LCA_LLM_application/Retrieval_new/utils.py

87 lines
2.4 KiB
Python
Raw Normal View History

2025-03-19 21:02:49 +08:00
import nltk
from nltk.tokenize import word_tokenize
from nltk import pos_tag
import jieba.posseg as pseg
# 下载相关数据
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
from nltk.stem import WordNetLemmatizer
import string
import re
def preprocess_eng(text):
'''
英文文本预处理小写化去除标点待定去除特殊符号只保留单词
拼写是否正确因为是从ecoinvent导入的没有拼写错误
词干提取(stemming)和词形还原(lemmatization)可以处理一下有的提取不准确不做此操作
'''
# 去除标点
text = text.translate(str.maketrans('', '', string.punctuation))
# 去除数字
text = re.sub(r'\d+', ' ', text)
# 去除多余字符
text = re.sub(r'[^A-Za-z0-9\s]', '', text)
# 去除多余空格
text = re.sub(r'\s+', ' ', text)
return text
def preprocess_zh(text):
'''
中文文本预处理:只保留中文内容去除英文数字和标点
'''
text = str(text)
# 去除英文
text = re.sub(r'[a-zA-Z]',' ',text)
text = re.sub(r'\d', ' ', text)
# 去除中文标点符号
text = re.sub(r'[,。!?、;:“”()《》【】-]', ' ', text)
# 去除英文标点符号
text = re.sub(r'[.,!?;:"\'\(\)\[\]{}]', ' ', text)
# 去除空格
text = re.sub(r'\s+','',text)
return text
# 英文名词处理
def get_noun_en(text):
# 分词
words = word_tokenize(text)
# 词性标注
tagged = pos_tag(words)
# 提取名词
nouns = [word for word, tag in tagged if tag.startswith('NN')]
noun = ' '.join(nouns)
return noun
# 中文名词提取
def get_noun_zh(text):
x = str(text)
if x=='nan':
return ''
words = pseg.cut(text)
nouns = [word for word, flag in words if flag.startswith('n')]
noun = ' '.join(nouns)
return noun
def has_no_chinese(text):
"""
判断一个文本是否不包含中文字符
参数:
text (str): 需要检查的文本
返回:
bool: 如果文本中没有中文字符返回True否则返回False
"""
for char in text:
if '\u4e00' <= char <= '\u9fff' or \
'\u3400' <= char <= '\u4dbf' or \
'\u2f00' <= char <= '\u2fdf' or \
'\u3100' <= char <= '\u312f' or \
'\u31a0' <= char <= '\u31bf':
return False
return True