49 lines
1.5 KiB
Python
49 lines
1.5 KiB
Python
# glm
|
||
from zhipuai import ZhipuAI
|
||
import re
|
||
import pandas as pd
|
||
|
||
'''
|
||
经过换算,需要135000左右的token
|
||
'''
|
||
# def zhipuQA(prompt):
|
||
# client = ZhipuAI(api_key="434790cf952335f18b6347e7b6de9777.V50p55zfk8Ye4ojV") # 请填写您自己的APIKey
|
||
# response = client.chat.completions.create(
|
||
# model = "glm-4",
|
||
# messages = [
|
||
# {"role":"user","content":prompt}
|
||
# ],
|
||
# )
|
||
# content = response.choices[0].message.content
|
||
# print('\n',content)
|
||
# res = re.sub(r'\s+', '', content) #处理空格
|
||
# return res
|
||
|
||
# instruction = "你是生命周期领域富有经验和知识的专家。文件的每一行都是一个问题,根据你所掌握的知识回答问题;不要列出几点来回答,不需要换行,只需要用1句话回答问题。"
|
||
|
||
# question = []
|
||
# answers = []
|
||
# with open("/home/zhangxj/WorkFile/LCA-GPT/QA/filters/question.txt","r",encoding="utf-8") as file:
|
||
# for line in file.readlines():
|
||
# question.append(line.strip())
|
||
|
||
# for ques in question:
|
||
# message = (instruction+ques)
|
||
# ans = zhipuQA(message)
|
||
# answers.append(ans)
|
||
|
||
# data = {"ans":answers}
|
||
# df = pd.DataFrame(data)
|
||
# df.to_csv("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLM.csv",index=False)
|
||
|
||
df = pd.read_excel("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLMoutput.xlsx")
|
||
answers = df['content'].values.tolist()
|
||
|
||
with open("/home/zhangxj/WorkFile/LCA-GPT/QA/eval/GLMpred.txt","w",encoding="utf-8") as file:
|
||
for ans in answers:
|
||
line = re.sub(r'\s+', '', ans)
|
||
file.write(line+"\n")
|
||
|
||
|
||
|