQnZ2DzO0iRMnau7cudq/f78qVqxobXfu3Dn5+PgoKipKcXFxGjFihN58882sugwAAAAAAIAcL8cHTQAAAAAAAMgecvStcwAAAAAAAMg+CJoAAAAAAABgEwRNAAAAAAAAsAmCJgAAAAAAANgEQRNsJiYmJqtLAIAnDs/sAADkNPzsAp5uPHUONnfp0iW98MILWV3GEyEuLk52duTB6XXy5ElFRETowYMHevbZZ/Xiiy/KbDbLMAyZTKasLg9IVmxsrMxmc4L/5n1rO/8cX9iGYRgyDIOfXTbG54GMwbja3r+/B/AzC3g68Z0VNrNx40a5urpq27ZtkvhLRnrEj52dnR3jmA7nzp3TW2+9JW9vb3Xq1EmNGzdWgwYN1KZNG50+fdr6wYcxTj9mNNpW/HvSbDYrMjJSY8aM0ZIlSySJD+w2EBsbK0nWkOn06dNZWc4TIyYmRiaTSXZ2dgoMDNTJkyezuqQczzAMxcbGWn9pj4uLs25H2v3zc1b89wOkX2xsrPV7wJ07dzRnzhydOXMmq8sCkAUImpBqhmEk+qXy6tWr2rt3r8qXL6833nhDEr8MpUX8B8j4sVu0aJEaNmyoTz/9VFeuXJEkPhClwIMHDzRu3DgNGTJEzZs317Zt27Rx40YtXrxY5cqV086dO9W2bVutXLlSEu9VW7C3t5ck6/sUqRMVFSXp//59x78n16xZo//85z/y8/PT0aNH9f3332dZjU8CwzAUFxdnDZgOHjyo5s2b6/vvv5fFYuGX9zSK/9kV/31g/vz56tKli65evZqVZeV48TNBzGaz/vrrL7377rvy8/OTxM+ttPr356xPP/1UjRs31vz583Xz5k1JfM5Ki/hxjf/eOm/ePL322muKiIhQhQoVsrI0AFmEoAmpEv+XCnt7e927d0/+/v6SpOeee05Lly5ViRIldO/ePUn8tS21/jnNODw8XCtXrtShQ4dUvHhxDRs2TCNHjpQkbvN4jPnz56tYsWIKCwvT9u3b5e3trUKFCqlGjRrq27evvvnmG/Xq1Us3btzQxx9/rG+//VbS/31IQsrE/8Ie79ChQ3rppZf0xhtvaODAgXrw4EEWVpez/Pzzz/L19ZWU8N/3hg0b9Pnnn+vbb79VYGCghg0bpqCgIN6r6RD/l/azZ8+qRYsWql+/vq5fv66BAwfKwcGBX97TKP5n15o1a1S6dGkNGjRIL7zwglq0aJHFleVs8e/HWbNmqUGDBvruu+908OBBZoql0T8/Z4WFhWnRokX63//+p8KFC2vQoEEaPXq0JD5npUX8uO7YsUNlypTRiBEjdPbsWQUHBzPjGXhKETQhRf79l4o5c+bomWee0eHDhyVJkZGRkqR69eopICBAEn9tSy2TyaR79+5p+PDhGj16tEqVKqU1a9Zo5cqV6tSpk3bs2KE1a9ZI4q9tSbl27Zratm2rQYMGqVChQhozZoxy586dYKxiYmJkb2+vDz74QO3bt9dvv/2m+fPnKyIigjUaUin+F/aQkBCdPHlSBw4c0EcffaS3335bCxcu1Jw5cxQWFpbVZeYI1atXl5+fn3788UdFRkZq9erVkqT79++rWrVqKlKkiCSpYsWKatOmDe/VNIoPR2fOnCkfHx9VqVJFb7zxhk6fPq3+/fsrKCgoq0vMkQzD0J07d9S3b19t2bJFffv2Vd26dbV8+XJNnTpVFoslq0vMMZL6A92iRYv066+/6tSpUzp37px8fHx0/fr1LKgu5zOZTLpz544GDx4sX19fVa5cWatWrdK6dev01ltvafPmzdq6daskPmelxeLFi7V48WJ9/vnnOn/+vNq3b6/p06dr7969kviDHvC04dMqHumf97BL0tGjR1W1alUNGzZMFotFZrNZQUFBcnR0tB7/7LPPSuIHyuP8e52Fv//+W2vWrJGfn59WrFhhnRkmScOGDVPRokX13//+V+Hh4TKbzYzvP8TFxSk8PFxDhw7VxIkT9ccff2jhwoUKCQmxLp4s/d9tHaVKlVLXrl1VsmRJ/fzzzzp06FBWlp8jxcbGav78+apYsaI2btyo3r17q23btvLx8VH79u312Wef6fjx41ldZo5w69YtBQUFqV27dmrevLkCAwMlSffu3dOuXbvUrFkzvffee+revbuaNWum4cOH68SJE5KYOZoaJpNJd+/e1ZEjR+Tn56fJkydr5cqVGjlypDZs2KDo6OisLjFHMplM+vXXXxUeHq4tW7ZoxIgR+uKLL1SvXj3t3r1bDg4O/LxKgfgZ4/8WEhKikiVLKnfu3IqOjtYrr7yi5s2bW/cztsn79+esW7duyd/fX4sXL9aKFSsS/DFk6NCh8vDw0JQpU6y31/L9NWlJhXAWi0W7d++Wj4+PKlWqpOeee06TJ09WhQoVtHPnTknijyTAU4Z/8UjWP58SERERoYkTJ6pRo0aqXLmywsLC9P7772vlypWqW7euvvzyS0lSiRIl9Pnnn0viB4qU9C+BcXFxCaZvx4+xq6urBg0apEmTJunBgwf64YcfrG2qVaumLl266MKFC5o+fbokxvef7OzsVKZMGdWtW1ft2rVTtWrVtHLlSusv4//88B7//0nVqlVVs2ZN3bp1y/phkw+VSUvqF5mTJ08qJCREcXFx2rZtm/X9WKhQIQ0ZMkQPHjzQihUr9Pfff2d2udle/HjG/++JEydUpEgR/fXXX3r99dc1dOhQSdKAAQP05ptvKiQkRPv379fp06d1+/ZtLVq0SO3atZPEzNGkxC+enJQdO3bop59+kru7u2JiYlSwYEE1btxY+fLlY32xx3hUoLFy5UoFBQUpNDRUMTEx8vT0VKtWrfT3338rLCzsqf95FRUVpdGjR2vp0qWSEo7lPxf+Dw4O1po1a3TkyBHrMbGxsdq2bZveeOMN+fj46K233lLTpk313nvv6ebNm0/92Cb1vkzuc5a7u7uGDx+uDz/8UPfv30/wOatu3brq2LGjTp48qVmzZmVO8dlYUp+H/vle/Tez2ayffvpJ+/bts24rXbq0ChQooEqVKiXbJ4An19P90wmPZDKZFBMTIz8/P/n6+srFxUUTJ05U586d5ejoqJkzZ2rDhg3Kmzev3n77bQ0cOFAFCxZUxYoVFRIS8tT+QLl8+bI6deqky5cvy2QyJRiH+A8+JpNJR48e1fjx47V48WLt3btXuXPnliQNHjxYNWvW1Nq1a/Xdd99Z23p7e6tKlSpatGiR7t69qwcPHjy1Y/wopUuXlre3t65fv65169ZZg474sYr/wOnp6amyZcvKMAxduHAhwb6nTfwMmn+Lv9Uo/sN6RESEdV+VKlU0ePBgeXt76+zZszp48KD1l/sqVarI29tbGzZsSPBBHgkfpR3/v+7u7po3b57q1Kmj6dOnKzg42Lp99OjROnz4sH744QcdP35c+/bt0969exUWFvbULgx+9+5d63sxqV8y4xdPvn79un744QeFh4db95UoUUJ//fWXNm/erMjISNnZ2SkyMlLNmjVT9erVM+0asqPffvvtkfvj36/ff/+9fv75Z+v7VJIqVaqkAwcOaP/+/daZo4GBgRo0aJCcnJwyrugc4s8//9TXX3+tJUuWKCYmJkE4FP9zx8/PT3Xr1pWvr69effVVtWjRQj///LMGDx6s9u3bKzIyUkeOHNG9e/f0999/a/HixerSpYukp+8X+AsXLujtt9/W7du3EwVt//ycdfDgQU2YMEFLlizR/v375eDgIEkaPny4KlasqFWrVunHH3+0tu3fv7/Kly+vuXPnKiIiQqGhoZl6XVnt+++/t669mtQf6OK3bdu2TW+99ZY+++wz/fHHH5Kk4OBg1apVS3PnztXy5csVGhqqn376SZ6enmrTpo0knk4LPHUM4P+Li4tL8L8Wi8VYu3at8dxzzxkFChQw5s2bl2S7oKAgw9vb2/Dw8DDs7OyM1157LdNqzo42bdpkODk5GRMnTkxyf2hoqDFo0CCjWrVqRq9evQxHR0fD3t7eGDRokHHmzBnDMAxj69atRp48eYx27doZMTEx1rbr1683TCaTYTKZjNdff90ICgrKlGvKLn7++Wfj559/NgIDAw3DMIzo6Ogkj/vzzz+Ndu3aGa6ursaWLVsS7Y9v9/nnnxsmk8lYu3atYRj/995/WsTFxRkjR440XnvtNePChQvJHnf16lWja9euxltvvWV06dLF2Lp1q2GxWAzDMIwzZ84Y1apVMypXrmz8+eef1jZnz541SpUqZTRq1MjYtm2bsW/fvgy/npzi77//NkaOHGmMHDnS2LhxoxEbG2sYhmEsXLjQMJlMhre3t2EYhvXffnh4uBEREWFt/+uvvxqdO3c2wsLCMr/4LLZv3z6jePHixvTp0xNsjx/DeJ9++qlRrFgxI0+ePEbDhg2Ns2fPGoZhGKdPnzZatGhhmEwm48033zSGDx9uNGrUyDhy5IgRFxdn7N2719i/f/9T97111qxZRr58+RL9O/3nz5+7d+8aPXr0MAoVKmS4ubkZrVq1su47evSoUa5cOcNkMhmdO3c2unfvbvTo0cO4d++ecf36dWPjxo3G/v37jb///jvTrim7CQgIMK5fv57kvu+++87o3bu3ERISYhiGYSxevNgwmUzGK6+8Yjx48MB6XPy/+aCgIOPIkSOGg4ODcenSpYwvPptZtWqV4ejoaMyePTvJ/ffu3TP69+9vVK9e3ejZs6dhb29vODg4GMOHDzcuXrxoGIZhrFmzxsidO7fxzjvvJGi7ZMkSw2QyGWaz2WjZsmWC8X/SVaxY0Shfvrxx/vx567Z/fi4KDw83tmzZYrRo0cLo1q2bYTKZjC5duljfl1999ZVRq1Ytw83NzahSpYrx1ltvGb/99ptx7949Y9y4cUa3bt2M8ePHG/fv38/sSwOQBQiaYMTFxSX6kG4YDz9g/u9//zMmTpxomEwmo2fPntZ98cf/M5Tav3+/UbZsWaN48eLG8ePHM6f4bCR+LMLCwowDBw4kOaaGYRjLli0zJk2aZP16//79Rvv27RONcbt27Qw3Nzdj1apV1m0TJkwwTCaTMXbs2AS/ADzpAgMDDS8vL6NOnTpGly5djJdfftn6wSZ+nP/9YXDXrl1G/vz5jZYtWxp//PFHkv2OGDHCcHZ2Nk6ePJmxF5CNLV682ChTpoz1F/F48e9nPz8/o1GjRsakSZOMcePGGQULFjRMJpPxzjvvGBaLxYiNjTVWrlxpmM1mY9q0aUZkZKS1j8mTJxsmk8lwcHBI8D5+mi1evNho0KCB0bNnT6NUqVKGyWQyNmzYYBjGw/d5u3btDJPJZJw6dcra5vDhw0afPn2MJUuWGOPGjTPq169vfPLJJ4ZhPH3h6O3bt42aNWsaixYtSvLaf/jhB+PEiRPGunXrjJiYGOPTTz818uTJY7Rv3956zN27d41p06YZXl5exqeffmo8ePDA+PXXX43mzZsbdnZ2hslkMry8vIz//e9/mXhlWWv37t1Gq1atjB9++CHRvvDwcOPLL780zp8/b+zZs8cwDMPo37+/YTKZjI8//th63B9//PH/2DvvqCiS7+1XDRkBSSIKkgygIqiYMKGgIGBOmAOKqKtiwMyuWVQwYc45ZwGzIiqKAQVFjCiIBAlKzvC8f8zbtdMMurvf366B6c85e9bpru6ZLqor3Lr3uVi/fj2GDRvGyu3duxdmZmaglEJVVRVTpkxBamrq93mon4RvvaPFxcUAgCVLlmDPnj0AgJcvX8LDwwOOjo64ffs2K5uRkcG79tatWxg9evRXN1yqIlxdZmVlITQ09KvlNm7ciFWrVrHPV69eRY8ePUApxYQJE9hxZ2dn6Ojo4MSJE+zYtGnTIBKJsGTJkv/gCX5OuHlUWFgYjh8/LnW+qKgI69atw8yZM3Ht2jV2fOjQoahWrRrbiC4vL0dmZiYuXrzI+oADBw7A2NgYlFIoKirC1NQUW7Zs4W2eCAgIVE0EQ5OMIzkBio+Ph5+fHw4ePIiwsDAAYIvGjh07QldXFxcuXJC6TvJzVFQUvL29ER8f/z1+/i9FWVkZ8vPz4ezsjMOHD/POpaWlwdLSEurq6rhy5QoAcV1Wr14dlpaW2LBhA65evYrdu3fzdi9lxdj0xx9/YM6cOQCA7OxsdO7cGXPnzmXn3759izNnziArK4sd+/z5M6ZOnQp5eXls2bKFTehLSkpQXl6OjIwMWFlZ8SadskpOTs5Xz02YMAEvX75knxMTE2FnZwdKKTZu3AhA7EHWp08f6Ovrs53Q6Oho2NjYwM3NTeYWloC0hw0grufx48cjJSUFAPDo0SNMnjyZ5+URFBQEbW1t2NnZARBP8PPy8uDu7g5KKbp06YL3799/j0f46eD6u8+fP0udS01NxezZs6GgoIDBgwcjMTGRXTNgwACoqKjgzJkzrHxJSQlmz56NqKgoTJw4kXmKtmvXDlu3bsXixYtx48aN7/JcP4ILFy6w8ZyjMoNFZGQk8wCbM2cOG+tfvnyJdu3aQVVVlXnhlJeXIzExEUuXLkVwcDDatm3L6nXixIk4deoUVq9ezeYXskpxcbGU4d3Ozg5bt27Fxo0b0alTJ2zbto2de/LkCVJSUnD27Fl4e3vD398f06ZNQ+fOnbF3797v/fN/asrLy5GdnQ17e3ucP3+edy4pKQmmpqbQ1dVlBtW7d+9CRUUFLVq0wMaNG3Hz5k1s374dCQkJ7DpZmWd9jfT0dGzduhV6enpQUFDAgQMH2Lm4uDgYGBigefPmiIuLY8fPnj2LZs2aoWnTpqwPmDBhArKysvDw4UNs2rTpRzyKgIDAd0YwNAmgvLwcS5cuRdOmTdG3b1+oq6tDJBJh2rRpbIEZEREBSin69+/PdtW+5rEzZMgQtkMvKxQUFFS6O/PixQtcvXqVfU5OTkbt2rURHBzMjnH1eO3aNVBKceTIEXbO2dkZlFLUq1cP9+7dY8dLS0u/Wv9VjYyMDDRs2JB5cADAihUrEBAQgOzsbGzduhVqampYtGiR1ITw/v37MDc3R/PmzfHo0SPeuU2bNsHJyUkmww44Kttpl1xsXrt2DbVq1WKfuXC5q1evwsLCAhYWFuw+ly5dgqamJlq2bIn+/fvj0KFDLERB1pBsh1ydAcC5c+dYnVV8f7nPJSUl8PLyAqUU586dw5MnT/D69Wukpqbi4cOH3+HX/1pwBuSXL18iMDAQysrKsLCwQHJyMitz8+ZNGBgYoEWLFrx679q1K1sEmZqa8jYArly5UiUNIuXl5Thx4gRq1aqFESNG4NOnTwCkF9Pc51evXmHt2rVQUFCAo6Mjr8zOnTuZ9xfH58+foa2tzerV1dWVhYQDQGBgIDMCygqS/eznz5/h4+MDSinbVALEmyny8vLw8fFBfn4+7/odO3bgypUryM/PZwbngQMHylx4Z15eHs9jliMyMpLniffu3TvUrFmT5/HEvfdnzpwBpZRnhOIMog0bNkRkZCQ7XlpaKnMeo5I8f/6cbYoUFRXh8OHDoJRi9uzZvHLLli2DgoIC7/jJkyeZJ+OQIUN4HrqZmZnYv3+/TIUkCgjIKoKhSQBHjhzBpEmT2ALz1q1b6N69OyilGDNmDNs9Hj16NOTk5LBz506pe5SVlbEJ/9GjR5nmjSxQUFCAjRs3IiIignf85cuXaNOmDZSVlXmLSAsLC/Tq1YtnmOLON2/enLlrP378GAYGBti8efN3epKfkw8fPqBmzZoYOHAg8/xwc3PD+fPnkZOTw8KzuNCv8vJyNjnMz8+Hv78/RCIRli9fDgB49uwZ3Nzc4OjoiAcPHvyYh/pBcHXDubRLkpOTg1WrVvF2yIODg2FsbMzCN7g+orS0FP7+/tDR0UF4eDiAP43RNWvWxK5du77D0/wYcnNzWWjwt0JWsrKyMHv2bJ7nnZ+fH7p168baMddOi4uLkZiYyIye9+/fh52dHeTl5dG2bVspI6msUtEYcvz4cfTv35/3d1i0aBGUlZV59Q6Iw2GUlJRYqFdhYSHu3LmDjh07Vqqnd/36dURFRf0HT/FjKSkpwYkTJ9CuXTuoqalJjdWchuCUKVN4x4cMGQJlZWUcO3aMHcvIyMCAAQNAKWXGpJKSEpw9exYdO3as1FB38uRJpKenV/mNkoqSBDdv3sT+/fvx4sULLFiwAPLy8mjYsCE7f+rUKejo6MDX15d3n/DwcNSqVQt3794FIF78v337lp2v6vXIkZubi3Xr1iE6Opp3/NmzZ2jSpAm0tbXZsYKCAhgZGWHIkCE8Qz/X3zZs2BDr168HIA4Vq127NgtblFUk+9bS0lLs3bsX9evXx7Jly3jl2rdvDx0dHd5maWFhIaytrWFkZISYmBh2/M6dO3B3d5f6rujoaGFMExCQEQRDk4xQXl4uNUkvKSlBaWkphg8fjq1btwL4c9ISGxuLTp06QVNTk+38fPnyBerq6mjQoAE2bNhQqTHpw4cPaNu2LS9EQRaYNWsWBgwYAAA4dOgQPn78iAcPHqBPnz6glMLb2xuAeCfHw8MDlFJs27aNhSxxRrq+ffsy8er8/Hze7p0s6DBUnDRzE8ORI0eCUgp3d3c8e/aMF1YAAF5eXpWKfgPiHXl7e3vUrFkTbdq0gY2NjUwZQivD29tbKgx2165dqF69Ovr06cM0ra5fvw5KKTw8PHihh4B4gm5mZsa8E1atWoX58+dX6R3g7Oxs9O3bFxoaGuxYZX1rTEwM6tatC0opzMzMcOfOHQDi3XR5eXlcvHhRKvnCy5cvsX37dt53nTt3Tsq7QUC8sHny5Ans7e2lQjkKCwvRpEkTmJiYMCMoIO4HuAXpypUrcerUKQDAmjVrcPPmTd7979y5g927d1dJDZHi4mIkJSUhISEB+vr66NKlC0sEUFRUhMDAQJiYmEBLS4u3aAwLC4ORkRGaNWvG+gLgTy28li1bYu7cucy4NHLkSOYNAYj79n379uHkyZPf6Ul/DgoLC/HgwQNoa2vD3Nwcz549Q0ZGBtO+XL16NQBxSDKne9WyZUvMmzcPQ4cOhZycHE+TkKOsrExmjEwcnp6ezHBx4MABpKSk4M6dO3BxcQGllGlfpqenY+jQoaCUYv/+/awPLSkpQUlJCXr06ME2W/Ly8nj9tyzMsySpaGAKDAxEcXExNmzYAFVVVbRo0YKnYRkZGQlKKQYMGMALYb5y5QoopVBQUICVlRUyMzNx+fJlXtKGkpISbNiwAVOmTBHkNQQEZATB0CQDSE5GsrOzeXogBQUFMDY2ZqFukoPs7du3QSnleSdwIR3a2tq8yX1JSQlWr16NGjVqoFWrViwrWFWHq1tugti2bVsMHDgQnz9/RnFxMV69esW8wzhvhaCgIFhaWqJ69epYvHgx23F78OABRo4cyUIZOGTBffvNmzeVusRzk6D09HTY2tqyTDCTJ09mk5z8/HxMmTJFSlOB2/UtKytDly5dQCnF/ApCiwAAl7RJREFU5MmTeYskWSQnJwe9evXC1KlTcfr0acyYMQNv3rzB9evX2cKG014CgNatW4NSysQ+uTafmZkJV1dX9q7LQr1GRESgTZs2vEWN5I55TEwMvnz5gry8PKSlpTFD3fjx41l4bZMmTWBra8sLhS0rK8OSJUuYsbSqv+//BMnxKy4uDra2tpgzZw5yc3Oxbds2qKiowNbWlmfUOHz4MBQVFTF8+HBeXXIGawsLC9y7dw9lZWXo2rUrAgIC8OnTJ5bNb8yYMTwjS1Vl3bp1zNjB9bWvX7+Gt7c3lJWVeQLqgHhDRUFBgXmHctSrV48tPrOzsxEXF4f27dtj//79+Pz5M/bs2QMnJycsXbpUpsJlDh8+jIYNGyIgIADXr1/HjRs3WHt+/fo1bG1tUa1aNaZxFRsbizFjxrCwQ05AXdYTKXB1NmTIEKajNmzYMOTk5KCoqAjR0dFwcHCAgoICmz+dOnUK9evXh66uLlauXMn6gVu3bsHd3V0q65ms6zB9+fKFhRCePHkS+fn52LhxY6Whcu7u7lLRDUePHmUJbZKSkgCIdZoopVi0aBHWrFkDGxsbzJo1S8g4JyAgQwiGJhli1apVMDExgY2NDWbMmMEm0i1atECrVq0qvcbZ2RmTJ08GIN7JMDU15QmCchQVFcHPzw81a9bEihUr/tsH+QngJj5lZWUoLS2Fq6srqlevDjMzM6kyJ06cQLVq1eDi4gJAbJS7c+cOrKysQClFx44dYWdnB0dHxyotPlsZ586dQ9u2bdGkSRPo6enB09OT7a5zcPX4/v17ODk5scwl1tbWLFOMv78/TwPg48eP2LVrFz5//owLFy7A29tbprWYJCkpKYGpqSmUlZXRsmVLVm/5+fnIz89Hw4YNYWNjw1zbHzx4AEVFRcjJyWHZsmVISEhAbGwsRo8eDT8/vx/5KN+d+Ph4XLhwAZ06dYKcnBzTAXrz5g3at28PNTU17N69m3eNk5MT1NTUcPbsWQB/aoSYmJjgyJEjuH//PgIDAzF06FCZFfn+K3JychAUFITr16/D0dERgwYNYouVP/74A4qKilLhb87OztDU1GQaec+fP0e9evWwZcsWXrmpU6dCS0sLLi4usLKywo4dO77LM/0MFBQUoGnTpmjUqBHP+wsAE1APDAxkx2JjY9G8eXPUrl0b2dnZyMrKwq5du9CyZUsp/bDWrVujSZMmcHBwgIODg1RoeVWirKxMak704sULTJo0CSKRCM2bN5faQALEGT0ralyVlJQgMDAQAQEB8PPz420MyhqS86yCggI4ODhAQ0MDjRo1YmW4et+/fz8UFBQwcOBAAOK2HRISAnNzc1BK4eDggA4dOsDZ2ZmFIQqI51Xu7u5YtmwZ/P39ceDAAZ6od/PmzVGrVi1eprkvX75ATU0NNjY22LFjB06fPo0TJ07wMiSWlJSgoKAAXl5e8Pb2xpgxY6T6GAEBgaqPYGj6heF2Df6KvLw8jB49GpMmTcKFCxcwdepUUErRqFEjFBYWMm+cDRs2sIGd293p1asX9u/fD0CcVlpy0sN5P3EDfWZmZpUXp6zMVT0zM5NNDCXTPXNl8/PzMXbsWFBKedo4CQkJOHPmDPz9/WUuA8eLFy8wevRodO/eHXv27MHy5cuZgOy4ceN47YxrX8+fP0f//v0REBAAe3t7UEohEolgYWEBKysrREREIDU1FZ8/f8b27duZqLos7aBXRsWd2ps3bzKvnH79+rHzXHvldiZ9fHzYTvuZM2fg6uoKBQUFNGjQAPXq1eN5NMoaBw8e5C1q5s+fj1GjRkFHRwfdunXjiaC/efMGlFL06NGDed2sX7+epXtWU1ODuro6T+xelqkYuvLq1SuMGDECCgoK+O233xAXF8fzIsvMzIS5uTnq1avHE/J98eIF8woxMjJCdHQ0z+uO+3dRURESExPx+PFj3n2rGhX7Ae59DwoKAqUUM2bM4GWfvH79OmrXro3WrVvzruOMI1ybluyry8rKmGfqly9f8OXLF6adV1WRnBO8ffuWJ3R++fJlDBo0CCKRiIUUSmo3paWloX///qCU4tWrV0hJSanUM1QWvJolkaxT7rnT0tIQGBgIf39/UEqZ3APXrrOysjBs2DBQSlmoMiD2gjx9+jRWrVolU0bkyqjYtyYmJmLBggWQk5ND06ZNeYYgrh2GhYWBUooRI0bwPJE8PT1BKYWuri6OHz/OjnObrwICAgKAYGj6JcnNzcWcOXMwfPhwfPz4EcCfIr+VTUYiIiIwfPhw9jkuLg5GRkZo06YNCgsLcfPmTTRo0ABqampYs2YNSxH/8eNHjBo1SsoTRBa1ASqya9cujBkzBitXrmTx62/evIGTkxN0dHRYGBc34IaGhsLExARWVlYAxEamyv5WVX2ALigowLhx4yAvLy816Tt16hR0dXVhZGTEM6JydeLl5YWZM2cCEBvvNmzYACsrK1SrVo2FGBgYGMDU1BQmJiZVMmPUP6HiO8pli+T+7+3tDUpppUZOR0dHGBoaSomGx8XFITQ0tNIwx6pOeXk5m6iXlJSwRY2kqOn69etBKcWaNWt49T9lyhRQShEQEMCOJSYm4vr16zh8+DBP60KWkawzzkAcFRXFDPWdOnVi5zmNQUCc/UxJSQkeHh7s/P3795kxRDIMrqr3sRWpOM5EREQwAzJHnz59UKNGDZ7ALyBut0pKSli3bh07NmPGDFBKsXDhQl5ZWatXSTIyMuDh4YHatWvDyMgIPXr0YPOmsLAw1KlTBw4ODry/BfdvLtssF3qfmprKOy/Lc62tW7di7Nix8Pf3x6tXrwCIhaQ7duwIAwMDVldc27t8+TJq1aqFdu3aARDPYWVxnvVXcHIYubm5iI6OZhpX3PhUcRPZzc0NioqKTF/t1atXqFevXqXRDQICAgKSCIamXwTJycbz589hZWWFGjVqVCpqXHGCcuTIEcyePRufP3/GjBkz0KVLFxw8eJCVLy0txbVr12BjYwNKKTp06IC+ffuic+fOMi+aXJFXr15h0KBB6NmzJ0aMGAFKKezs7Nj5o0ePolq1avD09JS6du7cuaCUQl5eHvPnz+ftLn3NSFiViI+Px5IlS1C9enVQStkumKTHkZWVFTQ1NXmu24DYQNWwYUNexiNA7GU3ZswY9OzZE0OGDEHfvn0xc+ZMqYWULHP16lV07NgRHTp0wKhRo9iEPScnBxoaGmjVqhXzOuDa5P3796GkpIQhQ4bg0KFDVTrs5Z9y+/ZtuLu7M+21tm3bsnO5ubmwtrZG48aNcf/+fd51mpqasLKyQmBgINsgEJDm5cuXaNmyJXr27AlA/O5nZmZi4MCBkJeXZ8kpKnp5ODg4QEVFBb6+vjhw4ABCQ0N5CQJkecEOAOfPn0fz5s1Rt25d6Ojo8MJeo6OjoaysjEGDBvE8cl68eAELCwvUqFEDK1euxMOHD7F3715e/1xVF+1cP/lXz5eTk4MBAwbA19cXKSkpmD9/PkQiEVq3bo34+HgUFhZi4cKFoJTy5l2cx8iaNWtAKcX8+fOrbF3+U54+fYp+/fqhb9++GDRoECilTHoAAPbu3QtFRUWWZEUSzqjPaYlJ1mlVn2NVhOvzuOc+ffo0DAwMeB5hgHjTo1atWmjVqhU+fPjAruXqLjs7G0pKSlBWVoalpSWuXLnC826SNQF1AQGBv49gaPrJqTgwhoWFISwsDFu3boWuri7s7e3ZhAgAVq9ejQkTJuDevXss08aKFSugq6sLBwcHLFiwgOeNEBQUxHYr09LSsGfPHixatAgLFiyokhl3/q9s376dp8Hi4+PD2wVOS0vDmDFjICcnx8R+ExISkJWVBXt7e+jr60sZS2QFbmLy7Nkz6OvrQ1NTk4VqFBUVISMjA7Vq1YKbm5tU23vx4gWUlJQwevRoAHzh6QULFrDJkSx62lQG53Xo5+eHHj164MCBAxg3bhwopdi5cyerX07s8/fff+ddC4gX7pxwsqynIub64a1bt6J169Y4ffo0oqKimEC9ZMKEwMBAUEoxc+ZMFkr8+fNnloFy3Lhxgl7Y/6fiAiU2NhatW7eGvr4+KKUsMyIA3LhxQyqUSzLj38mTJ0EphbKyMlatWsW7rywt4CVDszgOHjyIAQMG4NGjR7h//z6qV6+OoUOHoqioiLVtTui7Ypr3AQMGgFKKBg0a8AzOVTWci/NOsrW1ZZneKqtTjqCgIHh5ebHPJ06cgJmZGTw9Pdn4Fh0djZYtW6Ju3brsGNcmT58+zdNmk6W2ClRuAF63bh0OHz7MPs+dO5enEZSUlIQhQ4ZASUkJUVFRAMQbWZmZmWjVqhWMjY2ZJp4swc35K4avcfOio0ePYs2aNWjUqBG0tbV5ocKLFy+GgoIC5s6dK3XfuLg4lv1Q8u8gRDcICAj8FYKh6Sel4sTm8uXLMDAwQN26dXHmzBkAfy4S/fz8kJSUhIULF6Jjx45o3rw5NDU1WaaSxMREaGlpsbAjSdatW4f169d/9XfI2qQH+PozFxcXw8TEhLf4kYRbvF+/fh1GRkbo2rUrPn78yMKPJHczAdneYZ8/fz7LAsdx5MgRdOrUCS9fvmTHOINSZmYmlJWVQSnFiRMnUFRUhPT0dMyfP59pYlXFRc/fpbIdxezsbAwcOJBlhfv8+TNCQkKkyjVq1AgmJiZMyDM8PBx37tyBoaEhS70tIH5fXVxceIL9T58+RdOmTaGjo8PrN/r27QtNTU32zp84cQJpaWnYu3fvd//dPxNPnz5l3lyS9bV//35eG46Ojkbjxo3RtGlTtngCxN4KCgoKvFAuQOxJ5ujoiJEjR7LQb1lEckzhxqOCggL079+flyxBUkOMIy0tDYaGhujQoQP7G6Wnp8PExATbtm37j3/5z8PDhw9haWkJRUVF5vUh2TYr9rX79u3DhAkT8Pz5c4wYMQK9e/fmaQR9+PABZWVl2LlzJxQVFeHo6Ij+/fvj+vXrvPuUlpbK1JygsnlWeXk58vLyUKtWLZ6wtCRcu75w4QL09PTQp08ffPz4EVeuXAEgu/Os3NxcrFy5khlHAfHmnru7O3r06MEru2nTJlBKMWXKFHassLAQTZo0Qd26dfHgwQMA/JDEzZs3s7KyPNcSEBD4ZwiGpp8QyYExNjYW48aNQ48ePXDs2DGEhYXB39+fiW42b94cNjY22LdvH9MKysjIgI6ODlq0aIHo6GgAwOTJk6GiooKJEyciODgYjx8/xsSJE6XcuYE/BxFZHEwkn/natWt4+PAhEztNTU1F69atmTg6R0lJCcrLy1ld5+fnw8/PD9WrV0fNmjWxZMkS3t9Ult2Mufr98OEDrK2tQSnF06dPWWgBpRSurq44duyY1ASRK6Oqqsp0mGRpAfR3kMxsdPbsWbRu3Rrl5eVSIsfFxcXMw+zKlSuglKJ37944ePAgrl27hqSkJJkUUa8sexRHVFQUjI2NERoayju+YcMGJqbMkZiYCH19fWhra6NBgwaYOXOm4G0HsQ6bpPfc7du3WT8gaXQuKipiIUWSGyExMTFo0qQJDA0N8eXLF3z8+JGFyXIGVeDPPllW8fX1hZGRETIyMlBYWAhLS0sEBQUBkB7XMzMzeZm7KKUwMzODra0tcnJyeAaBqj52lZWVITIyEseOHYOOjg6aN2+O+Ph4AOJF+/jx49G/f3+cPHmS1dmiRYvQoEEDtGvXTmpucPToUSY/cO/ePVBKoaGhIRMG/Dt37vytd3Dfvn1wcnJi9fzu3Tu0atWKZZTlKCkpQVlZGTOYZmdnY8mSJVBTU0Pt2rXZhpNkeVkiISEB48ePZ/UTGhqKBg0asHmV5AZpSkoKevToAUopL8vvoUOHWIa+FStW4NatW1LfI2v1KiAg8H9DMDT9REgurIuKiuDt7Q1FRUWsWbOGV05yMRkcHAxKKZo1a4a3b9+y4zt27ACllLnBfvnyhWWakvyvZcuWLBOSrMEt/CpOhmJiYtCtWzcYGRlBU1MTpqamzA3b3Nwcbm5uTMdCchK+ePFiXl0+ePAAjx8//q8f45dDMgyJUgodHR14eXkhKCgIzs7O0NDQAKUU7dq1w8qVK/Hu3Tt27bJly7BkyRIsXrxYptM+V2yzN27cgKGhIXr37s0W3Ddv3gSlVEqYHhBPFvfv388MUHPnzkXDhg3RtWtXFoYoa1Q08HOhGBxv374FpZSFvnLedklJSUyvSbIPfvfuHY4ePSqk0pZg7dq1cHR0xPXr17F+/XrMnj0b69atg52dHUQiES+k8PXr13BwcICenh4vOQBn2OPEwSXHw2+FOFVFKgtdWblyJapVq4Y+ffoAEHsvGRkZYd26dazNcpqARUVFzPMZ+HPe4OLiwvMslSXPZu5Zly9fDgUFBcyZMwd5eXnw8vKCp6cnWrRogWrVqmHDhg0AxJqZioqKmD17ttS9fvvtNyxfvhyAOEuXp6cnz0OvqsIZLDjve0A6nKu4uBju7u7sXebE5YuLi1GrVi2MGTOGvduS1y1atIgltADEBjxJbz1ZJTo6GhoaGhgwYAA6d+6MnTt3IicnBxEREZVmjzx9+jTU1dXh6OjIO86FLbdv315m5wICAgL/HoKh6Sfk0KFDcHBwgLm5OU+0r7K0twAwePBgaGtr82KnAaBZs2aoVasWcymOj4/H8uXL4ejoiGbNmmHatGkyG2aQmpqK/fv3S9VpRkYGRo0ahVOnTgEALl26hNq1a0NfXx/Pnj3Dli1bIBKJsHz5ct4EPzIyErNmzUJGRoaUEUDWFj9/l7y8PHTr1g2UUpw7dw6AeJfy1q1bGD58OOTl5dkOsI2NDfT09ODt7S3zdVlxRzEmJgYuLi6wtraGoqIi2wmOioqCiYkJyzgpOVlPTEzE9u3befeUVYOzJJ8/f8Zvv/2GevXqwcTEBLVr18bGjRuRmJiI1NRU1K5dmyf+zb3rx44dA6UUHTt2xMmTJ4W6rABXT1OnTgWlFHXq1OF5Kp06dQoaGhpwdnbmXXfo0CGoqanht99+Y8cmTpwIOTk5toCXVST7gbi4OF44XHx8PHr27Mm8Ert06YLGjRtLZeLMz8/HvHnzmGeYn58f64sB2Qk74pAcqwsLC2FlZYV69ephx44drH7fvHkDS0tLmJqasoX4qFGjQClFv379sH37dpw7d46NbZcvXwbAT3pRlb1C8vLyWGbCZs2a8UK5ALHn4ZMnTwCAbYI0btwYZmZmzCi/cOFCKCgoSHl+hYeHY968ecjOzq50niXLXoxXr15FtWrVUK1aNSxevJh3burUqVBQUMDatWvZsZKSEnh5eYFSiqCgIJSVlWH//v0wMTGRyjYrICAg8L8iGJp+Im7fvo169eph4MCBePfuHRISEmBjYwMdHZ1KNRU4oqOjoaKiggEDBvCyGd2+fRuUUowcORLAn5P9/Px83k69LO1WcoSGhmLKlCnM0MaJcV65cgWTJk1i5QICAmBtbQ0/Pz9Wf+3btwelFOPHj2fhdRMmTODFsAt8G24yHxwcDBUVFZiamkqleI+MjMTy5ctRq1Yt1KhRAzt27PgRP/WnoWL2nLVr1/K8ut69e4dmzZrBxsYGaWlpKCgowPjx45lYtWTo1pYtW9iOvKzC1Sf3XicmJsLFxQW+vr7IysrC1q1bmdi3u7s7AGD48OGglMLf35+3gEpMTETTpk1haWnJE7GVZSqGIaalpaF///7Q1dVF7dq1eV4I+fn5TKz+4sWL7Hh6ejocHR2hqKiIgIAAREREYPXq1TwPJ1kcvzjy8/Ph5eWFGjVqsEV6aWkpYmJi4OPjw/RswsPDWYbU58+fs+uPHj0qJZzOURXr9WubdUDlOkyHDx+GnJwcmjdvzutr165dCxUVFXh4eAAQZ57r3LkzRCIRz2O8R48evOtkYdMpPz8ft2/fxooVK5iGKIe3tzeUlJTg6urKm4Pu27cPioqKvLmqpaUlKKWYNm0arl+/jocPH8LDw0NKrF4WqezdPHr0KJYuXQplZWWMGDGCtxZ49eoVLC0tYWJiwtsE4UJla9asiY0bN7LwxW99j4CAgMA/QTA0/UT4+/ujZs2aUscopRg7duw3r50zZw4UFBSwc+dOAH8unkaPHg1KKQwMDDB9+nTeNbIw6akIVy9Xr16FmpoapkyZAgcHBxw4cACAWCTR0dERkZGRcHFxgaenJxt88/Ly8Pz5cyQnJ6Nfv36glEJJSQlKSkpwcnISvBj+Rzw8PEApxR9//FHp+W8ZWWWR48ePw9DQkGU24ygoKMCOHTsgEomwcuVKAEBERATs7e1BKYW9vT1WrlyJSZMmoV27doiJiflRj/BTwU2m9+3bxzMyA2JDR6NGjUApxdWrVxETEwNzc3OoqqpixIgRiIiIwLlz5zB//nxs3ryZF8Yly0iOK1++fGFhWsXFxXjy5AkopRg1ahTTVwLEGVVNTU1hbm7OjpWXl2P69OkwNjbG8OHDeX1sVc169jUqjtXh4eEszLhhw4aIjIxk5xISEtC2bVveYn7JkiWglEJeXh5du3ZFr169YGpqyrKmVnVtxjVr1mDYsGFSGU0l67WwsBDr16/njTmurq7Q1tbG+fPn2bHs7Gx06dIFGhoauHnzJgCxF9nevXsxcuRIODk5yfzG07t379CtWzdoa2sjPj4e169fx7hx42BnZwcVFRUpPStHR0doa2szj9zIyEj07t2bZZJUVFREr169pDakZJmgoCCEhoYyKQcAmD17NhQUFHjZkQHxWkJFRQWenp7s2NWrVzF58mT4+vryNk6qssedgIDA90UwNP0ESE7sFixYgLi4ODb5SUhIgJOTE0QikZQIrSTp6ekwMjJC+/bteTuWgwYNgpycHIt/FxCzc+dOyMnJQUdHh+cpc+PGDdSsWROtW7fmTdwB8cSHW8AXFBQgKioKwcHBvHCEqjpJ/y/g2vjjx49hZGQEdXV13Lt3D8ePHxe0rf4/kougly9fwsXFBba2tggODkafPn2gqqrKkgAA4sVO9+7dUbt2bbx48QIA8PHjR4wYMQJmZmaoU6cOmjdv/tWMPr86XzOcc++l5Pm4uDi4urqyEKzJkydj7NixbJLN/f/69etQUFBgXk23b9+Gk5MTlJWVoauri0aNGuHevXv/2TP9qqSnp2PixIlo3bo1+vTpwwvt7t27N1RUVHD06FHeNUuXLgWlFLNnz8abN2+we/dunD17lrVlDlnrZyXbLefNFRcXh3v37sHf3x/6+vos0yy3EPf29pbKbHb9+nWMGDECXbp0gYuLCyIiIr7fQ3xnJNtIUVERFi1aBC0tra9uXBw8eBB16tQBpRS+vr5ITU0FANy/fx/Vq1eHvb09z3B34sQJ6OjosHBPSd0gyYW6rHmFSD777t27oa6uDi8vL1YPOTk5UFBQQKdOnZgnOSDuVzU0NNCtWzemY1VQUIDHjx8jMDCQZUIDZO/9r0h4eDi6deuGhg0bQk1NDXXr1mVhnKmpqahTp47UWiAzM5NtkE6cOBE9e/bEsWPHeMZ+Wa9XAQGBfx/B0PSTwE0ks7KypHYTDh8+DDU1NXTp0kUqe5QkO3fuBKUU8+fPx+HDh3H58mWsWLGCt9shax5MgPRELy8vD+vXr8fUqVOZ1gc3gYyKikKnTp1gZ2cndZ/evXvz0sH+1fcI/DVce5wzZw4LN7CyskJUVNQP/mXfn9LSUp4YMkdWVhaCgoJw6NAhdOrUiYUXBAUFoWbNmujduzevfHBwMDQ1NTFhwgSeLkhRURFP4LcqIdmv5ebmIiAgAAsWLMDChQvx5s0bXshMYWEhQkJCsH37dlhbW2P06NEAgF69esHW1pbXX3L07NkTnTp1Yp+LioqQmpqK8PDw//Cpfj24hcrdu3dhZ2cHX19fLF++HJRSdO/enYURffz4EZRSdO3alRfikZKSgsmTJ6NGjRrQ1taW0miR5T42ISEBI0eOhJWVFRwdHXHkyBF27sGDB+jevTsUFBTg6uqKJ0+eYOLEiUycvuKcQtJ74VuZFn9VJPsD7tlSUlKkQoM4li1bhj59+iA2NhYvX77Erl278OzZM3af3377DcrKylLtccSIESwTqq+vr9RvqGr1+nfJyMjAvHnz0KNHD2hpaUEkEvH6Ss6gvGLFCt51Y8eOhZycHH7//Xe8fv1aqt2Wl5dX+T7gr9pMUlISBg0axDLCLVu2DC1atMCrV69Yme3btzODaUFBAcrKylBcXIzY2FgsX74cXbp04fUfgGyuDQQEBP57BEPTTww34OTm5rIQuIruxpKUlZWhdu3aoJSiVatWvIFH1sIMAOmBs7JsL25ubqhZsyZu3LjBjvn5+UFZWRlWVlaYMmUKfH19Ub9+/b/0KhP433FycoKWlhZ27dr1o3/KDyMiIgKbN2/m7TA+ffoUffv2Ra1atTBr1iy8f/+eaS3l5OTA29sblFIEBgayazIyMuDo6Ah1dXX88ccfuHXrllS4SFWhYp+2bNky6OjowMDAANWrVwelFObm5ggICAAAPHv2DH369EHDhg2xaNEiPH/+nBnjNm/eDDk5Oaxdu5b9DXJycgCIs3F16NDhq99b1Xn+/HmlocFfq4fFixezMO6ysjLcuXOHGZS4heLcuXNBKWVZVSMiIthGyqNHjyo1+Mkakoa7jh07Yt26ddi9ezczKEn+TQoLC7F27VpoaWnBxsYG2traUuEzFalqi3bJ9vjhwwf07dsXCxYskDonSUFBASZMmPDNzGVJSUkwNjaGtbU14uLi2PHmzZvDwMBAyjNPlnnz5g1at26NhQsXIi0tDbNmzYKSkhK6dOnCa29GRkYwNzfH/fv32bF169aBUorGjRvLhCB1eXk5Vq5ciUWLFrEENBwV302u/R45coQl+AAqn9eWlZWhbdu2qFu3LiIjI1FcXPzVzTtZG8sEBAS+L4Kh6SeHGwRCQkJgbGyM+vXrM5fuiuzYsQPa2tpSxihZH0guX74MR0dH9OnTB2PGjEFQUBAA8WB89+5dVK9eHSNHjmQhCenp6VixYgUUFBR4wp7Dhw/nGQEE/h3Onz+P+fPnV1ljyN8lKioK5ubmiI6ORmBgIM6cOYM7d+5gyJAhLKMRB7cgv3//PiwtLdGsWTMmbF9eXo758+ejcePGPMH7qsy1a9fQsGFD6Ojo4PDhw3jy5Anu3r2L/v37Q0FBAU2aNMGrV6/w6NEjuLm58ZIkcISHh6Np06YwNDRkmT45Fi9eLLUDLAu8efMG3bp1g6amJhQUFFiY8bc8C9LS0tCmTRu24y5ZrrS0lNeH6unpwczMDIcOHcKBAwd4oUlceVkav7jNkYrP/Mcff2Dv3r3sc0REBC9US3JTJSwsDH369AGlVEqzsapScVNpw4YNsLGxgaurK+zs7KTStO/Zs4e38La1tUW3bt3w+++/Y+vWrfj9998xb948nD59GsnJyQCAVatWsX5j3bp1iIyMxMaNG7/5O2SRDRs2YNSoUexzQUEB/vjjD1BKcejQIXb81KlToJRi0KBBAMRtOjw8HKdPn+YZ86oqr169gouLCzp06IBq1aqhffv2zHAs+b5WzNo3c+ZMODo6AuC3t7KyMmRmZuL169cAgFu3boFSigYNGqBHjx68EHug6hmZBQQEfk4EQ9N3IDIy8l8JsZg3bx4opWyHriKvX7+WmtTLKmVlZcjPz8fcuXPh5OSETZs2Yfr06cxotG7dOubJMHPmTCgrK+PEiRMoLi5GeXk5cnNzce3aNQQEBGDq1Km4cuXKD36iqktVXwT9XUJDQ0EpRf369WFvb4+HDx8iNzcXOTk5aNeuHXR0dJjmChdSUFZWhg0bNoBSismTJ+PSpUtYs2YNzp8/LxPC1J8+fUKXLl3Ye11RUD46OhqdOnWCrq4uYmJikJKSguzsbFhaWqJWrVo8raqSkhIEBgZCR0eHiVUfP34cnp6eGDBggMyJ0hcXF2PhwoUIDAxEaGgovL29ERwczBtXcnJysGfPHpbCHRCPO3p6esxTiWur3Ht++fJlph1y9uxZtGrVCoaGhlI7+rLG14wUqamp6Ny5M86fPy+VwKOkpKRSj4bi4mJMmjTpL5OIVAUkx4/g4GD069cPs2fPZmGaT548YYvv4uJilmlr8uTJzAj/7Nkz2NrawsDAAFpaWtDV1UX16tWhrq7OM0hzWeVcXFx4BnxZE0+ubG7JGZ+HDh2KkSNHory8nP1toqKi0LJlS9SrV49nTB4+fDg0NDRQq1YtODk58bTYqrrRbvPmzTh79iwAICYmBrGxsTxpjPDwcHTv3h3du3dnYZnl5eUICAhAnTp1mKFUsu2lpqbyPMHOnTsHb29vQUNQQEDghyEYmr4DM2fORIMGDf7n9OzcgPv06VO0bNkSWlpaCAsLw7Fjx6QEqwHZm/QAlU9K3rx5g3HjxvHOXbx4EVZWVtDV1WVptN+8ecMW96mpqcjKysK7d+8q/R5ZNt4J/LtUfE/9/PxgbGwMOTk5FgrHtd3AwECoqqqib9++rA1y16elpWHhwoUwMTFBzZo1cfjw4e/4FD+WFy9eYPXq1Th79iyMjY3RqlUrPHnyBIB4Ul5YWIhWrVpBTk4OCQkJrM6uXLkCSik8PDykFur379/Hb7/9hk6dOqFZs2ZfTf9e1Xn58iVsbGy+en7r1q1o2rQpzMzMmIA3Z/gYMGAATExMKjWCbN68mbeg+vTp0ze1B391/okhPSUlBV5eXvjjjz944bA1atRghruKXk8nTpzgiSpzxz9//gx3d3cpL7GqyOPHj2FnZ4fOnTtXqnPHkZeXh8OHD6N9+/aoVq0abty4weozJycHX758wbt371BQUIA3b95g+vTpaNOmDWJjY7F+/XqYm5vj7t273+uxfjoqZuh78uQJz7MOEHuHOTo6Snl/b9u2DQoKCvjjjz/YffLy8nD//n2ZCz0sKirC6NGjsWTJEgD8ei0uLsby5cvh4OCApUuXwsbGBpRSlvXw7NmzMDIygpubm9R9V69e/dVwWWFDT0BA4EcgGJr+Q7jBIzg4mO24czor/yt+fn7sXvXr18ejR4/+pV/7cyK5K1YZFQ1MR44cwYULFwCI07xyQsmSosgHDhyApqYmPDw8AIgH/R07doBSivbt22PIkCFSoqFVfXdN4PtRsS1dvHgRZWVlePr0Ke7fv48WLVqgdevWUm1w4MCBUFdXx549eyq976tXr2Q2/LCsrAwrVqwApRTz5s1j4QaZmZno2LEjyywH/Dnh7t69O6pVq4bjx4/zjnPk5uZWaiiRFR48eICmTZtW6ml0/Phx9O7dGwUFBUhOTsbQoUOhrq7OPO527doFZWVlDB8+HOnp6ey6yMhIuLu7Iz8/X+o9qGpG/L+7sOPKbd++HXZ2dhg0aBDq168PSimmT5+OjIwMjB49GjVr1uR50XDXBQQE8MJruHqMjo7G1KlT/9Fv+dUoLS3FwYMH0aRJE1BKMWDAAHaOMyrHxsbywoays7MRHh4OMzMzODs789pnQUEBrx2ePHkSEyZMAMDPKicLotTfYt++fahXrx4aNWoEVVVVjBgxAlevXgUATJ06FUpKSlKZTT98+IAOHTpAXV0d/v7+CA8Pl9pskaU67dixI3r06CG1qZmcnIxOnToxIf/Q0FAYGBjA2tqaGeQ5zdYZM2YgOjoa+fn5eP78OWbMmMFCPSUR5q8CAgI/CsHQ9C9T2YTuwoULsLOzQ7du3UApha2tLS+t8D+ZBPbq1QtqamrYvHnzv/J7f2Yqpna/dOkSHjx4wPQWJCclRUVFLOuei4sLvnz5gsWLF/N21blJDZd228DAgPd9W7ZswZgxY6q88U7g5+DKlSuoW7cuFBUVsXLlSgDivmDr1q0QiURYs2YNT6Pm2bNn0NPTQ8uWLZGbm4uUlBSZmpj/FfHx8WjZsiVMTU1x584dvHz5Ei4uLhg+fDhPWJqrs3fv3rHMZ3l5eWwH/ms6ObLGmzdvoKenh8GDBwMQex5x3hxeXl6wtbVlZdeuXQtFRUWWmvzLly+YNm0aKKWwtrbG/PnzsWbNGnTu3BmbNm36Ic/zvai4OcJp0K1YsQIhISGs/UmWKSwsxJQpU1g7jY+PR7169aClpYXHjx/jxIkTqF69OgYNGsTLHPn48WOMGTOmUoNoaGgounbtWqV1BUtKSvD48WMAYCG0nEcHFwZ/9uxZHD9+nGfUyM/Ph6+vLyil2LdvH/tbXL16FaNGjcKbN2/g5+eH9u3b4+DBgwD+/HvJksd4ZZnzfHx8MHr0aLx8+RKRkZGYOHEiKKXQ1dXFx48fceXKFSgrK6Nz585SAtSTJk2CgYEBpk6dyjPwyRLc+79p0yZQSrFnzx4EBQVh2rRpSE9Px+nTpyESibBt2zYA4tBPTldw2bJlAMSevFzGQ3V1dbRu3RpaWlrw8vJCUVGRzI9dAgICPw+Coel/pGJHzu3kVsaDBw/QvHlz5OTkoG/fvlBQUICOjg7Wr1//j77z6tWrWLBgAc87pypOeiQXzwkJCejTpw/09fWZOLeFhQULjykqKsKcOXNgb2+PTZs24c6dO3jw4AEAwNfXFwoKCiz0RfK+W7ZsQefOnSvdWQeERabAf0dJSQl8fX3RtWtXHD58GLdu3YKnpycT+Y+Pj4eLiwvq1KnDtGw4li1bBkopRCIRnJ2dWVY0AfE7e+TIEYhEIrRo0QJDhgxBcHBwpWW5fnPBggWglEJFRQX29vYy6xFWEa5+pkyZAjk5OfTp0wcODg7Mu2no0KFo3LgxUlJSkJ+fj507dzLBX26hn5WVhdWrV8PExAQGBgaoWbMmCxWpqkiOMTExMXBzc4O1tTXatWsHSik0NDTg4+Mj1c7Onz8POzs7AOIQ+dGjR6NPnz5MUP3169fMY69OnTqYPHkyfv/9d7Rp0wZbtmzh3SshIQEjR46EmZlZla9vSR49egRKKVq0aMHz6vD29oalpSWio6N55V+8eIE2bdqgSZMmPK+SGjVqgFIKV1fXb4bh/er8kzkOl+k0ISGBCVFLwumHcuFckyZNAqUUTZs2xa5du3Dv3j0sXrwYf/zxB5u7CQBmZmaoUaMGOnbsiIcPHwIQe9y1atUKt2/fxocPH7BgwQKcOnUKrq6u0NLSYkLp+fn52L9/P2bPno0RI0bIRJY+AQGBXw/B0PQ/IGmYePfuHfLy8tC2bVucOXMGgLT7b3JyMkaMGIGsrCwkJSVh586dqFatGiilmDBhAm+H8lsurhVFQKu6MWTBggUQiURwcXHBvn374OvrCwcHB1BK4eTkhM+fP+P27dvo3r07KKUYPHgwr+7j4uKgoKAAFRUVNohznD9/HhMnTqz0ewU3Y4F/i8o8jgoKCuDm5sayHAKQ0qg5d+4c1NTUMGXKFBQUFKC4uBivX7/GqFGjoKSkBH9////8t/+KZGRkwM3NDXJycrwMR1/z/Bo/fnylIuICYrZv3w45OTnUqVOHeY4AwNu3b3H37l2kp6dj0KBBOHz4MKKjo2FnZwcLCwt8+PABHz9+BCD2LHnx4gXPKFqV+9isrCxMmDABbdq0YW0wLy8PixYtgp6eHho0aMBL6Q6IQ7QGDx6MSZMmoWvXrti3bx87l56ezsoHBASgTZs2qFevHkxMTLBu3Tqp779//z5UVVVhbGzMDFVVHe79HjNmDCilWL16NRITEzF69Gg4ODjAx8cHYWFhPG+PkpISHDhwAEpKSli+fDnu37+PgoICPHnyhIXfA5V79fzK/NW7V7GvnDlzJpycnFBUVISnT5/CzMwMMTExAP40SOfn58PR0RFaWlp4+/Ytvnz5gmXLlkFLSwv6+vrQ0tJiGmN/93dUNbh6LS0tRXFxMZYuXQpLS0tQSrFw4UJe2S9fvgAQZ5vkPOrOnj0LVVVVTJ8+HR8/fqw0RA6QvXoVEBD4uREMTf8AyclGXFwcPDw84O7uDm9vb6irq6NVq1Zs50eSN2/eoHXr1jx9BT8/P6ioqIBSimbNmlU6Ifza5KYqTXoq48CBAzAwMAClFJMmTQLw5zMnJSVBV1cXlFJEREQgPz8fR44cYRljuEwz3ARozZo1oJTCzMwM/v7+KC4uxvnz59G9e3fcuHHjxzyggMwhuchOSUmBq6srpkyZgpCQECbsf/36dbx69QqAWMjX09MTSkpKOHfuHC5cuIAHDx5g8+bNrI3LEv9k8hwaGgp1dXU4OzszI35l18fFxWHZsmVSWliySGWaM8eOHcPUqVNZCFxloujnz5/H6NGj2ef169eDUooxY8Zg//79UmFbkqGgVZHg4GCoqamBUsoT8waAjx8/wt7eHpRS5nXLtcsbN25AVVUVAwYMkEpnfu7cOXh5efGOvXv3DsXFxexzxfbNGVVkBe75v3z5AhUVFaioqKBNmzZ/KTKdlZWF9u3bg1IKAwMDXnauqqbDVDGk88yZM5g5cyZ8fHxw5swZ5lHLERoaioiICDg7O6N9+/Z49uwZLl68CFVVVRw7doyV4+Zap06dgq6uLi9cLicnB5GRkTx9K1kzhHytv9u3bx/y8/PRs2dPGBoaSnkkRUREwNLSkiX8iYuLg7W1NdMi4zScuPvLWr0KCAj8GgiGpn9IWVkZFi5ciE6dOmHr1q0AxLvo2dnZWLVqFW8nTJLu3buzyeXKlSvRuXNn7Nq1Cz179oRIJIKmpiYWLVqEt2/fynSa59DQUAwfPhyTJ08GpRQNGjRg5zgdilGjRoFSyjMU7du3DwoKCpgzZw6AP3ePysrKcPjwYVhaWkJDQwMNGjRAhw4dEB4e/h2fSkBWqJh+PDw8HLa2tjxB6sLCQmzfvh1aWlpQVFSEkpISE/jX1NRkqeKfPHmCDh06QENDAwMHDpRaCFQlvhUC+LUJ9Ncm8Pn5+Zg2bRrk5OSwZs0a3oL8W9cJiAV7ucW55MaImZkZzMzM2EKc8/Lo1asXBg0axELBzpw5gx49eqBBgwa4c+fO93+AH0h8fDyuX7+OlStXQktLCx07dkR2djavvTk5OUFdXV0qjAsA2rVrB3Nzc5w9e5YZm8LCwtCgQQPm8VCxLVc0hPzqbfv/8vs5g4e/vz8opRg1ahQ7V7HeOEJDQ6GtrY0JEyZU6TBkyT705s2bsLS0hJ6eHgwNDUEphYKCArp3746SkhIUFRVh1apVqFGjBtzc3HDx4kW2uZGRkQEDAwM4ODiwEDhuc7WwsBD6+vrM87Hi37KqG5n/igsXLsDKygpnz57lHb979y7k5OQwevRo3hh/8uRJqKurIywsDADw/PlzbNu2DX5+fnj9+vV3/e0CAgIC/yuCoekfcuzYMYwcOVIqpSsgHswrEzjMzs6Gh4cHvL294ejoiJkzZ/IGbi7VNvfflClTqqT20t9B0iPM09MTlFKsWLECwJ8TF3t7e7i5ufHq6OPHj3Bzc4OysjKbxEtOarKyspCQkCCVmliWJz4C/x0FBQVIT0/H+PHjsW3bNjg5OYFSihMnTrAyL168wIMHD3D9+nVERUXh0qVLaNGiBVxdXVmZrKwsZqCuqqxYsQKOjo4s1KoyMjMzMXfuXMyaNQuHDx9mC8evvb/Pnz+HmZkZLC0tmbh/ZYt7WUYylAMQZ+nkxiAu4QJnQAoMDASlFBMnTuR5ygwcOBAqKirw9/fH9u3bMX/+fJn1EJMcj7iQTG4zCgDev3+PZs2aISAggHcdV/9Pnz6FhoYGVFVV0ahRI6brpKSkJBMhcJLGkNjYWF47+zveGpJ9Qb169aCsrMy8yr7mmfT8+XPmGfKtclWBT58+MQHp6dOn48mTJ3j+/DlWr17Nshxu27YNOTk58Pf3h0gkgqGhIXufy8rKkJ2djTlz5oBSiiFDhvCMcw8fPpTyvJNVKs7fN23axCIYOC02yXITJ06EqqoqL9z70aNH0NfXh4GBAWxsbDBp0iSegUmYuwoICPwKCIamv0l5eTkSExNhZWWFnTt3Avhnrqpubm6wsrJiE3jJ61++fAlKKbp06SIzGc9SUlIAVD5YcvUSFRUFY2NjKCsrswE5ICAAzZs3x7Vr13hlASAoKAg1atRA3759v3pPjqo8oRT4sezYsQM6Ojo4ePAgPn/+DEA8CW/ZsiXq1auHzMzMr1576tQpjBkzRqYmkTt27IC+vv5XDUF79+5F586dMXz4cDRu3BiUUhw4cOCb9ywuLsa6detYVp46derItKeoJBW97jj8/f2xePFiKCsro1evXgD4/WbXrl2hoaHBtAgB8djVvn17aGpqYtSoUbywTlncLOHq686dO6hXrx6MjIyYJsuYMWOgp6eH7du38xJ6SIZoHTt2DF27dmUGP21tbWzfvv2HPMuP4MOHDxg8eDDs7OzQr18/3sKb41shgVybO3/+PCilcHZ25tU18PU5R1UMPeKeddGiRUwX1NramjcPzc/PR0BAACilWLx4MTIzM1FeXo6lS5eCUsq8xDmSk5PRp08fUEpRv359bNy4EStWrECXLl2kMvTJMsXFxcw7mfMOnTJlChQUFLBx40YAf85DP378iBo1asDR0ZGFzxcWFuLx48eYMGEC/Pz8ePcW6ldAQOBXQTA0/QPOnDmD6tWrS2kofAtu8rJ582Ym3CnpQlxcXIyjR49i7969vGuq4qQHEGtLDBkyBLNnz2beS98aNLksWy4uLpg2bRo8PT15O5CS12dmZmLWrFkQiUTo06cPRo4cKVVWQODforJ3NCwsDBMmTAClFB06dADw52Ryy5YtEIlEWLRoEQCxnsi+ffsQFhaGsrIynDlzBu3bt5dyra9qcKEAHEVFRV/VnSooKMCECROQkJAAAHj27Bl+++23rwqhSsJ56HTv3p2XcEFAzIMHD9CuXTusXr2ad3zs2LGglLJMqpxXE7ch4uzsjKKiInz8+BEfPnxAfn4+y4QECIsgjkWLFrHsZba2tmjevDkzIJmZmWH9+vWVtsuCggK8ePECFy5c4GlcVfV6TU5OhpOTE8uiN3fuXAwePJg3hr9+/fpveyZyBjsuCyK3OSWL+Pn54c6dO3B3dwellDcXBYANGzaAUoodO3awa4qLi2FlZQUTExMWMsuVz83Nxc6dO+Hi4gI7OzsMGTKEZ7ySNSq+mxs3boSWlhY0NDR4SRSePXuGRo0awczMjEU/cHW6du1aUErh5eWFrVu3Yu3atVL3rqrrAgEBgaqLYGj6B4wfPx46Ojp4//79P+7wvb29MWPGDADfHiyq+i7w6dOnYWhoiEaNGn0zHICro0+fPsHW1haUUiljnOQAzP2bmzDVr1//q6nNBQT+Csm2xe2gS3rBSb7DFSeZOTk56Nu3LyilvEVRfHw8evXqBXV1deYCf/LkSbRo0QKUUtja2lZp7bDS0lKcOXMGlFKsX78eQOX9nWTdXr58GXXr1pUSsq2srCS3bt1C06ZNcf78+X/p1//aVKzn48ePo3r16kwHj/O8A8S6NXXq1EHjxo3ZMW5TYOrUqaCUQkdHB7a2tjwP3K95SskaXB28evUKnTt3hkgkwrZt2wCIM8J5eXlBT08PlFIYGhrCw8MDBw4cwN69ezF//nwpLTZZ0bY5fvw4WrVqxWQJnj59iiZNmiApKQmpqalYsmQJWrZsidu3b39znsSF1b5+/ZoZ9qpXr46FCxdW+flVRSq+j69fv4ampiasra15BpAFCxagc+fOTAeTG+uOHDkCRUVFDB8+nJWVHAfLy8tZhjTu+2ShrUpSsY4/fvyI2bNns/BZDw8P3nlfX18oKSlh2rRpvOtTU1OhoaHB5gLPnz9n13xt/BMQEBD42ZF5Q9PfmRxzHfzo0aMhLy/Pdtj+6rqCggI2sQkMDETv3r2xbds2mRNJ5SgsLERYWBi2bt0KSinGjx/PFjjfWkTu37+fF9v+tXrPysqCo6MjVq5c+d88gECVp2LbioyM5E2yJdtpRkYGJk+ejPHjx2P27NmIiYlh3o5BQUHQ1dWFra0t736nTp2ClpYWRo8ejaSkJNy9excrV67Erl27/sOn+jn48uUL/Pz8oKamBi0tLbao4eq8pKQEmzZt4hmHNm7cCHt7e6lQ2+LiYqSkpCA2NpZ3nEOYlFcOp4PF7ab7+/tDSUmJbYJw+Pj4gFKKTZs28Y4PGTIElFLMnDlT5hbt/wvbt2+HkpISXF1defqN8fHxmDlzJszNzZkxhAu3lVXWrVuHatWq4eHDhygtLUVSUhIGDRqE7OxsXL58GUZGRqhbt+7fvt/FixdBKUXHjh2rtAH/78L1s5yX+Pz585GTkwMfHx/Y2tri4sWLAKT7TmdnZ1SvXp3pXVXMJFnx/rLIx48fsX79eqm5vb29PWrUqMEb09LT09GpUyfo6OiwDH0FBQXw9PSEnp4ejh8//l1/u4CAgMB/iUwbmiQHRk6U91tMmjSJF7P+V4uZrVu3soUntxMsma5UFuHqbNSoUdDQ0MDJkyf/smxpaSnzEOE0G0pKSir1aJLMLiMshAT+LhXf5R07dmD58uWYNWsWKKVM34drUzt37oSDgwMmTZqEIUOGQEFBAZqampg9ezYAcZvl0sIfPnyYd29OkFVRURFnzpyp0kaR4OBgrFmzhn2OjY1l2kkTJkwAIK6rkpISHDp0CKqqqhg8eDALw7hy5QpEIhHOnj3L+muuvt6/f8/CbAT4VPQsCAkJgYWFBSwtLbFw4UI2LiUlJaFDhw7Q1tbG06dPWfk3b97A1tYWmpqayMzMREFBAYKCgjB27FieIK2sad393efl6j49PR0DBgwApRR79uyR0hf6/Pkzdu7cyUKZZJk7d+5AV1cXbdu2RWhoKK5fv87G+7KyMpw/fx7e3t4oKyv7y79DXFwcnJ2dWdgcd4+q3Nf+XbKystCoUSOoqanBxcUFAQEBlcpBcHUs6Rmmq6srlVBF1qjYho4ePYp27drB2NgYlFJs376dzUNDQkKgpqYGZ2dnXh0fOnQIcnJy6NKlCyIjI5GWliblgS9rfauAgEDVRCYNTZIDxZcvXzBs2DBoaGh8NcyCW+DcuHGD6Stwk+1vDQacl0JCQgIaNWokLIokiI2NRfXq1dGjRw+8f/8ewLe9mkJCQqClpQUDAwN2jBu4K+6kCRNKgf+VCxcuoEePHvD09ERERAT279+PRYsWwdHRkZXJzs7GuHHjmG5QcXExHj16BF1dXVBK2c7v/fv3YWlpiVq1arFrY2JiUKdOHbi4uFR5/TAujXazZs3Yzi0g7nN79+4NSiliYmIAiDU/goKCMGDAACgqKmLfvn0oKSlBYWEhWrZsCRsbG9y+fZvdo7y8HCtXrsSRI0e++3P9SuTk5ODBgwdYtGgRDh06xPTDtmzZwvrPffv2QUNDgyVR4PpTSa2xK1eu8BZKpaWlMufBIDmmXL16FY8ePeJ5KX3Nqy4wMBC1atWCpaUl6zM43auKyPLmCJftjPPuat26NS+86/79+xgyZAjvmoKCgkozAFdElur178x9jh8/DkopevfuzY59TWQ9PDwclFL06NGDF84l65w9exZPnz7F6dOnUV5ejnfv3qFbt27Q19fntVt3d3eoqqryvENDQkLQuHFjaGtrY/PmzcIGqYCAQJVFJg1NHIsWLYKSkhIopWzB8q1BOi4ujqUpHzduHDvOXSM58b5//z5vESR5ThYHksrqdenSpRCJRFLhGV9jypQpoJSiX79+6Nq1K+bPn/9v/0wBGYR7Nzds2ABHR0fcvHlTqszly5eZYHVQUBBMTU3ZOW6SePz4cYhEIl64HLdw6t+/P+bNm4fLly/zDCZVmTt37mD48OGglGLWrFm8c+fOnYOmpibs7e3ZsZycHCQkJKBp06Zo3bo1E0q+cOEC5OXlYWhoiAMHDuD+/fu4ePEihgwZgjdv3nzXZ/pVKCkpgZ+fHywsLLB06VKW6TA+Ph6dO3eGhYUFHj58CEDcNw8cOBDKyso4ceIEALEx9cCBAxg7dqxUKIcsGJi+lqgiOjoaTk5OMDIyQvXq1VG3bt2vZjPkruUE7SmlrO4DAgK+Wl7WWbVqFRQUFJhWzebNm/HlyxekpKRg8+bNAP7c4Lt69epXEwkAstFWJZHc+OTGpcrqoLy8HN26dYOKigrTvqys/ZWWluLo0aM4ffo0OyZrdVqRnJwcbN++HSKRCIaGhix5R1lZGS5fvgxtbW24u7sz7ar379/DxMQEZmZmiI2NRVxcHM6dO4dr167xvEgFBAQEqiIya2g6fvw4Ro0ahcGDB4NSKrWbWxklJSU4duwYE1Hldt0rXnfr1i3Mnz+f6WFwyKIrbGXPzE1osrOzYW5uDhsbG7YD9C2vprt374JSCgUFBfj4+PyHv1pA1khJSYGDgwMePHjAjn1NhHfdunVo2bIlS0Ms2cZHjBgBc3NzvHjxAgDw+PFjUEqhrq4uU9ph5eXlzNOgdevW0NfXx9WrV9n54uJiFoosmWWvvLwcBw4cAKUUy5YtY14027dvh5mZGSilUFNTQ7Vq1bBixYrv+1A/iL8yQFTm0Xn37l3MnTsX2trasLW1ZYue8vJyBAcHQ0FBAd7e3swj5/bt27CwsIC2tjamTZuG/v3749GjRzI5ZqWkpGD//v08LwMASEtLw8iRI1l7vXDhAvT19WFkZITQ0NBK78X97fbu3QtKKfT09LB169b/9gF+Ubi51IoVKzBq1Ch06NCBhWzZ2dmhT58+GDFiBACx901RURGmTZvG+mEBMQUFBZg1a9Zfjjfh4eGQk5ND586dmdbdX1HV+gPJvrNiaDZQ+fPm5OQgMjISv/32G0QiEc6cOcPOffnyBdOnT4eioiIuXrzIvMS2bt0KExMTVK9eHVZWVrhy5Qq7RhD6FhAQqMrIrKFJchJpb2/PS+f8V4MpJ2atoKCAQYMG4ebNm4iKisLDhw8xdOhQjBgxgrdgFRBn19qwYYNUauJjx46BUorff/+diQNXNug+ffoUbdq0wcCBA3k7mLK+uybw7zB//nw0bdoUwNfbFHc8KCgIlFIEBAQwzweuP7lx4wZ0dHRYaMz48eMxevRo5Obm/teP8NNR0UA8bNgwZGVlsfP3799H/fr1ed5hgFhkvXv37jAyMuKJqyYnJzPdloqZuaoqFb1kJTM8VTz//v17XjvLyMiAl5cXlJWVcePGDZ6Bf8SIEdDR0cHly5dZ+du3b8PDwwN9+vTBs2fPKv0OWeDmzZvw8vJCTk4OALDQ7kuXLmHy5Mms3Pr162FlZYXVq1d/c6HIhdBOmzbtq5krBcTjfkFBAXr16oWEhAQUFBTg7NmzsLa2hqqqKiil0NDQQPv27dG9e3e0adMGvXr1qlRfSFaoOFdNT0+HpaUlKKW4cePGX14/ceJEUEqxePFiAMDDhw9lsj59fX2/aZjbtWsXtm/fzrQDAXFdNW/eHObm5sxjFAAePXqEBg0aoHPnzrzxLiUlBadOnZLJiAYBAQHZRWYNTcCfE71Tp05BXl4eVlZWf3kNt0t/7do19OvXDzVr1oSCggJatWqFhg0bCqKeFYiKikLPnj2ZVk2tWrV4YpLl5eVwdHSEgYEBz+OhIh8+fGBeIoDspHwW+G8pKytDcXExbGxsWFbDv+L9+/do0qQJ6tevz3YzOUPT06dP0bdvXzbB/JoWi6zA9bGDBg2CoqIiDhw4wDu/fPlyUErh6+vLKx8SEgJ1dXWMHz8egYGBPM0LWeP9+/dwdnZGs2bNKvXeiIuLw+DBg2FqaoqOHTuy7FGAOMlF/fr14eDgwDPOPXz4EHp6enBzc8OlS5dYVq7KEizICtzzXrp0CWpqavDy8oK9vT0TpF6/fj26deuGJ0+ewNnZGePHj2cLz4KCAoSFhVV63/j4eJY1EZC90PnKPEW+xoULF6Cnp8fTC/r8+TNOnDgBXV1dWFtbw8rKCubm5pg8eTIz9Msa5eXlPCNTWloaq9/o6GisWrUK4eHhf1nnHz9+RO3atZm33fjx43nGkapOYGAgTE1N0ahRo0pDMC9fvgx7e3s0btwYGhoaaNGiBdOpKi8vx8aNG5n3LUdeXh42b94MBQUFdOvWDePGjUNcXBzvvlXNM0xAQEDga8i0oUkSTkuEE+z+2kAQFRXFdpW5FLwJCQmIiopiHjmAsFsJiLObuLm5scX41atXoa2tjWHDhvHCCu/fvw85OTmMGTOGt2Nf2SSp4gRLQODfwMLCAj179kR+fv5fTs5LSkqwe/duyMnJQVdXFydPnkRxcTFycnLg6emJDRs2fKdf/fNR8d3kDHCfPn2CvLw8OnfuzJt0x8bGokOHDlBSUsLnz59517q6uoJSCiMjo68u4qs6MTExLHxIcoHDERISgjZt2mDdunU4ePAgdHR00KFDBzx58gSAeNGzevVqUEqxc+dOnievl5cXC0XkdJi4cUuW+tjy8nLeeL1161b2bnMJPQDx+KWnpwdbW1spbZXHjx9j9erVAL7tESlL84KK9VrxXGXMmjULGhoazJORa6/Pnj2Dj48PsrOzkZaWxusrZKmtAvy6+/jxI5ydnTFs2DDepsbw4cNx7tw5AN+ei0ZGRqJ69eowNjbG0aNH/7sf/ZPSv39/UErh4uICgF+379+/h6urK9vkOHDgABQVFTF37ly24RwbG4vu3bujevXqvPBDzlPf3Nyc5zUqICAgIGuIiIxTXl5OCCFk0qRJRE9Pj8ybN4/k5+cTOTk5do6jpKSEnD59mhQWFhJCCBGJRKRWrVrE0NCQWFlZERUVFVJWVsbOVUUq1snXjhFCyIcPH0hwcDBRUVEhhBBSp04dYmlpSU6dOkVCQkJIaWkpIYSQVq1aEU9PT3Ls2DGyd+9esn//flJSUkIopVL3pJQSOTm5f/GJBGSdxMREUlZWRm7dukUKCgoIpfSrbbqsrIyIRCLi4OBA9uzZQzQ0NIibmxtp1aoVadmyJbG0tCSTJk36zk/w4+Hqi3s3X7x4QQghREFBgQAgenp65Pfffyc3b94kx44dY9eZmZkRd3d3Ul5eTqZOncqO3717lzx9+pTMmTOHxMXFkbZt236/h/mJ0NHRIcbGxoQQQvbs2UMI4fe3Z86cIc7OzsTLy4sMHTqUTJ48mdy7d4+cP3+eFBQUEFVVVeLq6ko6dOhA/Pz8SFpaGiGEkMjISHLp0iUydOhQ8v79ezJgwABCyJ/jlqz0sWVlZYRSSkQiESkpKSGEEJKTk0N+++038vnzZ5Kenk6ys7MJIYTo6uoSCwsLoqKiQpo0acK7z8KFC0lSUhIh5Otjv0gkqrLzgsrg6jUmJoZMmDCB+Pr6kqtXr7JzknBt2tjYmOTm5pLDhw+TtLQ0oqCgQBITE8nRo0dJt27diLq6OtHR0SFaWlqkvLyclJeXy1RbJeTPulu+fDmpU6cOuXTpEnFxcSHKysqsrJOTEwkLCyOEfL09FhYWkhkzZpAJEyaQuLg44ubmRgj5+nyuqlFaWkrU1dWJmpoauXbtGjl37hyhlLJ+ICYmhly7do3o6OgQQsRjVd26dcmePXvIo0eP2LERI0YQAMTPz48kJSWRsLAwcvPmTbJ69Wry8uVL4ujo+MOeUUBAQOCH86MtXT8T8+fPB6UUU6ZMAVD57m7//v2xZ8+eH/HzfhiXLl3CqlWrKj0nuQN0+/ZtREREICkpCQAQFhYGIyMjFhYTGBiII0eOwMrKCra2trwwkLdv37Kd+379+iE7O1vmQjcEfhw9evQApRRLliwB8O1d4E+fPuHgwYMAxCELt2/fxpEjR3ipzmWVc+fOwdraGnXr1sXAgQN5Wj8AYGhoCAsLCzx69Igdy8jIgJubGyilGD9+PHx9ffHkyROZ0WH6FjExMdDX14eJiQkopazPLCkpQWFhIZycnKCpqcnK79mzBzY2NjA2Nsa1a9cAiIWTjx07BhUVFdjb22PEiBE4evQoL2OfrHmFVGTp0qVo2rQpL3ymf//+qFWrFi8L5cqVK6GkpARra2t4eXlh+fLlqFevHuTk5Hh6YrIO583k6+uLdu3aYfjw4ahZsybk5eWxdu1anve3JJcuXUKjRo1AKUXbtm3Rq1cvdOjQgYUvyiJlZWW8udD58+exaNEirFy5EvPnz4eFhQU0NTUxZcoUNm4dO3bsm975XDnJv4MshXRy9Tl//nzUrFkT6urqaNGiBa/MiRMnoK+vzzJxHjlyBIcPH0aNGjXg5uaGxMREAOK67NOnDyilUFFRwdGjR3meo7JUrwICAgIVEQxN+HPQ+fDhA6ytrUEpZXpAkvoCXl5ekJeXl5n05BwdOnRAnTp1EBUVVen5ly9fok+fPjA3N4eqqipMTU2RnZ0NQJziPCcnB7t27YKHhwfi4+Nx+PBhiEQirF69GnFxcfj8+TPmzZuHevXqVZpaXkDgv+b8+fOglEJHR4eFdlWWzQsA9u3b97eEVqsieXl5LGkCN4HmwlmXLl2K7t2748yZM/Dz8wOlFJMnT2ZhBoB48k4pxdSpU3mhHn/88QcopWjUqBFCQkK+6zP9KP6uccfFxQUDBgyAnJwcXF1deef27NmDlStXIjk5GfPmzcOOHTtw8+ZNiEQijB07lmkD3b59G5RS1KpVC/v372fXy3oocmhoKBwdHWFra4tOnTph+vTpAMTv+p07d6ChoYHRo0cjOTkZgNiwvHz5csjLy7ONEUopRo0axcTDZZHKMmclJydj+vTpTFz67t270NTUhIWFBd6+fSt1PQAUFhYiNDQUbm5ucHJywsSJE2VKM6gikmPQw4cP0bt3b9SvX5+nc5mXl4cRI0ZATk4OHTp0QEhICB4/foyuXbv+7e+oSpt63wrZlCwDiLOZrl+/Hv369QOlFOvXr2dlCgsLce/ePeTn52PBggWYO3cuUlNTsWzZMigoKODYsWOIi4vDmzdvYGhoCDs7O97GSlWqUwEBAYH/FcHQ9P/hBgUuo1y3bt3YuaNHj8Le3h4TJ07kiXpWdbgFSEREBIKCgiotk56eDjc3Nxw7dgwA4O3tjQYNGiAiIoKVyc3NRc+ePdnkMjk5GZaWlqhXrx68vb3x+PFj3u66rC9+BL4/nz9/Rq9evZhHnSSSO5KfP3/m6bbIIp06dWLC/dziOj09Ha1bt2YG+tzcXHTo0AG1a9dmO8Ic7du3h7a2NksJX1hYCHt7e5nRtvonC5CkpCQMGzYMd+7cgaOjIyiluHTpEjvPLageP36MOXPmsOMeHh7Q09PDpk2bEBYWhvnz52P+/Pn/8+/4FfinY0ZmZibc3d2ZYbOsrAz79+9nhpGCggJ4e3tDRUWFZYsqKytDXl4erl69ioCAAEydOpV5jskiFRf1ISEhuHDhAgBgzZo1GDlyJABxJr9+/fph5MiRiImJAQCeAboyJL1tZHk+8OXLF0yYMAGGhoZQUlKCgoICNm/ezMt0VlhYiIsXL6JevXqglMLT0xMjR45Ebm5ulXvPv4Xks8bGxvL0kSqrhz/++ANjxoxBQkICVFVVYWhoyDxpufLx8fFwdHRkXkrR0dGoUaMGbGxs4Ovri9DQUF4fUNUMdwICAgL/FwRDUwVyc3PRvXt3UEoxc+ZMuLq6YsiQIUxcFZDtSQ8HN5CeOHEC7u7u7HhWVpZU/YSEhEBPTw9XrlwBIE6vvWzZMpiammLhwoW8iargZizwo4iJiYGWlhYopRg7diwvvAsAAgICMHDgQCacLGuTSe7ddHFxgbW1Nfbu3YsOHTrg06dPePv2LeTk5DB27FgAQEJCAvz9/aGuro4ePXqwFPEA8ObNG1BKoaSkhJo1ayI+Pl6mRJI5jh8/Dn19ffj4+OD169dfLdemTRtcuHABd+/ehYKCAho2bMjOlZWVoaSkBL169cKoUaPY8e3bt0NJSQmampo4c+ZMlQ6RkXwPi4uLsWHDhr8lFp2amop69eqxUO/KeP36NczMzNClSxekp6cjMzNTKoPUX32PLFBcXIzw8HCIRCJYWVkhJSUFAQEBcHd3x9ixY+Hq6orz58+z8u/fv0d0dPRf3vfveKdUJSq2oZKSEowcOZJlNbt//z6cnJxQo0YN3pyUewdev37NRP5NTEy+2+/+mSgpKWF1QCnFhAkTeO+4pPddeHg4BgwYAEC8SSopncGV2bVrF4yNjVl7ffv2LWbOnAlDQ0Ps2LGD992y3AcICAgIVIZgaJKAm9Ds3bsXlFIYGhpi79697LysTXoq48GDByw2HRBrW3To0KHSsnl5efj06ROePn0KSim6dOmCnTt34rfffsOdO3dk2iVe4OfkypUr6Nu3LyilEIlEaNKkCcaMGYOGDRvC3d2dhdDIMk2bNgWlFB07dmRZIrOysrBy5UqcO3cOkZGRcHd3x4MHD7B48WJQSrFp0yaWspwL43J1df1bi82qRmJiIuzt7dlCqFq1arCyssK9e/fYQkXSq3P27NnYt28fAGD06NG8EI/y8nLk5ubC0tISXbp0QUZGBlJSUnDy5EmcOXMG9+7dY99bWXhTVWLDhg3Q0dGBnZ0dAOlF38WLF3Hz5k3WZj9//oz+/ftDV1cX7du3h5OTE8zMzNChQwcsXbqUeTZs3rwZlFJ06NABQ4cOxYcPH3j3lfU5wa5du2BhYYGjR4/i8uXLuHjxIgBxWKeCggJ+++03qWvWrl0Lf3//7/1Tf1oqvpdPnjxBVlYWYmNj0apVK5blsKysDC9evIBIJPpm+PahQ4fg6Ogoc1IERUVFGDlyJOzs7FC/fn3Wx7Zp0wanT5+WKn/8+HE4OjoCEGsvmpqaQllZmbfJdOTIEVBKMXjwYOzYsQMTJkxATEzMV3XGBAQEBAT+RDA0VSApKQkbNmzA0qVLecdlcTIp+cylpaU4cuQIDAwMmI4FAKxYsQKNGzdGeHg4K8cRGxuLW7duAQB8fHxgaWmJJk2aSLkZy2LdCvzc3Lt3D6tWrcKKFSuwaNEi1o5ljYqL9fDwcLi4uKBx48aoXr16pdcEBASwUNqysjLUrVsXdnZ22LdvH168eIHz58/jzJkz//Ev/3l5+/Ytzp8/j6SkJNSvXx9GRkbQ0tKChoYGfHx8eEKyADBo0CAsX74cgNijwcDAAGpqarzQmRkzZoBSCi0tLdja2jLvUaBqGpgqjhknTpxA165dYWNjg8WLF/POPXjwAPb29jA2Noa8vDw6derEziUmJsLT0xNubm5wcXHByJEj0bJlS8jJyWHNmjWs3ObNmzFmzBiW6lwWqWysfvToEQYPHiwlN8BRp04dtGvXDrdv32YhiefPn4e+vj4znla1tvlPkXz+rKwsTJw4EdWqVcPevXvx9OlTyMnJITAwkPUL7969g52dXaWamdzfJzc3F6tWrZIpQz5Xj5wh+cmTJ6hWrRp69OgBbW1tUErh6+uLhIQEdk1qaiqaNWvGPG45o3L37t159x4/fjzMzMyk6r20tFTm26+AgIDAtxAMTRXIz8+v0mEGfwfJxWVRUREePnwIANi9ezfU1dVhamrKDEuBgYGoWbMmL3yOY8uWLTzdFVnStxIQ+JWRXFAWFRXh+fPnvPOc1yfnrcD1GR8+fICOjg7Onj0LQKwd4uHhAUopbG1tpbLQyTrbt29H06ZNcenSJSgqKoJSip49e/IymG3fvp3Xvy5YsIBl6JPk1q1b2LJlC/Mcq4pIjk1ZWVnMK5Ybs69evYqtW7ey9vvy5Ut06dKF6TBNmzYNlFJs3br1m98zcOBADB06tNJzsr6wDAsLw549e1BcXIycnBycOXMGbdq0gby8PBvjOaPSuXPnICcnh+rVq6NZs2Zo1qwZE6X/VriorFFYWIgdO3ZgzZo18PX1hY+PD+7du4ekpCQ0adIEDRo0wObNm5GXl4e5c+fCy8sLgDhkMTc3l3cv7h3x8PCQuQzJHFwdTJgwAWPHjsXNmzehpqYGkUiEFi1aIDIyEmVlZXj79i169erFyzbZvn17UEoRGBiI7OxshIWFAYBU+J2AgICAwF8jGJq+gawNJpXtEjs6OmLLli3Iy8tDbm4udu3aBUVFRQwfPpyVGzBgACilmDVrFpKSklBUVIS3b99i1qxZPG0WDlk03gn8mshaH1CRgwcPwsTEBHXr1kWHDh3YwuXjx4/o2bMnKKV49eoVK//gwQMoKSnB29sbgDgU8fr16zh27BjPA0fWkWxX1tbWuH37NqKioljYZs2aNbF582aUlpZi06ZNPKHvhIQEWFlZsax+nTp1woMHD3j3r2paIRXfw3nz5sHW1pa1PW7sOnz4MC9U6+DBg2jSpAkLdzt37hxq1KgBQ0ND3sZHYmIir316e3vj6NGjUr+jqnrffq2fk8wsWVBQgEmTJoFSCnl5eV6bO3r0KBQVFTFo0CAA/HraunUrbGxsWBiTsbExM0TLIhXfzby8PGzZsgVaWlowMTHhJU8oKytDSEgIDA0NYWBggObNm2Pt2rUoLy9nYd7t27eHn58fT9IAAH7//XcmzC5rcO0vNTUVJiYmSE5ORkxMDHr37g1KKczMzLB8+XKUl5fD3Nyc5/nFhXZz/XDF5B9VrW8VEBAQ+C8RDE0CUty4cQOtWrUCpRSdO3eW0lJycnKCtrY2C495+fIlW3Tq6OjA3t4eNWvWhIeHh8xlPREQqCqsXr0ao0aNQmhoKIKDg1GzZk1QSlnGubNnz0JDQ0MqjXaLFi0gLy8PPT09DB06VNC1+grcguXcuXNo1qwZOz558mTUrl2bCdkuW7YMtra2vGs5LzFzc3OeyDJQtYyjFZ9l586dMDQ0BKUU27ZtY8e5hWVRURGcnZ1ZFtP169dDJBIxD7GTJ09i8eLFqFatGqZOnQpAnDFx27Zt6NWrF2bNmoV27drBw8NDpjUEK9sMKiwsxIkTJ3D48GEYGBhg8ODBTHQ9MzMTw4cPB6WUeYAUFhayazMzMxEdHY2LFy9Wqfb5T6io8cl5HpaWluL69evsnfb19WVluL9Dbm4uLl68iKSkJHz48IHVNaUUdevWxeDBgxEQEAAAuHv3Ljw8PFC3bl2Z9iDl+tdFixahd+/eAMT1+Mcff0BfXx+UUvTv3x8dO3bkhcYfPnwYlNJK9dgEBAQEBP4ZgqFJAMCfO5bz5s1D165dsWrVKvTt2xdycnLw8PBAeno6K3v37l22wOSOf/78GTt37sTEiRPRq1cvHDx48Ec9ioCAwD+gMi+NzMxM9OjRg33Oz8+Hvb09rK2tcf/+fQDisI2JEyeCUsp2zhMTE5GamorAwEAEBwd/nweoAri6ujJtoZycHISHh8Pc3JzpLvXv3x+lpaUoKirC0aNHYWRkxNMQqopU1Ai8efMm2rZty0JbGjRogJCQELYYLykpQW5uLpYvX46XL1+yaw8cOIDs7Gz88ccfWLhwIZ4/f46RI0dCUVERz549Q35+PsLDw2FrawsjI6NviixXFWJiYqSOHT9+HAcOHOAdO3z4MDQ1NbF9+3Z2LD8/H/PmzYO8vDzOnj3LFvRXr15FrVq1eEbTr3mAybJX85s3bzBw4EBm2ExNTUV+fj6KiorQsGFDNG/enGmBSRrl+vfvj+bNm0NOTo4ZmQMDAwEAkZGRuHz5MgoLC+Hu7g5KKdzc3FgIoywiWXdNmjRhdcX1JZJednfv3gUAPHz4EMOGDePpiAo6TAICAgL/O4KhSYDx5s0b9OzZEzk5OQDEGhhTpkyBvr4+E1jkBlxPT08oKyvzdpUro6qGGggI/Op8a/KckJCA3r174/Xr11i5ciU6d+6MdevWsfMfP34EINZrMTMzQ506dTB37lxs3LhRJkMLKnvmv7NA4a579eoVTE1NmYcIADx//hw+Pj6glMLIyIj1pU+ePGF9NFD1Fu2Sdfb582f07t0bCxcu5B2fPXs2dHR0YGRkhI0bN/Ku7927N1s4ciQmJqJ///6srgIDAyESieDs7IyjR48iMTER79694/2Gqjh25ebmwt/fH2ZmZsyYwYlMh4aGwsHBAYC4vqZMmYKGDRtCQUEBDRo04LXNyMhIWFpaom3btixkq6SkBHPnzgWlFMOGDcOECRNk2qNGEsnQzs6dO8PHxwdDhw4FpRQtWrTApUuXAIhDECmlmDdvHtMd49rs5s2boampCTMzM2zevJl3//v37+P48eMAgPfv31ca9vmrUlkfWrG//dq7ypU7ceIEmjdvzjsXHx+P2bNnQ1lZmTe2SX6vLI5lAgICAv8mgqFJxigrK/vq4sfX1xcNGzbEx48f2QB77do1aGtrs1AEbtKTl5cHTU1NUEqhp6cnNbEXBmgBgV+DPXv2wMXFBRs2bMDbt28BABEREdDX10erVq0wZcoUnlhqQkICPD092eeLFy+ie/fuGDVqFDIyMr777/9RPH/+HEOHDmUhMJL9quTC5/bt26z/rKxf5Mp6eXlh1KhRUuU2btwId3d3XsptrkxV3mlftGgRVFRUQCllxgzOKJKTk4MNGzYwj4S1a9eyMJctW7Zg/vz5vHstXLgQ1tbW+PTpEwBxuPfAgQOho6PDQo44qprhTpLY2FgMGTKEhWVKsmbNGsjJyaFLly7o168fLl68CEAs/C8vL8+r06KiImzatAkikQgBAQHsHbhw4QIopahevXqli3dZ4Wvv5dSpU3mZCwcPHgxdXV0cPnyYHXNycoKhoSEuX74sdf3SpUuxc+dOqePXrl2rUslWTp48KeVdB0jX671799gm6F/RtWvXSr1A9+zZgydPnvDuXxWNzAICAgI/AsHQVMWQFOatOChLDp4pKSlSabQDAwNZRh5OGHXPnj2YPn261PckJydDXl4ebdq0kdnU7wICvxqSBoz8/Hz4+/ujV69eTB9kyJAhbCfdwcEBVlZWbHHOcfPmTfTv358nnlyVM51VRnJyMiZPngxKKVatWgVAenHy4cMHJu5tZ2f31Xtx/XRBQQHq16/PsnxmZ2cDEP+d/u5iqqrg6+sLc3Nz1KlTB5RSeHp68rLBAmIDZ4cOHWBvb8/0VoqKinDp0iW2GOfGuPXr14NSCj8/P5w6dQqLFy/GnTt3eF46skBSUhKio6PRtm1b1KhRgxfeOnXqVCgqKkJfX58njhwfH4/+/ftDVVWVF5KYmJgIFxcX1K9fH2FhYUhMTISjoyM8PT15+kyyxteMFA8ePGD9wO3bt9G3b18MHTqUeX1xbTE8PBxKSkpwdXXFrl27cOXKFXaPzZs348iRI+w77t27B09PT6xduxb5+fm/vOG5vLwcZ8+ehbGxMRwdHZmBuWKdXr9+HVZWVqhTpw5q1KiBCRMm8DZDJOHGvKioKBgbG6O0tBSPHj1imyrCpqiAgIDAf4dgaKoilJWV4cKFC9DU1GS7NpUNoGlpaRg7dixsbGxgbW2NIUOG4OnTpwDEE8euXbuCUopu3bphwoQJ6NGjB16+fImcnBycOnUKFy9eRHJyMqKionjZOH71CY6AgKyQkZGByMhIpKWl8RYxQ4YMgZqaGjZt2gRAbFDiQjtWr16N69evY86cOZCTk8OYMWN+1M//Kfj06RPWrFkDfX191K5dm2XX5Lxhbt26hVatWmHVqlV4//49PDw8pDLDScIZRPbs2QMzMzOMGzcOo0aNktkFO1cfr169goWFBSilGDx4MCIiIliZ9+/fo1WrVnj16hW6desGSilGjhyJ+fPn87KiAuKw8N69e0NTUxPNmjVjOmPAt718qxqSYXLVqlWDq6srCgoKAIjb3pw5c6CgoIDZs2fzrjt37hy0tbXh5ubGjpWVlWHcuHGglMLGxgb379/neTRWNc+wygxIX2s3iYmJCAgI4G3CJScno1atWujTpw969uyJkydPsnNFRUUICAhAamoqALDsaLq6ujhz5gwrN3DgQNSsWRNz5szBwIED0a5dO6Y99CvDtcvy8nJcvHgRXbp0AaW0Uq+4a9euYcCAAQgJCcGnT5+YMLqXl9dfetRaW1uDUop27drh9evX/8mzCAgICAj8iWBoqiLk5OTAz88P8vLyqF+/PhPplpxE37lzB507d8aiRYtw//599O/fHyKRCGZmZiymPycnBxs3bsSYMWOwd+9eAOIU5S1atGBhCsOHD2fGKaDqTSgFBKoKFY3NO3fuhJaWFnR1ddG0aVOe6GlsbCz09fXRokULxMfHAwB8fHyY+KyCggIopdDU1JR5L0bOg2vnzp1QVVWVMrwtW7YMW7durfSab7Fjxw5QSjFo0CC26JRVuLb7+PFj5nHXsGFDvHr1itWlt7c34uPj8eHDB0ybNg2UUlhYWKBFixbM+Cd5P8mwJVln5MiRUFVVlWqnNjY2MDQ05L3jWVlZrH5PnToFQOyBs3fvXmzatAnXr19nZauavlVFY5Kvry9Onz7NPld81mPHjqF9+/YwNjbmZUdMSkqCq6srGjVqJPUdL1++hIeHBwDxfEtPTw8LFiyQ+o73799jwYIFWLJkSZVJBrBixQqMHj0axcXFKCkpQWZmJsrKylCzZk1YW1uzuSY3z5wyZQpCQ0PZ9ePHj4e5uTnPcCdJeXk5ysvLsWzZMujo6GD9+vX//UMJCAgICAAQDE1VhsLCQrx//x7z58+HsrIyS90sOUlauHAhdu/ezT4XFRVh165dUFNTg62tLZ4/fw5ALBi6aNEiXL9+ne2sUUrRt29fHD9+HBs3bsTZs2e/7wMKCAj8z3z58gVXrlzBli1bcPnyZUyaNAmUUuzYsYNXbuHChVBQUMCcOXPYsStXrmDMmDHo0aMHxo4dK6R8xp8Lv9zcXHTr1g1qamq8xY+vry8sLS0REhKC4OBgBAcH49ixYwgPD/9qqMa9e/cwbNgw3L59W+p7BMAyHDZu3JiNYyNHjkRcXBwrs3TpUmhqakJXVxfJycnseEVjgayFy0huBnFtStKwnJCQwM6fPn0aysrKPO8lQGzws7W1hZ6eHuzt7TF8+HDcu3fv+zzAD4AzUHAEBQXB0dERJiYmmDdvnpRm2tmzZxEVFYXTp0+jvLwc79+/h7OzM/T09BAZGQlA3C9oaGhg7ty5ePjwIXJzc3Hp0iVYWloyIfbXr1/zwsC4v11V9LorKCjA3LlzUaNGDWYY5trn7t27QSnFrFmzeNf069cPe/fuxalTp+Dg4IB58+YhNzcXgNiYxyWqqEhgYCCysrLYZ1nrAwQEBAR+BIKhqYrADc45OTmws7ODlpYW270tKytDamoqbGxsEBQUBOBPV+WCggIWDnPu3Dl2v2bNmjEDU8uWLRESEsLOhYaGMvFEAQGBn5eUlBQMGTIEbdu25RmZs7Ky0LhxY1hbW/MWTHl5eWjSpAmMjY3x6tUr3gKVC7EREMP1uefPn4euri5bKALAo0eP0Lp1a1BKoa6uzvpSSil8fHz+UhtIyHj0J1w9Z2Zm4sCBA1BWVgalFEFBQRg3bpyUh8LRo0dRq1Yt7Nu370f83J+a8PBwnsFi0aJFUFBQkBJP7927N6pXr45Dhw4BADN8xMfHw8fHB1OnTuVptFU1I4jkuxcdHY2xY8di5MiRTLvq/fv3zBs0JycH27dvh0gkgqGhIQt1Ky8vx5UrV6Ctrc1COT98+IBhw4axvsDU1JT9+8SJE1K/oarVa2WkpaXxDJ2StGjRAvr6+rh69SoA8bg1bNgw1KtXDwMHDkRsbCyv/KpVq/DixQvescqMzLJQrwICAgI/A4KhqQohmUK3evXq6N27NztXVFQEfX195o4tOZFKS0uDtrY2E7UFxGnLnZycKs38cenSJZ7ouICAwM9Hfn4+Tp48iREjRkBBQQGTJ0/mecicOnUKlFLMnTuX7QgD4p17Sink5OTQrFkz3i6wLPOtlNpjxoyBoqIiT7cuLS0Nr169wpUrV/Du3TuEhYVh1qxZ0NLS4nnbVETwYvo2p06dgoWFBVRVVdG6dWv4+fkBkDYOSOo5yRoVF9I3b95E/fr1oa2tzdP0KSgoQJMmTWBqasrTEHvy5Al0dHTQvn17AGLNMS6r2deyK1Y1MjIyMGPGDAwePBjHjh1jxyvWbW5uLqKiojBp0iSIRCIWWgiIPUlnzJgBBQUFJryekpKCWbNmoX79+qhVqxbq1auHgwcPfp+H+kXg6vju3btMroEzbK5YsQIGBgZShuRPnz6hdevWuHPnznf/vQICAgIClSMYmn5xJCc9kv8eNGgQlJSUWNx6WloaHB0doaGhwQs1KC4uRnFxMfr27csMTdx9vL29ER4ezvu+s2fPYufOncKOkIDAL8K7d+/QrVs3mJiYICYmhnfOxcUFtWrVwqVLl9gxLkPX1KlTeQYoWaViCM3jx4/x6dMnnrfX48ePUa9ePVhYWCAnJ+eb92vXrh2SkpL+s98rC0RFRbHEFUOGDAFQtY0e/4SKYXKFhYVYsmQJE+4eOnQozxvp0KFDUFRUlBJQnzlzJlRUVFC7dm0pDybu3lUVzghPKWXZySS1p9LT03Hnzh2pPqB58+YwNzfnZYl89OgRGjRoADs7O17fUFxcjKdPn/IMpFW5Tv/KQ7O8vBy7du1iXmNcnzto0CAoKCgwzdDs7Gw0a9YMysrKGDduHPbu3QtfX1/UrFkTFhYWUtmUBQQEBAR+HIKh6Rfla4Kb3LHbt2+jTp06aN68ORvgly1bBkop+vTpwyZPHEOGDOHtAOfk5MDR0RFr1qzBx48fcenSJfTo0QPTpk1jKWcFBAR+Xrj3vry8HOfPn4eamhomTZqEvLw8ViYiIgLKysoYNGgQdu/ejQsXLuDw4cNMU0TgT2JiYuDq6oratWvDzMwMvr6+vPMLFy6EoqIifHx8AIgX/CEhIThz5gw+fPiAFy9eYODAgZg+fbqQQOFfICUlBSNHjkSzZs0E3bAKlJeXw8/PD5s3b+YdHz58OOTl5dminaNbt26oUaMGT+Q6Pz8fly9flhILr+q8fv0aFy9exPTp00EpxYABAwCI51bc/ComJgabN2+WEuzfvHkzRCIRlixZwo7l5+dj69atUFBQQLdu3eDh4SEV8lVVw2SvXbuGPn36SB2vuFFZWFiInTt3glKKmTNn8sK0P336BHl5edjb27N5a1BQENq2bQtKKUQiETMKrlu3rsqJ0QsICAj8ygiGpl8QyUE6NjYW27dvx4ULF6TC2TiXbW5BlJiYiLFjx4JSimbNmuHo0aN48uQJfvvtN4wdO5aFyHD3Hz58OIyNjdGtWze0bNmS6TsJCAj8WP5qYVLRkPH582d4enpCVVUVN2/e5E3EnZ2dQSmFiYkJbt68+Z/83l+dsLAwtGnTBgcPHkRsbCzMzMxQu3ZtXta+pKQktG7dGnp6eiyxAqfvQimFnp4e9uzZ84OeoGrBjVFpaWm4ceMGy7Iqi0hmlgXEHjT169dn+oqSGWIzMjKgqKgIOzs7vHv3jh0PCwuDqqoqWrVqhYCAAF4WOcnvkQW45ywuLoa9vT0opbz3HACuX7+OWrVqITAwkNcXv3//Hj169ICGhgZvM+/EiROglKJBgwY879GqTG5uLvOiO3z4MACxhENlY1dOTg72798PW1tbaGhosIQI3N9i8eLFoJRixYoV7JqUlBQsXLgQEydOxIgRI2Q6VFZAQEDgZ0UwNP2ilJaWYsGCBWjcuDHs7e0hJycHLS0trF+/HhkZGQDEO3NWVlYwNDRkO76fPn3C2rVrUbduXTRs2BAmJibYsGED797c4F5YWIjMzEypcBsBAYEfT2lpqZSotKSBqaioCNOmTWOZoe7evQsjIyP06NGDpYe/evUqateujZUrV36/H/4T8zUDno+PD8aPH88+BwQEQF5eHr179+bV+Y4dO6Curs7CkDhv0KVLlyI/P5+Vk5VFu8D/nZcvX7L3taIniGQ74vqCly9f4smTJzh48CAopVi0aBEKCwtZueXLl4NSKuWRx4nXW1paSnk0ylqoPFevp06dgry8PKytrQGI50R//PEHbGxs4OTkhIULF0olRjlz5gzU1dXh6emJpKQkhIWFYeLEiVi9evV3foofy8uXL+Hh4QFdXV3o6enx2lBqaioOHz6M27dvs1C3nJwc3Lp1C3Xq1EGfPn144YcAYGBgAAsLC7x+/fqr3yl4MwkICAj8XAiGpl+UdevWYfr06ezz6dOnYWFhAUVFRaxYsYItatauXYtq1arBw8ODd31paSliY2ORnZ3NjlUcoGVtcikg8LNS8d08evQojI2N0bZtW+zcuVOq/Jo1a6CpqQkLCwtmKM7NzcWKFSsgLy8PBwcHTJgwAXfu3OH1AVWdBw8e8BbdkkjWcVJSEq//Gz16NFRUVJhR6eTJk+jWrRuqV6/OEwAHgC5duoBSChUVFQQEBPAMUULInMA/ITQ0FBoaGpg7d+5Xy6Snp2PixIlo1aoV+vTpwzJ0AUDnzp1hZGSEGzdu8K4xMzNDvXr1mAD448ePUbt2bSFTXyUMHz6cCVI7Oztj/vz5zDjy7NkzZvhISEhg/+7Xrx/rA44cOcLTDZKVPoDrP7ds2QJKKWbNmgVAPDapqqqycDcnJydcvnwZgDiz5KJFiyASiXDkyBFe9s3g4GBQSqGlpYWGDRtKhS1W1fBDAQEBgV8ZwdD0E1PZ7kxxcTGys7PRs2dPhIaGsnIAcOPGDTRs2JC3I/nlyxd07doVIpEIixcvxvr166WySAkDtIDAr0Fubi5u3bqF33//Hfv374eDgwMUFRVZyNvHjx9ha2sLXV1d7Nq1S8qosnr1alBK0aZNGzx+/PhHPMIP4+bNm5V6ckjy9u1buLm5oVmzZnBycmLJFB4/fgw/Pz8kJydj9uzZ2LZtGx49egQ9PT3Y2toiNTUV+fn5yMzMhKGhIczNzXnZvQDBcC/wz/nw4QM8PT2xbds23nGuLd27dw+dOnWCr68v81RycXFhXs1hYWEQiUTw8PDghRcuXboUlFLY2dnh4MGDyM3N5c01ZMUY8i24+ggPD4exsTEUFRV54VkVkwTs2LEDMTExyMzMhJ6eHuzs7Hhhi7L2/nPzyg8fPsDJyQmUUsTHx2PZsmU4c+YMgoODsWDBAohEItSvX5/NS6OiomBjYwMbGxue9trRo0eZZtb79+9/xCMJCAgICPxDBEPTD6Iy917JiYik8ScrK4tnHEpLS4Oamhqb9HC7ZUVFRdi1axcopcwIBQCrVq0CpRT6+vosVl5AQODXIScnB1OmTEGTJk14Hky3b99GvXr14OTkhNzcXGRkZODAgQNSu72AOLRm/Pjx2L9///f86T8N8fHxmDFjBk6cOME7Lmmo79ixIzZu3Ijt27eDUoqBAwfyPL5iYmLg5eXF+u+5c+eCUgpvb29ERUWhoKBASoBZ1haYAv8uX/PAA4AlS5Zgx44dAMRzijt37iAhIYFXZuzYsVBXV+eN/ZcuXUKrVq0wePBgZpQChE2nr8G95zNnzgTw55xLsr66d++OLVu2IC0tDVeuXGHHK2poySJHjx6Furo6TE1NsX37dp4h09fXFyKRCBMmTAAAFBQUYPfu3VBQUIC/vz8iIiLw4sUL7Nu3DxcvXmTXCW1VQEBA4OdHMDR9ZypOOHx9fXmZXiqycuVKNGrUCB07dsTChQuRnp6O5ORkGBkZYeDAgVLlU1JS0Lx5cwQEBAAA8vLy0KxZM8ybN+/ffRABAYH/ib/SkKg4gS4tLcWlS5cwYsQIKCoqYuTIkexcfn4+/Pz8QCmVCuESkOZbdT9z5kycOnWKfb5//75UWOHAgQPRq1cv9vnKlSswMTGBmpqaVHYuwStE4N+GC4kvLS1Feno62rRpwzaVJPuN0tJS5ObmAgCSk5Oho6MDMzMzbNy4EV5eXggKCmK6TwJfh5uvffjwAdbW1qCU4sWLFwD+7EvKysowa9YsyMvL8wxMgOwZQ772vLm5uRgzZgwopbh16xYAsMxyaWlpcHV1RcOGDZGcnAxAHA7asmVLUEphamqKR48esXtJhtMJCAgICPzciIjAdwFiox6hlBJCCAkODiZOTk5k27Zt5NGjR+TRo0e88unp6aR///4kLS2NLFiwgBQXF5M1a9aQpKQkoq2tTerWrUtOnDhBgoKCeNdpaWkRAMTS0pIQQoiqqiq5desWWbZsGSGEkNLS0u/wtAICAhUBQMrLy4lIJO52b9y4QfLy8njnARA5OTnedXJycsTJyYn4+PiQTp06keDgYJKUlEQIIURFRYX07NmTtG3blvj7+5P3799/vwf6BeHqnhBCcnNz2b9TUlLIvXv3iKamJvs7tGrViqirq5PS0lKSn59PCCGkpKSE3Llzh7x79448efKEpKamkg0bNpDIyEji6enJ+y55efnv81ACVRLJsbq8vJysXr2a2NnZEULEfYKGhgaJi4sjDx8+JISI+w/u/3JyciQsLIy8fPmS6Ovrk/3795NGjRqRNWvWEEtLS+Lq6koUFRUJIYSUlZV95yf7daCUEgCkTp06ZMKECYQQQqZOnUoIEfclx44dI926dSMlJSUkMTGRdO3alXd9xb68qsK1Pe55r1y5QqKiokhKSgopLS0l1apVI4MHDyYGBgasHpWVlUlZWRnR1dUlnTt3Jvn5+Wx+/OTJE/LmzRvi5eVFYmJiiI2NDfsuSqnM1KuAgIDAL8+PsW/JFpK7L1y665EjRyI6OhqAOCVuxfS5ly9fhru7O/uclJTEywRz8uRJKCoqonbt2ggMDGS7569evYKnpycyMzN59xPctwUEfg4iIiLQqlUrODg4IDExUeq9fPDgAQYMGIDRo0djxowZPJ2PI0eOSIn7l5SU4NChQ1BWVsbChQtx+/ZtPH/+/Ls9z69GYWEh5syZg65du7J+s7i4GGpqaswrjPNW4P42Bw8eRH5+PrZt2wYDAwOoqKigadOmCAsLY/cV+liB/4K0tDQ8ffoUvXv3BqUUe/fuBSAOhXVzc4OxsTEvoyHH5s2beV5LBQUFPFFqoa3+M3JyctC9e3dQSrFgwQL069cPQ4cO5WWdk3VPm5s3b6JVq1Zo1KgRdHR0oKenhxkzZrDzv//+Oyil2LhxIwAwr7ubN2+iUaNGTCLi2bNnePfuHbtO8A4VEBAQ+DURDE3fiYyMDMyYMQODBw/GsWPH2PGvTfbmzJmDSZMmAeAPsqWlpezzli1bYGxsDEop+vXrh8GDB8PR0ZEX/iEgIPBzUFxcjDlz5qBatWqglDJxXk5Utri4GD4+PnBwcICvry/69+8PSimUlJRYKOynT58wduxYiEQi3Lt3j907NzcXnTt3BqUUderU4Z2TZSpb+D19+hQuLi6glDLdmsLCQvTp0wempqYspEMSf39/AOK+OC4uDmfOnPlPf7eAbCIZ2vnkyRNYWFjgt99+Q0xMDHbv3o0GDRpAW1ubzQG2bdsGVVVVDBs2jCf2HRUVhdGjRyMvL08qXFTWjSH/C9w8befOnaCUwsjICAcPHuSd/6uQ6KrOzZs30bt3b2Z8v3btGho3bgxKKebMmQMAePnyJVq2bAlNTU3e3Hfz5s3w8/OTumdZWZnM16uAgIDAr4wQOvcdOH36NNHV1SVr1qwhS5YsIQMHDmRhNJRSkpGRQcLCwniu8ikpKeTJkyeEEL77tZycHHn69CkJCQkh48ePJyEhIWT58uXE0NCQmJmZkaCgINK3b9/v/owCAgLfRk5OjrRp04bk5uaS3r17k/Xr1xNCCOsHEhMTSVZWFgkODiZz5swhJ06cIJcuXSKKiopkxowZJDo6mujp6ZGBAweSOnXqEB8fH3bvkJAQEh0dTWbMmEFiY2NJmzZtftRj/jRAIgyxsLCQHdfU1CQDBgwgVlZWxMfHh2RnZxMlJSXSt29fkpKSQiZNmkTevXvHyt+7d4+8efOGFBcXEzk5OWJsbEx69+5NCBHCjgT+XUQiEfnw4QO5cOECiY+PJy1btiRycnKkVq1aZPTo0WTatGnky5cvxNvbmxBCSO/evcn48ePJoUOHiIODA/Hx8SFr164lXl5epEWLFkRVVZUXLkqI7IRz/ZtQSsmbN29IVFQU+f3330l8fDwZOnQoIeTP/rtiPVdVKvZ5+P9hcydPniQDBgwgbdu2JcXFxcTBwYHs3r2b2NjYkE2bNpHo6Ghibm5ORo8eTbKysoibmxt59OgR8fHxIefOnWNhoZKIRCKZqVcBAQGBKskPNnRVeV6/fo2LFy9i+vTpLDUrwN+piYmJwebNm3mZog4cOABKKS5cuMCOceWDg4N54ogA3zNK2AESEPgxSO5sf+udfPv2LUxNTZn4KSAOK+jSpQsAsecMd72/vz8opUwEPDs7GwsWLGCejLNmzcK5c+eksk0JAI8ePUKnTp3g6uqKNWvW8M7t3LkTcnJy8PHxASD2FvPx8WECtFOnTsX8+fPRsmVLmc3UJ/DfUtG76N27d+jVqxd731NSUnjnk5KSmDfe27dvAYhD6/z9/WFqagoDAwPUrFkTixcv/m7PICtkZ2fzkgPIWjjXX4Vatm/fnvWlku16//79UFVVxaxZswAAiYmJ6NGjBxo3boyGDRti7Nix+PLly3/2uwUEBAQEfhzCVsF/TN26dUm3bt3IihUrSOfOncnJkyfJ9evXeTs1ycnJZMmSJeT+/fvMq8nKyoq0bNmSTJkyhYSEhBBCxLs72dnZ5NSpU0RZWZn3PZxoJQBhB0hA4AcgubP98eNHkpCQwM5JvpOlpaWkbt26pH///swzAQDJz88nIpGIpKSkEHl5edYXjBo1ivTu3Zs8f/6cpKenE3V1dVK7dm1CCCHPnj0j9vb2pGfPnsTQ0PA7Pu3PR8Wd9oiICLJu3TrSvXt3UlRURGbMmMFLntC1a1fSs2dPsnbtWvLq1Suip6dHlixZQvz8/Iienh4JCgoiR44cIWPGjCHDhw//3o8jUIUpLy/nedwdP36cnDhxgmRmZpJ69eoRHR0dEhsbS/T09Hjla9WqRdzd3YmamhqZNGkSIYQQXV1dMmPGDPLq1Sty7do18ubNG/L777+z6wT+HdTV1Ym6ujqbZ8ma2D8n1B0SEkKcnZ3JvHnzSFhYGCGEkMzMTFJeXk7Cw8NJSkoKkZOTIyUlJYQQQlxcXIiLiwvJyckh5eXlpHbt2uTo0aPk2rVr5OrVq2THjh1EU1NTaKsCAgICVRDBIvEfIxKJSHl5OVFQUCC//fYbkZOTIzNmzCCEEFJUVEQWLFhAZs2aRaysrEhERAR5+vQpIURsaJo7dy7Jy8sj3bp1IwMHDiTLli0jQ4cOJSUlJcTCwkLquyilbDIgICDwfRGJRCQ3N5e4u7sTIyMj4ujoSGbOnEkePnxIcnJyWDnOILJy5Ury6NEjcvv2bUIpJWpqaiQkJIQZQxQUFEhZWRnR0dEh7dq1IyKRiOjq6pKCggISGhpK/Pz8yKtXr4iTk9MPed6fDW7RHhgYSJ4/f05SUlLIxo0byYwZM8jSpUtJs2bNyOzZs1m2OSMjIzJixAiiqKhIFi5cyO4zY8YMEh4eTi5dukTevHnDssnh/4eICAj8X+AyT1JKSXh4OBkwYADx9/cnXbp0Ic2aNSMzZ84knp6eJCwsjJw/f54QIu5buPbn5OREhgwZQi5fvkxmzJhB1qxZQ3JycoiCggKxsLAg6urqpKysTNh0+o+QpXlWxSzFp06dIuvXryeNGzcmAQEBxNPTk8THxxNNTU3SpEkTcv36dbJz505CiHj8KikpITo6OkQkEhEVFRXWHlVVVYm+vj4xMDCQysYqICAgIFCF+EGeVDLL8OHDQSnF8OHD4ezsjPnz57NMMM+ePcPr169RVlaG1NRUPH/+HPfu3YOzszPMzc1haGiIUaNGsUwdAgICPw+vX79Go0aN0Lx5czRo0ACUUlBKIS8vj1atWmH9+vVSoTDbtm1DmzZtAIjD6bS0tNC4cWOEhoYCAMsadfnyZYwZM4aFawiCvtICvI8ePUKLFi2gpKQEFRUVDBo0CIC4rsrKyhAQEABKKVasWMGuycjIgJeXF+Tk5ODu7o7ly5cjIyOD9z1CXQv826SkpGD06NHQ1NQEpRQGBgaIjY1l7fnhw4ewsrKCpaUlb7zn2uKuXbtAKYW+vj4TtBcQ+K8ICwtDVlYWAgMDWRtdvXo11NTUWHbkd+/eQU1NDXJycjh16hQbq8rLyzFr1iwhE6qAgICADCIYmr4T3OAcHh4OY2NjKCoqIiIigp3nMk9x7NixAy9evAAg1gJITU3l6bkIOkwCAj8XeXl57B199eoV2rVrhwEDBqB58+aQk5MDpRQ1a9ZE7969sWfPHqZL0blzZ+zZswcA4OfnB0opjI2NERwcjPLycjx69AgDBgzg6bUJ/ElCQgLCw8Nx8eJFREZG4tWrVzA1NUXt2rXx4cMHVu7du3dwcXGBlpYW3r9/z45zGlgWFha4cePGD3gCAVkiOTkZDg4OWLt2LQBgzZo10NPTY/psgHg+sG7dOlBKWcZDQDzuFxcXo3v37pg3b973/ukCVZyysjLePPTq1auoW7cu1NTUYGpqivXr17Nzubm5cHR0hLq6Om7evAlArMekr68PSim6d++OlStXokuXLpg9ezYKCwu/+/MICAgICPxYKCDEA3xv5s2bR1asWEG8vb3JqlWrSElJCQuT4cI/evToQTp37kymT59OCBGHbVBKWRy74GYsIPBzwr3PixcvJtnZ2WTmzJkkMjKS7Nu3j4SEhJBPnz4RQggxNzcn7u7uhBBCdu/eTZ4/f05EIhFZtmwZ2bFjB/n8+TMxMDAgqqqqxNfXlzg6Ov7Ix/rpKC0tJXv27CGrVq0idevWJcuWLSM2NjaEEEK2b99Opk+fTvr160f27dvHrjl+/DgZO3YsGTVqFJk7dy5JTk4ma9asIS1atCBTp079QU8iUBVITk4mNWvWZGFuXwuvOn78ODl+/Dg5efIkIYSQvLw8snXrVrJ8+XLy7Nkzpr/29u1bMmXKFBIREUGCg4NJUVERqV+/PtHT0yP5+flEVVWVECJ+D2RNL0jgvyU9PZ28e/eOPH36lJiZmZF3796RcePGEQ8PD7J+/XqmEXru3DkyZswY0rRpU3Lt2jVCCCHv3r0jO3bsIMnJySQ7O5tM/3/t3XtUVNfZx/HvICCXEUw1YquoVarUxEBqNAsvyQraiJHGsNCVIJFVbwW8VIKEtOClN0iNaLGm3qnpArVRsSFoDCqRGhM1aLSIxks0ggJSjYAiKg5z3j9ccxLU9k0TElB/n/+Yc5lzWGf2zH723s8TH8+gQYOa83ZERKS5NG+c6/7iGCkqLS01AgICDIvFYs5acsxQamhoMBITEw1nZ2dj27ZtzXatIvL1OD7nNTU1RnBwsJGfn29uKysrM3JycoyIiAjDw8PDsFgshru7u2GxWMwZCjabzbhw4YJx8OBBY8uWLc1yDy3NnWZwfvrpp8aGDRuMgIAAw93dvdH/6urVq0ZoaKjh6enZ6P9vt9uN559/3rBYLIarq6uRm5trLl02jPuvkpQ0jeLiYiM6OtrIyMj4f/ddsGCB0bp160bPWkZGhjF06FCjurq60YySN99801yCO3z48EZLb2+dBS3yTdXV1Rm/+c1vjIceesiYM2eOcfHiRXPbqFGjDDc3t9uWao4bN85wcXExsrOzDcO4c3W6W5c5i4jI/UHTYr5Djspwvr6+xMbGApij6E5OTrz55puEhIRw48YNysrKGDp0aDNerYh8HY6Zh15eXowZM4YVK1Zw5coVADp27Mizzz7LmjVrOHjwICtWrGDYsGG0bt2aV199ldOnT9OqVSvatWtHQEAAISEhzXw3zc/4UlLjnTt3kpOTw/Hjx+nRowfh4eEsXryYa9eusWbNGqqrqwFwc3MjNjYWq9XK7373O/Ncx48fJz8/nyFDhvDxxx8TGhqKi4uLOVNUM0Pk62jfvj05OTn84he/ID09nbNnzwJ3rvrWsWNHGhoaiIyM5ODBg9jtdoqKiggPD8fb25uGhgbq6+uBmzNGvLy8yMjI4J133sHHx8c8z/2UlFqa3q1VOm02Gx999BF2u52Kigry8/O5du2auT09PZ36+npWrVplPt8Ac+bMwc3NjVGjRtG5c2cOHz582/s4qrGKiMj9RUvnmkltbS0RERFs3ryZ2bNnU1xcjJubGwkJCQQGBgI0WkonInensLAwwsPDefHFFwHuuKzmwIEDrFy5Ej8/P1566aXmuMwWrby8nMTERPbs2cP169eprKxk1qxZTJ06lQceeICIiAiys7PJyMhg7Nix5nGxsbEsW7aM+Ph4unTpQt++fbl8+bIZwFO1I/mmHJ/n0NBQtm7dis1mY8iQIaxatYpOnTqZgWdHYOjf//43ixYtIjU11awSFxkZybRp08jJySEnJ4eGhgYSEhI4ePBgo+dZvwnkm3L85Hd8B125cgVPT09z+5UrV0hNTWXBggX87W9/Y9SoUWYbOXPmTFJTU0lLSzPTOrz//vs8+eSThIeH88c//pEePXp8x3ckIiItlQJNzcDxwzQjI4NJkybh6+tLamoqkZGR5nZDpYlF7mqOTuF7773HvHnzWLVqFR07dmy0z/0a6GhoaKCgoIDHH38cq9X6/+6fnJyMr68vMTExVFRU8MILL/D++++zYMEC4uLiOH/+PJ06dWLgwIGsXLnS7Ow4OkGurq4kJycza9asRtegTrs0hdraWiZOnEhERATLly9ny5YtPPLII0yZMoVJkyaZ+305yHzkyBEKCgqYPHkyJ0+eJCkpifXr1wNgtVoJCwtj9uzZ9OjRQ3mYpMkdOnSIOXPm0NDQgLu7OyNHjiQiIgKA06dPExISQocOHcjIyOBHP/qReVznzp2xWq3Ex8fTrl07OnToQE1NDaGhoYDaVRER+cL918NpASwWCydOnOBf//oXs2bNoqSkxAwyOUY+78fOp8i9xPFjOzg4mK5du7Jq1arb9vny5/x+ifnbbDaSkpIIDw/nwIED5uu3LuVwOHPmDCdOnCAmJga4uXzOZrPxq1/9ikmTJmG323nwwQeZOXMm//znP8nJyQGgrq6OJUuWMHr0aM6dO9coyASoMyRNwjAMrFYrLi4uVFVVsW7dOlJSUigqKiI6OprU1FROnToFNF5K17t3b9auXcszzzxDr169WL9+Pb1792bLli1UV1fz8MMPm22Cgkzyv7Lb7dTW1t72mmEYLFq0iOnTpxMUFES/fv3Iy8sjMjLSDNp369aNhIQEdu3aRW5uLnV1deY5pk6dyvHjx4mPj6eyspLBgwcryCQiInf2nWeFEsMwDOPSpUvGpUuXzL+VhFbk3uNIgHrixAljwIABxo4dO4y1a9cahYWFzXxlzefs2bPGmDFjDIvFYowePdqoqqpqtL2iosKoq6sz//7www+N7t27G0VFRcbo0aONMWPGGEVFReb2LycB7969u2GxWIwHH3zQyMrKuq2NVfJkaWqOZyo9Pd144403zM/8pk2bjB//+MeGxWIx+vfvbxw7dqxR0Y+KigojIiLCsFgshr+/v7F8+fJG583JyTH27dv33d6M3DPeeust4+9///ttr1+7ds2YMGGCUVJSYr52+PBhY+jQoYarq6uxbNkyw263GxcuXDCGDh1q9OjRwzh06JBhGDe/xwIDA43o6GjjypUr39m9iIjI3UnTZppJmzZtaNOmjblMTiOWIvcex4wlPz8/fHx8CA4OJiUl5b75vBtfmqVVW1vL3r176dSpE7GxscyZM4fs7Gzy8vIAqKqqIjIykqCgIF544QXKy8sBCAgIwGKxMHLkSKZPn87q1avp06ePec78/Hyqq6upra3l+vXrdOrUifnz5xMZGUmbNm2AmyP5zs7OSp4sTc7xTJWVlbF7927zM19ZWYnVauXhhx+msLCQ0NBQFi5cCNxsFzp27Mjq1auJiYlhxYoVjZbYwc0Zdw899NB3ezNyz3jggQdITk6mvr6eHTt2sHv3bgA2bNjARx99RJcuXbh+/TqGYdC7d28SExPp2rUrWVlZWCwWvL29SU5O5ty5c0RFRTFixAhOnjxJXl4eS5cuxcPDA5vN1sx3KSIiLZkCTc1MlWNE7m0NDQ1kZWVx4MABli5dyqFDh8yE//cq45aEs59++imFhYVERERw+fJlBg0aRFhYGIGBgaSlpVFSUsKKFSsYMGAACQkJbNu2jalTp1JWVgbAT3/6Uy5evEjPnj0bdW7mzJnD3r17adu2LUVFRUyePJkzZ86YCZQd16GlyPJtcTxjzz33HO7u7rz77ruEh4dTUFBATk4Ou3bt4rXXXqO0tJQZM2bwxBNP0LNnT3Jzc7lx4waurq4EBASY59u1axfTpk2jrq6O1q1bN9dtyV3u888/59SpUwwYMIA//OEP5rJNDw8PSktLOXr0KK1btzbb08GDBxMTE0NhYSElJSU4Ozvj7OxMXV0dNTU1TJo0iWHDhtGhQwcMwzCD9yIiIv+JviVERL5FrVq14tFHH+XYsWO4uro29+V8JxwBppycHJYtW8ZPfvITPvnkE8rKyoiLiyMjIwN/f3+mTJnCxIkTSUtLIywsjODgYG7cuIHdbicuLo6nn36amJgYIiIi2LZtGz179iQ4OJiAgAA2bNhAcXExCxYsACAoKIgBAwYAmMmTFcSXb5vjGSstLSU7O5uysjLGjx/PiBEjgJuBqISEBMrLy0lPT+fMmTOkpKTws5/9DLg5w+Tjjz9m3LhxvPvuu3z++eckJSURHBzcbPckd59bE8bv37+fDh06UFRUxP79+81ZoIZhcPXqVRYuXMiSJUtwcXHBbrfj5uZGQEAAPXv2xNnZmfr6evbs2UNKSgq//vWvG72XBkhFROSrUNU5ERFpUidOnCApKQmLxUJiYiKPPfYY1dXVtGrViuTkZGbPnk379u05c+YMM2bM4B//+AebN2/m6aefBqC8vJzRo0dTVVVFdnY2/v7+bN++nQkTJnD27FnzfYKDg1m1ahW+vr7ma8aXKnuJfNscz1tlZSVDhgyhoKCA9u3bA18U9ygpKSEkJISoqCiSkpIaHZednU1+fj42mw1/f3+zbLzI11FaWkqXLl3YunUrly9f5pe//CV9+/Zl48aNZiDKz8+PU6dOkZWVxZgxY8xjS0pKiIuLIysrC09Pz0bJvVX5UERE/lcKNImISJNKTEzkBz/4AXFxcUDj4M/58+fx8vIylwVt3ryZiIgIxo8fT0pKCp6enhiGQW5uLuHh4bz88sskJyfj6elJUVERR44c4fjx4/Tp04ewsLDmukWRRo4dO8bvf/97lixZgoeHR6PqW3a7nbq6OqxWK3DnTrsqdsn/4taA+s6dOxk3bhxdu3Zl5cqVdO/e3azwmZaWxsaNG3nuuecA2LRpk1npePr06UybNo3PPvuMP/3pTwwdOpQJEyb81/cSERH5KhRoEhGRJvPWW28xdepUtm/fjr+//3/sQDs6L1VVVcyePZuMjAw2bdpkLhmqrq5mypQp7Nixg4ULF9KuXTsGDRp02/JDjbRLS3Dt2jUCAwMpLCwEwN3d/bbn0jHDSZ12+SZubfNOnz5NcnIyn332Gfv27ePPf/4zP//5z3Fzc6OwsJCJEydit9vZvXu3GezMzc3lL3/5CwUFBfzwhz/EycmJV199lWeffba5bktERO4xCjSJiMg35ggcRUVFUV5ezvbt27/ysXv37iUiIoJevXqRmZlpLj0qLCzk8ccfByA6Opq0tDQ8PDywWCwaZZcW57HHHuPkyZMMHjyYzMxMvL29m/uS5B62ePFinnzySbM64aVLlxg+fDg1NTVkZmby6KOPYrfbef3114mLi2PevHnMmDGD69evU11dTbt27bhw4QInT55k4MCB5nnVtoqISFNQKR4REfnGLBYLNpuNXbt24eLiQm1t7Vc+NjAwkJiYGPLy8ti6dSsAdXV1ZGZm0q1bN/Ly8liyZAmenp5mB0gdIWlJFi1axIEDB5g8eTJvv/22gkzytVVUVJhV4u40Frx161Z8fX2ZOnUqr7/+utnWenh48Morr3Ds2DHWr19PdXU1Tk5OPPPMMwwfPpyUlBSOHTvGzp07zapxHTt2NINMDQ0NgNpWERFpGprRJCIi35hhGNTU1DBw4EC8vLzYuXPnV6r8VllZiY+PD8ePH2f8+PFUVFQQEBBAUFAQgwYNIigoyNzXbrfj5KTxEWl5iouL8fb2NhPTK+eSfB2HDx9m0aJF9O/fn/Hjx99xn+3bt1NTU8P27dvJzMwkNzeXp556CoCamhpiY2PJz89n7dq15lLkjRs38sorr3D+/HlCQ0NJT083Z46KiIh8GxRoEhGRJlFXV0e/fv345JNP+OCDDwgKCvqvHe5z587x3nvvmZWPBgwYwJ49e4iKimLJkiW4u7sDysMkd4+GhgYsFosCovK1VFZWEhgYyPnz50lLS2PUqFF07tz5jvm99uzZw5gxY+jVqxdZWVm0a9cOgP379zNs2DBCQkKYN28e3//+9wE4e/YsR44cMat7ioiIfJv0S0hERJqEh4cH4eHhAKSkpAD8x0TgAFVVVXzve98DYNu2bXTt2pWDBw/yxhtv4O7ubu6nIJPcLVq1aqUgk3wthmHg4+ND3759cXJyIj4+nnHjxnH27FkzyGQYhtkuBgQEEB0dTV5eHps2bTKXvvXp04ennnqKnJwc5s6dS35+PvX19XTu3NkMMjn2FRER+bbo15CIiDSZ559/Hh8fH9555x3WrFkD0Khz5JjxATeTgHfr1g2A4OBg1q5dyyOPPILdbjdH8EVE7gcWi4Xa2lqsVivr169n+PDh5OfnExoaysqVK819HO2iu7s7YWFhBAUFMX/+fE6dOgWAq6sr/fv3p1u3bly9epW+ffveVq1TyzpFROTbpkCTiIg0GX9/f+Lj4wGYNm0au3fv5saNG2bnqFWrVthsNpYtW0ZFRQX+/v7m6/BFHibNChGR+4lhGFitVlxcXKiqqmLdunWkpKRQVFREdHQ0qampZjDJZrMB4Ofnx/Tp0zl69Ci//e1vyc3NZe7cufTq1YudO3eybNky2rZt24x3JSIi9yvlaBIRkSY3duxYVq9ejZeXF1FRUYwYMYLOnTvzwQcfsG7dOp544gni4uLw8vJq7ksVEWl2hmFgsVhYuHAhbdu2ZezYsTg5ObF582Zefvlljh49Sr9+/cjMzMTPz88Mxl+9epXFixezcuVKLl68yPz583nxxRfN8yoxvYiINAcFmkREpMnV1NSwZ88e5s6dS2FhIR4eHvTo0QM3Nzfmzp1Lv379gC86VyIiAomJiVy6dImlS5cC8Ne//pWlS5dy7do1iouL8fPzIzY2lpdeeqnRcadPn8bHx8csoqC2VUREmpMCTSIi0uS+3MmpqKjA3d2dyspKevXqZW4H1BESEeGLNvPDDz9k/fr1DBs2jBUrVuDp6cncuXPx9PRk+fLlzJw5k/r6egYNGkRlZSWvvfYaI0eONM+jGUwiItISqJSPiIg0uS8HkBzltR25QtQREhFpzNFmlpaWkp2dTVlZGePHj2fEiBHAzUBUQkIC5eXlpKenc+bMGVJTUxsFmUCJvkVEpGXQjCYRERERkWbkmNFUWVnJkCFDKCgooH379gBmFc6SkhJCQkKIiooiKSnptmNFRERaCs1oEhERERFpRo5AUXV1NYGBgbRu3dqc/elI/N2lSxf27duH1WoFblafc3Z2VpBJRERaHNWPFhERERFpAbp27cq+ffsAqKurw2azmducnJywWq3Y7XYMw8DZWePFIiLSMinQJCIiIiLSAri5uWG1WunSpQuRkZFcuXLltn2cnJw0i0lERFo0BZpERERERFqARYsWceDAASZPnszbb7+Nt7d3c1+SiIjI/0zJwEVEREREWoDi4mK8vb3x9fUFVKVTRETuTgo0iYiIiIi0IA0NDVgsFjMRuIiIyN1EgSYREREREREREWkSGiYREREREREREZEmoUCTiIiIiIiIiIg0CQWaRERERERERESkSSjQJCIiIiIiIiIiTUKBJhERERERERERaRIKNImIiIiIiIiISJNQoElERERERERERJqEAk0iIiIiIiIiItIkFGgSEREREREREZEmoUCTiIiIiIiIiIg0CQWaRERERERERESkSfwfJF4iZ0lJV2IAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"plt.rcParams['font.sans-serif'] = ['Times New Roman']\n",
"plt.rcParams['axes.unicode_minus'] = False\n",
"plt.rcParams['font.size'] = 14 # 设置全局字体大小为14\n",
"\n",
"title_list = [\"Similarity\", \"BERTScore\", \"F-1\", \"Rouge\"]\n",
"# 定义颜色\n",
"colors_list = [\n",
" ['#AEEEEE', '#FFB3BA', '#FFDFD3', '#D6EAF8'], # 第一子图的颜色\n",
" ['#D5F5E3', '#FAD7A0', '#A9DFBF', '#D7BDE2'], # 第二子图的颜色\n",
" ['#F5C1C1', '#D2F5A9', '#A9D2F5', '#F6D8C1'], # 第三子图的颜色\n",
" ['#A3E4D7', '#F7DC6F', '#F5B7B1', '#A9F5BC'] # 第四子图的颜色\n",
"]\n",
"\n",
"# 设置图形布局为4 行 1 列\n",
"fig, axs = plt.subplots(4, 1, figsize=(12, 10))\n",
"\n",
"# 遍历每个category_scores字典并绘制柱状图\n",
"for idx, category_scores in enumerate(category_scores_list):\n",
" ax = axs[idx] # 确定子图的位置\n",
" categories = list(category_scores.keys())\n",
" categories_english = [x_labels_abbr[category] for category in categories]\n",
" models = list(next(iter(category_scores.values())).keys())\n",
" values = [list(category_scores[category].values()) for category in categories]\n",
" \n",
" colors = colors_list[idx]\n",
"\n",
" for i, model in enumerate(models):\n",
" ax.bar(np.arange(len(categories)) + i * 0.2, [row[i] for row in values], 0.2, label=model, color=colors[i])\n",
" \n",
" # ax.set_title(title_list[idx], fontsize=18) # 设置标题字体大小\n",
" ax.set_ylabel(title_list[idx], fontsize=16) # 设置y轴标签字体大小\n",
" ax.legend(loc='upper left', bbox_to_anchor=(1, 1), borderaxespad=0., fontsize=12) # 设置图例字体大小\n",
"\n",
" if idx == len(category_scores_list) - 1:\n",
" ax.set_xticks(np.arange(len(categories)) + 0.3)\n",
" ax.set_xticklabels(categories_english, rotation=30, ha='right', fontsize=14) # 设置x轴标签字体大小\n",
" else:\n",
" ax.set_xticks([])\n",
"\n",
"# 调整布局\n",
"plt.tight_layout()\n",
"plt.show()\n",
"plt.savefig('evaluate.png', dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" number | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" LCA theory and related knowledge | \n",
" 790 | \n",
"
\n",
" \n",
" 1 | \n",
" Ecological protection and environmental govern... | \n",
" 754 | \n",
"
\n",
" \n",
" 2 | \n",
" Research and experimental development | \n",
" 321 | \n",
"
\n",
" \n",
" 3 | \n",
" Construction industry | \n",
" 295 | \n",
"
\n",
" \n",
" 4 | \n",
" Non-metallic mineral products industry | \n",
" 183 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name number\n",
"0 LCA theory and related knowledge 790\n",
"1 Ecological protection and environmental govern... 754\n",
"2 Research and experimental development 321\n",
"3 Construction industry 295\n",
"4 Non-metallic mineral products industry 183"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"name = \"rouge\"\n",
"df = pd.read_csv(\"/home/zhangxj/WorkFile/LCA-GPT/LCA_RAG/data/eval/\"+name+\".csv\",encoding=\"utf-8\")\n",
"df.to_excel(\"/home/zhangxj/WorkFile/LCA-GPT/LCA_RAG/data/eval/\"+name+\".xlsx\",index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Qwen",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}