43 lines
1.4 KiB
Python
43 lines
1.4 KiB
Python
|
||
import os
|
||
import qianfan
|
||
from qianfan.resources.console.data import Data
|
||
import pandas as pd
|
||
import re
|
||
|
||
# 使用安全认证AK/SK鉴权,通过环境变量方式初始化;替换下列示例中参数,安全认证Access Key替换your_iam_ak,Secret Key替换your_iam_sk
|
||
os.environ["QIANFAN_ACCESS_KEY"] = "ALTAK8Mo2gY80BAW8RjEtHX3SS"
|
||
os.environ["QIANFAN_SECRET_KEY"] = "95f6ac794fcb45b7805d5780bec589dc"
|
||
|
||
|
||
chat_comp = qianfan.ChatCompletion()
|
||
|
||
question = []
|
||
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/filters/question.txt","r",encoding="utf-8") as file:
|
||
for line in file.readlines():
|
||
question.append(line.strip())
|
||
|
||
answers = []
|
||
|
||
for ques in question:
|
||
# 指定特定模型
|
||
content = ("你是生命周期领域富有经验和知识的专家。根据你所掌握的知识只用1句话回答问题。不要列出几点来回答,不需要换行"+ques)
|
||
resp = chat_comp.do(model="ERNIE-3.5-8K", messages=[
|
||
{
|
||
"role": "user",
|
||
"content": content
|
||
}])
|
||
|
||
ans = resp["body"]["result"]
|
||
line = re.sub(r'\s+', '', ans)
|
||
print(line)
|
||
answers.append(line)
|
||
|
||
data = {"ans":answers}
|
||
df = pd.DataFrame(data)
|
||
df.to_csv("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/baidu.csv",index=False)
|
||
|
||
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/ERNIEpred.txt","w",encoding="utf-8") as file:
|
||
for ans in answers:
|
||
line = re.sub(r'\s+', '', ans)
|
||
file.write(line+"\n") |