11 KiB
11 KiB
In [5]:
# 创建批处理xlsx文件 import pandas as pd customid = 1 method = "POST" url = "/v4/chat/completions" model = "glm-4" role = "system" instruction = "你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要换行,只需要用1句话回答问题。" temperature = 0.95 top_p = 0.7 max_tokens = 4096 df = pd.DataFrame(columns=["custom_id","method","url","model","role","content","role1","content1","temperature","top_p","max_tokens"])
In [4]:
question = [] with open("/home/zhangxj/WorkFile/LCA-GPT/QA/filters/question.txt","r",encoding="utf-8") as file: for line in file.readlines(): question.append(line.strip())
In [12]:
data = [] for ques in question: row = { "custom_id": f"request-{customid}", "method":method, "url":url, "model":model, "role":role, "content":instruction, "role1":"user", "content1":ques, "temperature":temperature, "top_p":top_p, "max_tokens":max_tokens } data.append(row) customid+=1
In [13]:
len(data)
Out[13]:
3933
In [14]:
df = pd.DataFrame(data)
In [15]:
df.head() # "custom_id","method","url","model","role","content","role1","content1","temperature","top_p","max_tokens"])
Out[15]:
custom_id | method | url | model | role | content | role1 | content1 | temperature | top_p | max_tokens | |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | request-1 | POST | /v4/chat/completions | glm-4 | system | 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... | user | 什么是生命周期分析(LCA)的主要目标? | 0.95 | 0.7 | 4096 |
1 | request-2 | POST | /v4/chat/completions | glm-4 | system | 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... | user | 在LCA中,如何确定研究的范围? | 0.95 | 0.7 | 4096 |
2 | request-3 | POST | /v4/chat/completions | glm-4 | system | 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... | user | 医疗废物如何处理? | 0.95 | 0.7 | 4096 |
3 | request-4 | POST | /v4/chat/completions | glm-4 | system | 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... | user | LCA数据清单收集阶段需要哪些信息? | 0.95 | 0.7 | 4096 |
4 | request-5 | POST | /v4/chat/completions | glm-4 | system | 你是生命周期领域富有经验和知识的专家。根据你所掌握的知识回答问题;不要列出几点来回答,不需要... | user | 生命周期影响评价阶段的目标是什么? | 0.95 | 0.7 | 4096 |
In [16]:
df.to_excel("/home/zhangxj/WorkFile/LCA-GPT/QA/questionForBatch.xlsx",index=False)
In [20]:
from zhipuai import ZhipuAI client = ZhipuAI(api_key="434790cf952335f18b6347e7b6de9777.V50p55zfk8Ye4ojV") # 填写您自己的APIKey create = client.batches.create( input_file_id="1723556210_f79e4160ab3840b4b02f44c821d27752", endpoint="/v4/chat/completions", completion_window="24h", #完成时间只支持 24 小时 metadata={ "description": "回答问题" } ) print(create)
Batch(id='batch_1823353255129645056', completion_window='24h', created_at=1723556266945, endpoint='/v4/chat/completions', input_file_id='1723556210_f79e4160ab3840b4b02f44c821d27752', object='batch', status='validating', cancelled_at=None, cancelling_at=None, completed_at=None, error_file_id=None, errors=None, expired_at=None, expires_at=None, failed_at=None, finalizing_at=None, in_progress_at=None, metadata={'description': '回答问题'}, output_file_id=None, request_counts=BatchRequestCounts(completed=None, failed=None, total=3933))
In [21]:
batch_job = client.batches.retrieve("batch_id") print(batch_job)
Batch(id=None, completion_window=None, created_at=None, endpoint=None, input_file_id=None, object=None, status=None, cancelled_at=None, cancelling_at=None, completed_at=None, error_file_id=None, errors=None, expired_at=None, expires_at=None, failed_at=None, finalizing_at=None, in_progress_at=None, metadata=None, output_file_id=None, request_counts=None)
In [ ]: