528 lines
21 KiB
Plaintext
528 lines
21 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "6f914d38-ee6e-4418-bfdd-44fbb7d4e0cf",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# 数据集构建\n",
|
||
|
"### 写一个筛选空值的代码,用于构建数据集"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"id": "7f26956d-c06a-4c61-a029-2095b0372799",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import numpy as np"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"id": "7fb503fb-b22d-4839-804c-c6326ce2a5be",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import os"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "27f9906b-e831-4995-87ba-6178746b8b77",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"npy_list = os.listdir('./np_data/')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"id": "801bb7b5-ebbc-47e0-8749-0d6b76d89a68",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"361"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"len(npy_list)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"id": "35fc93fd-93d3-48c1-8b36-d932a39d7662",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"5"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 5,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"len(os.listdir('./out_mat/96/'))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 6,
|
||
|
"id": "d3c87665-b690-4ec6-82bb-8313db9b55d3",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def sliding_window(matrix, window_size):\n",
|
||
|
" rows = len(matrix) - window_size + 1\n",
|
||
|
" cols = len(matrix[0]) - window_size + 1\n",
|
||
|
" \n",
|
||
|
" for i in range(rows):\n",
|
||
|
" for j in range(cols):\n",
|
||
|
" sub_matrix = matrix[i : i+window_size, j : j+window_size, :-3]\n",
|
||
|
" yield sub_matrix"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"id": "696e49df-5e49-40d0-8e44-63ac066febef",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"window_size = 96"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 8,
|
||
|
"id": "204d8ee2-7668-4f47-9980-cfbd36ff3bd5",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"data = np.load(f\"./np_data/{npy_list[0]}\")"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"id": "275f62b5-8084-4370-a0ef-a27bcc293c12",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"(110, 190, 11)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 9,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"data.shape"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 10,
|
||
|
"id": "4192b9d4-b66e-4fb5-97ea-380284079ca2",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array([ nan, 2.90520200e+02, 9.77973000e+01, 2.80806000e+02,\n",
|
||
|
" 4.36411383e+05, -1.35540000e+00, 2.04530000e+00, nan,\n",
|
||
|
" 6.93860000e+00, 0.00000000e+00, 0.00000000e+00])"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 10,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"data[0][0]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 11,
|
||
|
"id": "2fe94edd-425c-43d9-8d27-3d8b7f0120e6",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"num_samples = len(npy_list)\n",
|
||
|
"valid_list = np.random.choice(npy_list, size=int(num_samples * 0.2), replace=False)\n",
|
||
|
"train_list = [x for x in npy_list if x not in valid_list]\n",
|
||
|
"test_list = np.random.choice(valid_list, size=int(num_samples * 0.1), replace=False)\n",
|
||
|
"val_list = [x for x in valid_list if x not in test_list]\n",
|
||
|
"for file in npy_list:\n",
|
||
|
" data = np.load(f\"./np_data/{file}\")\n",
|
||
|
" file_id = file.split('.')[0]\n",
|
||
|
" for ind, mat in enumerate(sliding_window(data, window_size)):\n",
|
||
|
" if (np.isnan(mat) * 1).sum() != 0:\n",
|
||
|
" continue\n",
|
||
|
" else:\n",
|
||
|
" if file in train_list:\n",
|
||
|
" np.save(f'./out_mat/{window_size}/train/{file_id}-{ind}.npy', mat)\n",
|
||
|
" elif file in val_list:\n",
|
||
|
" np.save(f'./out_mat/{window_size}/test/{file_id}-{ind}.npy', mat)\n",
|
||
|
" else:\n",
|
||
|
" np.save(f'./out_mat/{window_size}/valid/{file_id}-{ind}.npy', mat)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 12,
|
||
|
"id": "1ddcf0c4-2c46-4b91-85f1-4181b879f723",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import matplotlib.pyplot as plt"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"id": "36798a50-0890-43dd-9feb-d10dc774472b",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"筛选mask"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 13,
|
||
|
"id": "f419d8e3-8d01-4efe-81e5-60e18b40a1d7",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import cv2"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 14,
|
||
|
"id": "176eb78d-0137-4f6b-8555-e83e891fd9b8",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"mask_list = {}\n",
|
||
|
"for file in npy_list:\n",
|
||
|
" data = np.load(f\"./np_data/{file}\")\n",
|
||
|
" file_id = file.split('.')[0]\n",
|
||
|
" count = 0\n",
|
||
|
" for ind, mat in enumerate(sliding_window(data, window_size)):\n",
|
||
|
" cur_no2 = np.isnan(mat[:,:,0])\n",
|
||
|
" na_sums = (cur_no2 * 1).sum()\n",
|
||
|
" miss_rate = round(na_sums / (window_size**2), 2) * 100\n",
|
||
|
" if (miss_rate % 10 == 0) and miss_rate > 0:\n",
|
||
|
" fold_path = str(int(miss_rate))\n",
|
||
|
" if not os.path.exists(f\"./out_mat/96/mask/{fold_path}\"):\n",
|
||
|
" os.mkdir(f\"./out_mat/96/mask/{fold_path}\")\n",
|
||
|
" if fold_path not in mask_list:\n",
|
||
|
" mask_list[fold_path] = 1\n",
|
||
|
" else:\n",
|
||
|
" mask_list[fold_path] += 1\n",
|
||
|
" msk = 1 - (cur_no2 * 1)\n",
|
||
|
" # cv2.imwrite(f'./out_mat/96/mask/{fold_path}/{file_id}-{ind}.jpg', msk)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 15,
|
||
|
"id": "2b21b80f-d0f6-4c75-ab0c-be692b5e0cdd",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"1"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 15,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"dd = cur_no2 * 1\n",
|
||
|
"dd.max()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 16,
|
||
|
"id": "de6093f7-1296-438a-a2e5-6770350760f1",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"0"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 16,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"dd.min()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 17,
|
||
|
"id": "8c610f19-ec49-4592-8647-bc957e716546",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"1"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 17,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"(1 - dd).max()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 19,
|
||
|
"id": "d220cc78-985c-4a45-be53-11039cc8d279",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"<matplotlib.image.AxesImage at 0x7fa6680b2370>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 19,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAGgCAYAAADsNrNZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAbpUlEQVR4nO3df2xV9f3H8VdL6W0Vegtl3IK0WA1ZcWiG/CwYl0kT50gEITqSujE1M2grIMmw6IB1DNvNZSIb00EcsAxESQQcZhhSpwtS+VEmypiFTRIa5ZaZrfei0MJ6P98/vvneLxcK5ba3fZ977/ORfBLuOefe++mnl77y+bzPPSfDOecEAEAfy7TuAAAgPRFAAAATBBAAwAQBBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABO9FkBr1qzRjTfeqJycHE2aNEn79+/vrbcCACShjN64Ftyrr76q733ve3rppZc0adIkrVq1Slu3blVTU5OGDh161edGIhF99tlnGjhwoDIyMhLdNQBAL3PO6cyZMxo+fLgyM68yz3G9YOLEia6ysjL6uKOjww0fPtzV1tZ2+dzm5mYniUaj0WhJ3pqbm6/69z5LCXb+/Hk1NjZqyZIl0W2ZmZkqLy9XQ0PDZce3t7ervb09+tgl0cW5q6urrbsAAJ7T3t6u559/XgMHDrzqcQkPoM8//1wdHR0KBAIx2wOBgD7++OPLjq+trVVNTU2iu9EncnJyrLsAAJ7VVRnF/Cy4JUuWKBQKRVtzc7N1lwAAfSDhM6AhQ4aoX79+amlpidne0tKiwsLCy473+Xzy+XyJ7gYAwOMSPgPKzs7WuHHjVF9fH90WiURUX1+vsrKyRL8dACBJJXwGJEmLFi3S3LlzNX78eE2cOFGrVq3Sl19+qYceeqg33g4AkIR6JYC+853v6F//+peWLVumYDCor3/969q1a9dlJyYAANJXrwSQJFVVVamqqqq3Xh4AkOTMz4IDAKQnAggAYKLXluDSwY9//OOrPgYAXBkzIACACQIIAGCCJTgACdPVMjTL1LgYMyAAgAkCCABgggACAJhIuRqQ5Ro0p2Uj1fGZRiIxAwIAmCCAAAAmCCAAgImkrAH1ZB2a7ykAgDcwAwIAmCCAAAAmCCAAgImkqAF1VZdZvnz5Nb9WTU1ND3uTenpa96Julj56+l03q88Kn1FvYgYEADBBAAEATBBAAAATSVED6srFdR3WeuPHmCVeMn/fzMt96y4v/z5683uNXscMCABgggACAJgggAAAJlKiBuRVXro/kFfXir3ar3gl+vswfXnfqnSUKmPg5drWtWAGBAAwQQABAEwQQAAAE0lRA/JSLaUnkn29tjck85hQp0kejKc3MQMCAJgggAAAJpJiCe5STKfjl6zLRV5aouNzh96QKiWG7mAGBAAwQQABAEwQQAAAE0lZAwL+z9XWy7nVOJKRly7Z1dt9YQYEADBBAAEATBBAAAATGc45Z92Ji4XDYfn9futuAOgFiawpePW1kklv3Q68ra1NdXV1CoVCysvLu+JxzIAAACYIIACACQIIAGCC7wEBSHvpfD227krEmDEDAgCYIIAAACYIIACACc9+D6i6ulo5OTmSWI8FUkWyfncnXf4GJfrn5HtAAABPIoAAACYIIACACc/WgACgr6RLjaevcC04AICnEUAAABMEEADABNeCA5B2qPkkHteCAwAkDQIIAGCCJTgAKY8lt8RLxJgyAwIAmCCAAAAmCCAAgAkuxQMg7VATil93xoxL8QAAPIkAAgCYiCuAamtrNWHCBA0cOFBDhw7VzJkz1dTUFHNMW1ubKisrVVBQoAEDBmj27NlqaWlJaKcBAMkvrhrQt771Lc2ZM0cTJkzQf//7Xz399NM6cuSIjh49quuvv16S9Nhjj+nNN9/Uhg0b5Pf7VVVVpczMTL333nvX9B7UgABY60mNqLfrS735+n19S+64voi6a9eumMcbNmzQ0KFD1djYqDvvvFOhUEgvv/yyNm/erLvuukuStH79eo0ePVrvv/++Jk+e3I0fAQCQinpUAwqFQpKkwYMHS5IaGxt14cIFlZeXR48pLS1VcXGxGhoaOn2N9vZ2hcPhmAYASH3dDqBIJKKFCxdq6tSpGjNmjCQpGAwqOztb+fn5MccGAgEFg8FOX6e2tlZ+vz/aioqKutslAEAycd00b948N3LkSNfc3BzdtmnTJpednX3ZsRMmTHCLFy/u9HXa2tpcKBSKtubmZieJRqPRaEneQqHQVXOkWxcjraqq0s6dO/WXv/xFI0aMiG4vLCzU+fPn1draGjMLamlpUWFhYaev5fP55PP5utMNAEASi2sJzjmnqqoqbdu2TW+//bZKSkpi9o8bN079+/dXfX19dFtTU5NOnjypsrKyxPQYAJAS4poBVVZWavPmzdqxY4cGDhwYrev4/X7l5ubK7/frkUce0aJFizR48GDl5eXpiSeeUFlZGWfAAQBixVP30RXW+davXx895ty5c+7xxx93gwYNctddd52777773KlTp675PUKhkPm6JY1Go9F63rqqAXExUgBAr+BipAAATyKAAAAmunUaNgAAF7v4OnJtbW2qq6vr8jnMgAAAJgggAIAJzoIDAPQKzoIDAHgSAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATBBAAAATBBAAwAQBBAAwQQABAExwOwYgzVx82fzOHgN9hRkQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATGQ455x1Jy4WDofl9/utuwEA6KFQKKS8vLwr7mcGBAAwQQABAEwQQAAAEwQQAMAEAQQAMEEAAQBMEEAAABMEEADABAEEADBBAAEATHBLbqAP9PS219w2G6mIGRAAwAQBBAAwQQABAExQAwISoKsazfLly2Me19TU9GJvgOTADAgAYIIAAgCYIIAAACa4JTfQC7qqCfG9HqQDbskNAPAkAggAYIIAAgCYoAaEtHFp3YU6DNC7qAEBADyJAAIAmCCAAAAmqAEhZSW6xkPNCIgPNSAAgCcRQAAAEwQQAMAEAQQAMEEAAQBMEEAAABOchg0YsDylm9PJ0Vc4DRsA4EkEEADABAEEADBBDQhpi1pI32PM+5bVeLe1tamuro4aEADAmwggAICJHgVQXV2dMjIytHDhwui2trY2VVZWqqCgQAMGDNDs2bPV0tLS034CAFJMVnefeODAAf32t7/VbbfdFrP9ySef1JtvvqmtW7fK7/erqqpKs2bN0nvvvdfjzgLJUkPoqp/J8nMkmtXPna7j7XXdmgF98cUXqqio0Lp16zRo0KDo9lAopJdfflm//OUvddddd2ncuHFav3699u7dq/fffz9hnQYAJL9uBVBlZaWmT5+u8vLymO2NjY26cOFCzPbS0lIVFxeroaGh09dqb29XOByOaQCA1Bf3EtyWLVt06NAhHThw4LJ9wWBQ2dnZys/Pj9keCAQUDAY7fb3a2lrV1NTE2w0AQJKLK4Cam5u1YMEC7d69Wzk5OQnpwJIlS7Ro0aLo43A4rKKiooS8NryPtXl4QbyfQz63iRHXElxjY6NOnz6t22+/XVlZWcrKytK7776r1atXKysrS4FAQOfPn1dra2vM81paWlRYWNjpa/p8PuXl5cU0AEDqi2sGNG3aNH300Ucx2x566CGVlpbqqaeeUlFRkfr376/6+nrNnj1bktTU1KSTJ0+qrKwscb0GACS9uAJo4MCBGjNmTMy266+/XgUFBdHtjzzyiBYtWqTBgwcrLy9PTzzxhMrKyjR58uTE9RoAkPS6/T2gK3n++eeVmZmp2bNnq729XXfffbd+85vfJPptgB5L5Dr+pa9FjcBbEv37uNrreel37/Xvo/U4gN55552Yxzk5OVqzZo3WrFnT05cGAKQwrgUHADBBAAEATHA/IKCbrNfP4R2p+lno7s/F/YAAAJ5GAAEATBBAAAATCf8eEJCqUnWdH/Hjs5AYzIAAACYIIACACZbgkHDxLE9YXgafy+fgSvgs9A1mQAAAEwQQAMAEAQQAMEENCHHrzTpMX2KdH4jV1/8nmAEBAEw
|
||
|
"text/plain": [
|
||
|
"<Figure size 640x480 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"d = plt.imread(\"./out_mat/96/mask/70/20200110-1145.jpg\")\n",
|
||
|
"plt.imshow(d, cmap='gray')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 20,
|
||
|
"id": "c0064319-6185-4f80-9140-2f70233bd549",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"array([[ 7, 3],\n",
|
||
|
" [ 7, 4],\n",
|
||
|
" [ 7, 5],\n",
|
||
|
" [33, 47],\n",
|
||
|
" [56, 48],\n",
|
||
|
" [56, 49],\n",
|
||
|
" [64, 15],\n",
|
||
|
" [71, 3],\n",
|
||
|
" [71, 4]])"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 20,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"np.argwhere(d==2)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 21,
|
||
|
"id": "80881971-c661-47c5-8e08-9136528f6e22",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"2"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 21,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"d.max()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 22,
|
||
|
"id": "e110e873-7ac4-48af-8608-be18cebabbbb",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"{'10': 7033,\n",
|
||
|
" '20': 4791,\n",
|
||
|
" '40': 3699,\n",
|
||
|
" '30': 3849,\n",
|
||
|
" '50': 4245,\n",
|
||
|
" '90': 2494,\n",
|
||
|
" '80': 2549,\n",
|
||
|
" '60': 3831,\n",
|
||
|
" '70': 3144,\n",
|
||
|
" '100': 17936}"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 22,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"mask_list"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 25,
|
||
|
"id": "d1338b0d-134b-4694-bdca-a7016c4f207f",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"{'10': 7033,\n",
|
||
|
" '20': 4791,\n",
|
||
|
" '40': 3699,\n",
|
||
|
" '30': 3849,\n",
|
||
|
" '50': 4245,\n",
|
||
|
" '90': 2494,\n",
|
||
|
" '80': 2549,\n",
|
||
|
" '60': 3831,\n",
|
||
|
" '70': 3144,\n",
|
||
|
" '100': 17936}"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 25,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"mask_list"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "dae31feb-ce59-43ca-b736-585618437081",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"mask_list"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "3de4d61f-0e3c-4303-8668-8b9fa3b51862",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"plt.imshow('2', mat[:,:,0])"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 27,
|
||
|
"id": "7897f563-8c5f-4db8-9b36-b6af8b03100d",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"4679"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": 27,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"(np.isnan(mat[:,:,0]) * 1).sum()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"id": "116c5a81-5396-4b27-89e0-30afaf2828d4",
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": []
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.8.16"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|