卫生陶瓷生命周期中环境影响的分析和研究

Analysis and Study on Environmental Effect of Sanitary Ceramics in its Life Cycle

曾 1 , 俞海勇 1 , 颜伟国 2 (1. 上海建科检验有限公司,上海 201108; 2. 上海市建筑科学研究院(集团)有限公司,上海 201108)

摘要:生命周期评价已经成为产品生态设计的重要支持工具。以卫生陶瓷为研究对象,利用生命周期评价方法对其原材料生产、原材料运输、产品加工制造等过程引起的环境影响进行定量评价,为进一步改进卫生陶瓷产品的环境行为提供依据。结果表明,卫生陶瓷产品的生命周期环境影响主要类型为不可再生资源消耗、酸化、初级能源消耗、富营养化、全球暖化、固体废弃物。其节能减排的改进,可以在提高能源利用效率、推进窑炉余热利用技术、降低生产过程的原材料损耗、提高工业固废的利用率等方面做进一步研究。

关键词:卫生陶瓷;生命周期;环境影响

中图分类号: TU50 文献标识码: A 文章编号: 1674-814X(2016)04-0072-03

卫生陶瓷是国民经济中原材料工业的重要组成部分,是人们生活中不可缺失的装饰装修材料。然而卫生陶瓷行业是一个高污染、高消耗的行业,从原材料到制品的烧成等各个工序燃料、电力消耗量大,同时大气污染、水污染、固体废弃物排放等问题突出^[1-2]。绿色生产是卫生陶瓷生产的大势所趋,也是卫生陶瓷行业长远发展的重要条件。

解决卫生陶瓷产业的发展与资源、环境的矛盾,要把发展产生的负面影响控制在资源和环境承载能力之内,确保资源和环境能够持续的为人类社会经济的发展所利用。生命周期评价是目前评价产品环境影响,寻找改进方法最理想、最有效的手段。它对原材料开采、生产制造、使用及废弃、运

输等整个生命周期范围的环境排放进行量化评价,在产业发展的同时兼顾环境可持续发展^[3]。因此,对卫生陶瓷生产进行生命周期评价意义重大。

1 卫生陶瓷生命周期分析概况

1.1 目标范围确定

本文根据我国卫生陶瓷产业特点,采用生命周期评价方法对华东地区的 6 家陶瓷洁具企业进行分析评价,功能单位选取 1 kg 卫生陶瓷,系统边界涵盖原材料开采。原材料运输、产品生产等几部分,如图 1 所示.

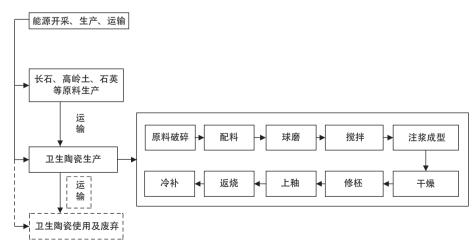


图 1 卫生陶瓷生命周期目标范围

1.2 评价工具

评价工具采用四川大学开发的 eBalance-Professional 软件。调研数据是综合不同厂家有效数据的平均值。用于生命周期评价的数据有两种:与研究对象密切相关的参数,如原材料消耗量以及生产能耗数据、运输参数等来自实地企业调研;另一部分基础数据,如能源的开采等,则采用CLCD 数据库及统计平均数据进行替代[4-8]。

2 生命周期清单分析

2.1 原材料生产清单数据

用于卫生陶瓷生产的原材料种类繁多,包括高岭土、球土、黏土、长石、石英、石灰石以及辅助化工原料等。由于辅助化工原料的用量很少,故在本文评价中不予考虑。其他原材料大致可以分为 3 类:塑性材料、瘠性材料、熔剂材料。同类材料开采特点相似,开采过程环境影响相近,因此,分别选取一种材料作为此大类材料的代表。塑性材料选择高岭土为代表,采用高岭土在开采时的环境影响数据,瘠性材料以石英为代表,熔剂材料选用长石为代表,数据均来源于 CLCD 数据库及统计平均数据。

2.2 原材料运输清单

卫生陶瓷生产用天然矿物资源体积大,运输距离远,因此大部分采用水运方式,具体情况如表 1 所示。在目前的物流运输中,运输工具大部分都采用柴油车,因此本文设定公路运输用燃油为柴油。

2.3 卫生陶瓷生产资源能源消耗清单

各种卫生陶瓷器具成分含量均不相同,为使评价结果更加合理,根据调研企业原料的年消耗量,得出卫生陶瓷资源消耗的平均情况,如表 2 所示。

表 1 原材料运输参数

原材料种类	高岭土	球土	硬质黏土	长石	石英	石灰石
运输方式	水运	水运	水运	水运	陆运	水运
运输距离/km	1 500	1 500	730	1 500	300	620

表 2 生产1kg卫生陶瓷的资源参数

	原材料种类	高岭土	球土	硬质黏土	长石	石英	石灰石
Г	消耗量/kg	0.29	0.42	0.12	0.24	0.25	0.01

卫生陶瓷的生产工艺主要包括配料、球磨、干燥、成型、烧成等步骤。在生产中消耗的能源种类主要是天然气、电力、柴油等,具体消耗明细详见表 3。

表 3 卫生陶瓷生产的能源消耗清单

能源种类	电力	天然气	柴油
单位	kWh/kg	m³/kg	kg/kg
消耗量	0.833	0.412	0.00414

2.4 卫生陶瓷生命周期环境影响评价与分析

利用 eBalance-Professional 软件建立卫生陶瓷生命周期模型,可计算出1 功能单位卫生陶瓷的生命周期环境影响结果。本文根据卫生陶瓷生命周期的特点,选取不可再生资源消耗、酸化、初级能源消耗、化学需氧量、富营养化、全球暖化、可吸入无机物、固体废弃物等 8 类环境影响类型,计算了这 8 种环境影响类型的特征化指标和归一化指标,具体结果见表 4。

表 4 卫生陶瓷生命周期评价结果

环境影响	不可再生资源消耗 /kg Sb eq.	酸化 /kg SO₂ eq.	初级能源消耗 / MJ	化学需氧量 /kg	富营养化 /kg PO₄ ³- eq.	全球暖化 /kg CO₂ eq.	可吸入无机物 /kg PM2.5 eq.	固体废弃物 / kg
特征化指标	3.512×10⁻ ⁶	6.912×10 ⁻³	2.045×101	6.817×10 ⁻⁴	8.665×10 ⁻⁴	1.131	1.813×10 ⁻³	3.526×10 ⁻¹
归一化指标	4.658×10 ⁻¹³	1.898×10 ⁻¹³	2.316×10 ⁻¹³	5.506×10 ⁻¹⁴	2.305×10 ⁻¹³	1.074×10 ⁻¹³	9.634×10 ⁻¹⁴	7.836×10 ⁻¹¹

根据表 4 中的特征化指标和归一化指标结果,可确定卫生陶瓷生命周期的主要环境影响类型,为不可再生资源消耗、酸化、初级能源消耗、富营养化、全球暖化、固体废弃物。

2.5 各个环节对环境影响的贡献值

卫生陶瓷生命周期各个环节对主要环境影响类型的贡献 率结果见表 5 所列。

表 5 各生产工序对产品环境影响贡献值/%

环境影响贡献值	不可再生资源消耗	酸化	初级能源消耗	富营养化	全球暖化	固体废弃物
高岭土生产	34.570	17.091	15.684	46.685	16.787	0.000
长石生产	0.098	0.390	0.081	0.516	0.114	49.008
石英生产	0.049	0.696	0.024	0.696	0.066	4.351
原材料运输	2.712	8.212	1.321	11.758	2.457	0.045
柴油生产	1.975	3.981	0.967	5.357	1.449	0.033
天然气生产	46.470	5.062	31.273	3.001	9.712	3.801
电力生产	14.126	64.567	50.649	31.987	69.415	42.761

从表 5 的贡献分析结果可知,不可再生资源消耗主要来自天然气生产、高岭土生产、电力生产等过程 (95.166%),酸化主要来自电力生产、高岭土生产 (81.658%)等过程,初级能源消耗主要来自电力生产、天然气生产、高岭土生产 (97.606%)等过程,富营养化主要来自高岭土生产、电力生产、原材料运输 (90.430%)等过程,全球暖化主要来自电力生产、高岭土生产 (86.202%)等过程,固体废弃物主要来自长石生产、电力生产 (91.769%)等过程。因此,卫生陶瓷行业节能减排的改进工作,可以在提高能源利用效率、推进窑炉余热利用技术、降低生产过程的原材料损耗、提高工业固废的利用率等方面做进一步研究。

3 结语

- (1) 本文对卫生陶瓷生命周期的环境影响分析研究,将有助于工艺设计者识别与产品相关的环境行为,也将支持卫生陶瓷产品开展更深入的生命周期评价研究。
- (2) 卫生陶瓷产品的生命周期环境影响主要类型为不可再生资源消耗、酸化、初级能源消耗、富营养化、全球暖化、固体废弃物。
- (3) 通过研究卫生陶瓷生产各个环节对生命周期环境影响的贡献率,有利于企业根据材料的特点制定更为科学有效的节能减排方案。根据本文的研究结果,卫生陶瓷节能减排的改进,可以在提高能源利用效率、推进窑炉余热利用技术、降低生产过程的原材料损耗、提高工业固废的利用率等

方面做进一步研究。

参考文献:

- [1] MEZQUITA A, MONFORT E, ZAERA V. Ceramic tiles manufacturing and emission trading scheme: reduction of CO₂ emissions, european benchmarking[J]. Boletin De La Sociedad Espanola De Ceramica Y Vidrio,2009,48 (4): 211-222.
- [2] MONFORT E, MEZQUITA A, GRANEL R, et al. Analysis of energy consumption and carbon dioxide emissions in ceramic tile manufacture [J]. Boletin De La Sociedad Espanola De Ceramica Y Vidrio,2010,49 (4): 303-310.
- [3] KATHRYN H. Product life cycle theory: a quantitative application for casino courses in higher education[J]. Hospitality Management, 2003(22): 177-195.
- [4] 曾杰, 俞海勇, 颜伟国, 等.基于生命周期理论的建筑卫生陶瓷碳足迹研究[J].硅酸盐通报,2014,33(1):54-58+62.
- [5] 王婧, 张旭. 基于生命周期的能源上游清单分析模型改进[J]. 同济大学学报(自然科学版),2009,37(4):520-524.
- [6] 俞海勇, 曾杰, 胡晓珍, 等. 基于LCA的化学建材生产碳排放量研究分析[J],化工新型材料,2015,43(2):218-221.
- [7] 刘夏璐, 王洪涛, 陈建, 等.中国生命周期参考数据库的建立方法与基础模型[J].环境科学学报,2010,30(10):2136-2144.
- [8] 俞海勇,曾杰,赵敏.典型装饰装修材料生命周期能耗和碳排放量[J]. 建筑科学, 2014, 30(4): 21-25.

•••••

作者简介: 曾杰, 现供职于上海建科检验有限公司。作者通讯地址: 上海市申富路568号, 邮编: 201108。

(上接第46页)

[C]// 国际绿色建筑与建筑节能大会,2012.

- [4] 陈曦, 叶凌, 吴剑林. 可再生能源应用在绿色建筑评价中的作用[J]. 制冷与空调, 2013, 13(10):6-10.
- [5] 刘博, 邓旭. 太阳能在绿色建筑中的应用[J]. 建筑技术开发, 2014, 41(3):56-59.
- [6] 岳畏畏, 张会娟. 太阳能光伏发电在绿色建筑中的有效利用[J]. 建筑节能, 2012, 40(1):34-37.
- [7] 中华人民共和国建设部. 绿色建筑评价标准: GB/T 50378-2006

[S]. 中国建筑工业出版社, 2006.

[8] 中国绿色建筑后评估课题组.中国绿色建筑后评估调研报告(2012 篇)[R] 2012

收稿日期: 2016-03-22

作者简介: 王利珍, 博士, 现任职于上海市建筑科学研究院。作者

•••••••••••••••••••••••••••••••••••

通讯地址: 上海市申富路568号, 邮编: 201108。