54 lines
1.9 KiB
Python
54 lines
1.9 KiB
Python
import os
|
||
import re
|
||
import gradio as gr
|
||
from PIL import Image
|
||
from pprint import pprint
|
||
from qwen_agent.agents import Assistant
|
||
import sys
|
||
os.chdir(sys.path[0])
|
||
|
||
os.environ['TMPDIR'] = "/home/zhangxj/WorkFile/LCA-GPT/LCARAG/DataAnalysis/tmp"
|
||
|
||
llm_cfg = {
|
||
'model': 'qwen1.5-72b-chat',
|
||
'model_server': 'dashscope',
|
||
'api_key': "sk-c5f441f863f44094b0ddb96c831b5002",
|
||
}
|
||
|
||
system_instruction = '''你是一位专注在生命周期领域做数据分析的助手,在数据分析之后,
|
||
如果有可视化要求,请使用 `plt.show()` 显示图像,并将图像进行保存。
|
||
最后,请对数据分析结果结合生命周期评价领域知识进行解释。'''
|
||
|
||
tools = ['code_interpreter'] # `code_interpreter` is a built-in tool for executing code.
|
||
messages = [] # This stores the chat history.
|
||
|
||
files = ["/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/tmp/2021北京.csv","/home/zhangxj/WorkFile/LCA-GPT/DataAnalysis/报告案例1.md"]
|
||
|
||
user_input = '''首先分析上传的2021北京.csv的碳排放数据,并处理分析数据和可视化分析,
|
||
请按照报告案例1作为模板,用你掌握的信息进行填充,并且将可视化得到的图像结果插入到报告中并加以分析,以markdown格式输出填充数据信息之后的报告。'''
|
||
messages.append({'role': 'user', 'content': user_input})
|
||
bot = Assistant(llm=llm_cfg,
|
||
system_message=system_instruction,
|
||
function_list=tools,
|
||
files=files)
|
||
# Get response from bot
|
||
response = []
|
||
for response in bot.run(messages=messages):
|
||
continue
|
||
|
||
pprint(response)
|
||
messages.extend(response)
|
||
# Convert bot response to string
|
||
res_str = ""
|
||
|
||
for res in response:
|
||
res_str += res['content']
|
||
try:
|
||
with open("./result.md", "w", encoding="utf-8") as f:
|
||
f.write(res_str)
|
||
except IOError as e:
|
||
print(f"An error occurred: {e}")
|
||
|
||
print(res_str)
|
||
|