# glm from zhipuai import ZhipuAI import re import pandas as pd ''' 经过换算,需要135000左右的token ''' # def zhipuQA(prompt): # client = ZhipuAI(api_key="434790cf952335f18b6347e7b6de9777.V50p55zfk8Ye4ojV") # 请填写您自己的APIKey # response = client.chat.completions.create( # model = "glm-4", # messages = [ # {"role":"user","content":prompt} # ], # ) # content = response.choices[0].message.content # print('\n',content) # res = re.sub(r'\s+', '', content) #处理空格 # return res # instruction = "你是生命周期领域富有经验和知识的专家。文件的每一行都是一个问题,根据你所掌握的知识回答问题;不要列出几点来回答,不需要换行,只需要用1句话回答问题。" # question = [] # answers = [] # with open("/home/zhangxj/WorkFile/LCA-GPT/QA/filters/question.txt","r",encoding="utf-8") as file: # for line in file.readlines(): # question.append(line.strip()) # for ques in question: # message = (instruction+ques) # ans = zhipuQA(message) # answers.append(ans) # data = {"ans":answers} # df = pd.DataFrame(data) # df.to_csv("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLM.csv",index=False) df = pd.read_excel("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLMoutput.xlsx") answers = df['content'].values.tolist() with open("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLMpred.txt","w",encoding="utf-8") as file: for ans in answers: line = re.sub(r'\s+', '', ans) file.write(line+"\n")