{ "cells": [ { "cell_type": "code", "execution_count": 25, "id": "6603a8fc-d9da-4037-b845-d9c38bae4ce4", "metadata": {}, "outputs": [], "source": [ "import os\n", "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "import torch.optim as optim\n", "from torch.utils.data import DataLoader, Dataset, random_split\n", "from PIL import Image\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import cv2\n", "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 2, "id": "c28cc123-71be-47ff-b78f-3a4d5592df39", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Maximum pixel value in the dataset: 107.49169921875\n" ] } ], "source": [ "\n", "max_pixel_value = 107.49169921875\n", "\n", "print(f\"Maximum pixel value in the dataset: {max_pixel_value}\")" ] }, { "cell_type": "code", "execution_count": 3, "id": "dbfe80ce-4394-449c-a9a4-22ed15b2b8f2", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "checkpoint before Generator is OK\n" ] } ], "source": [ "class NO2Dataset(Dataset):\n", " \n", " def __init__(self, image_dir, mask_dir):\n", " \n", " self.image_dir = image_dir\n", " self.mask_dir = mask_dir\n", " self.image_filenames = [f for f in os.listdir(image_dir) if f.endswith('.npy')] # 仅加载 .npy 文件\n", " self.mask_filenames = [f for f in os.listdir(mask_dir) if f.endswith('.jpg')] # 仅加载 .jpg 文件\n", " \n", " def __len__(self):\n", " \n", " return len(self.image_filenames)\n", " \n", " def __getitem__(self, idx):\n", " \n", " image_path = os.path.join(self.image_dir, self.image_filenames[idx])\n", " mask_idx = np.random.choice(self.mask_filenames)\n", " mask_path = os.path.join(self.mask_dir, mask_idx)\n", "\n", " # 加载图像数据 (.npy 文件)\n", " image = np.load(image_path).astype(np.float32)[:,:,:1] / max_pixel_value # 形状为 (96, 96, 1)\n", "\n", " # 加载掩码数据 (.jpg 文件)\n", " mask = np.array(Image.open(mask_path).convert('L')).astype(np.float32)\n", "\n", " # 将掩码数据中非0值设为1,0值保持不变\n", " mask = np.where(mask != 0, 1.0, 0.0)\n", "\n", " # 保持掩码数据形状为 (96, 96, 1)\n", " mask = mask[:, :, np.newaxis] # 将形状调整为 (96, 96, 1)\n", "\n", " # 应用掩码\n", " masked_image = image.copy()\n", " masked_image[:, :, 0] = image[:, :, 0] * mask.squeeze() # 遮盖NO2数据\n", "\n", " # cGAN的输入和目标\n", " X = masked_image[:, :, :1] # 形状为 (96, 96, 8)\n", " y = image[:, :, 0:1] # 目标输出为NO2数据,形状为 (96, 96, 1)\n", "\n", " # 转换形状为 (channels, height, width)\n", " X = np.transpose(X, (2, 0, 1)) # 转换为 (1, 96, 96)\n", " y = np.transpose(y, (2, 0, 1)) # 转换为 (1, 96, 96)\n", " mask = np.transpose(mask, (2, 0, 1)) # 转换为 (1, 96, 96)\n", "\n", " return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.float32), torch.tensor(mask, dtype=torch.float32)\n", "\n", "# 实例化数据集和数据加载器\n", "image_dir = './out_mat/96/train/'\n", "mask_dir = './out_mat/96/mask/40/'\n", "\n", "print(f\"checkpoint before Generator is OK\")" ] }, { "cell_type": "code", "execution_count": 4, "id": "41da7319-9795-441d-bde8-8cf390365099", "metadata": {}, "outputs": [], "source": [ "dataset = NO2Dataset(image_dir, mask_dir)\n", "dataloader = DataLoader(dataset, batch_size=64, shuffle=True, num_workers=8)\n", "val_set = NO2Dataset('./out_mat/96/valid/', mask_dir)\n", "val_loader = DataLoader(val_set, batch_size=64, shuffle=False, num_workers=4)\n", "test_set = NO2Dataset('./out_mat/96/test/', mask_dir)\n", "test_loader = DataLoader(test_set, batch_size=64, shuffle=False, num_workers=4)" ] }, { "cell_type": "code", "execution_count": 5, "id": "70797703-1619-4be7-b965-5506b3d1e775", "metadata": {}, "outputs": [], "source": [ "# 可视化特定特征的函数\n", "def visualize_feature(input_feature,masked_feature, output_feature, title):\n", " plt.figure(figsize=(12, 6))\n", " plt.subplot(1, 3, 1)\n", " plt.imshow(input_feature[0].cpu().numpy(), cmap='RdYlGn_r')\n", " plt.title(title + \" Input\")\n", " plt.subplot(1, 3, 2)\n", " plt.imshow(masked_feature[0].cpu().numpy(), cmap='RdYlGn_r')\n", " plt.title(title + \" Masked\")\n", " plt.subplot(1, 3, 3)\n", " plt.imshow(output_feature[0].detach().cpu().numpy(), cmap='RdYlGn_r')\n", " plt.title(title + \" Recovery\")\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 6, "id": "645114e8-65a4-4867-b3fe-23395288e855", "metadata": {}, "outputs": [], "source": [ "class Conv(nn.Sequential):\n", " def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False):\n", " super(Conv, self).__init__(\n", " nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,\n", " dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)\n", " )" ] }, { "cell_type": "code", "execution_count": 7, "id": "2af52d0e-b785-4a84-838c-6fcfe2568722", "metadata": {}, "outputs": [], "source": [ "class ConvBNReLU(nn.Sequential):\n", " def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d,\n", " bias=False):\n", " super(ConvBNReLU, self).__init__(\n", " nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,\n", " dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),\n", " norm_layer(out_channels),\n", " nn.ReLU()\n", " )" ] }, { "cell_type": "code", "execution_count": 8, "id": "31ecf247-e98b-4977-a145-782914a042bd", "metadata": {}, "outputs": [], "source": [ "class SeparableBNReLU(nn.Sequential):\n", " def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d):\n", " super(SeparableBNReLU, self).__init__(\n", " nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, dilation=dilation,\n", " padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False),\n", " # 分离卷积,仅调整空间信息\n", " norm_layer(in_channels), # 对输入通道进行归一化\n", " nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), # 这里进行升维操作\n", " nn.ReLU6()\n", " )" ] }, { "cell_type": "code", "execution_count": 9, "id": "7827bee2-74f7-4e47-b8c6-e41d5670e8b9", "metadata": {}, "outputs": [], "source": [ "class ResidualBlock(nn.Module):\n", " def __init__(self, in_channels, out_channels, stride=1, downsample=None):\n", " super(ResidualBlock, self).__init__()\n", " self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)\n", " self.bn1 = nn.BatchNorm2d(out_channels)\n", " self.relu = nn.ReLU(inplace=True)\n", " self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)\n", " self.bn2 = nn.BatchNorm2d(out_channels)\n", "\n", " # 如果输入和输出通道不一致,进行降采样操作\n", " self.downsample = downsample\n", " if in_channels != out_channels or stride != 1:\n", " self.downsample = nn.Sequential(\n", " nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),\n", " nn.BatchNorm2d(out_channels)\n", " )\n", "\n", " def forward(self, x):\n", " identity = x\n", " if self.downsample is not None:\n", " identity = self.downsample(x)\n", "\n", " out = self.conv1(x)\n", " out = self.bn1(out)\n", " out = self.relu(out)\n", "\n", " out = self.conv2(out)\n", " out = self.bn2(out)\n", "\n", " out += identity\n", " out = self.relu(out)\n", " return out\n" ] }, { "cell_type": "code", "execution_count": 10, "id": "7853bf62-02f5-4917-b950-6fdfe467df4a", "metadata": {}, "outputs": [], "source": [ "class Mlp(nn.Module):\n", " def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.):\n", " super().__init__()\n", " out_features = out_features or in_features\n", " hidden_features = hidden_features or in_features\n", " self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True)\n", "\n", " self.act = act_layer()\n", " self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True)\n", " self.drop = nn.Dropout(drop, inplace=True)\n", "\n", " def forward(self, x):\n", " x = self.fc1(x)\n", " x = self.act(x)\n", " x = self.drop(x)\n", " x = self.fc2(x)\n", " x = self.drop(x)\n", " return x" ] }, { "cell_type": "code", "execution_count": 11, "id": "e2375881-a11b-47a7-8f56-2eadb25010b0", "metadata": {}, "outputs": [], "source": [ "class MultiHeadAttentionBlock(nn.Module):\n", " def __init__(self, embed_dim, num_heads, dropout=0.1):\n", " super(MultiHeadAttentionBlock, self).__init__()\n", " self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)\n", " self.norm = nn.LayerNorm(embed_dim)\n", " self.dropout = nn.Dropout(dropout)\n", "\n", " def forward(self, x):\n", " # (B, C, H, W) -> (HW, B, C) for MultiheadAttention compatibility\n", " B, C, H, W = x.shape\n", " x = x.view(B, C, H * W).permute(2, 0, 1) # (B, C, H, W) -> (HW, B, C)\n", "\n", " # Apply multihead attention\n", " attn_output, _ = self.attention(x, x, x)\n", "\n", " # Apply normalization and dropout\n", " attn_output = self.norm(attn_output)\n", " attn_output = self.dropout(attn_output)\n", "\n", " # Reshape back to (B, C, H, W)\n", " attn_output = attn_output.permute(1, 2, 0).view(B, C, H, W)\n", "\n", " return attn_output" ] }, { "cell_type": "code", "execution_count": 12, "id": "82a15d3d-2f8d-42ec-9146-87c8a4abe384", "metadata": {}, "outputs": [], "source": [ "class SpatialAttentionBlock(nn.Module):\n", " def __init__(self):\n", " super(SpatialAttentionBlock, self).__init__()\n", " self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False)\n", "\n", " def forward(self, x): #(B, 64, H, W)\n", " avg_out = torch.mean(x, dim=1, keepdim=True) #(B, 1, H, W)\n", " max_out, _ = torch.max(x, dim=1, keepdim=True)#(B, 1, H, W)\n", " out = torch.cat([avg_out, max_out], dim=1)#(B, 2, H, W)\n", " out = torch.sigmoid(self.conv(out))#(B, 1, H, W)\n", " return x * out #(B, C, H, W)" ] }, { "cell_type": "code", "execution_count": 13, "id": "497bb9f1-1ac5-4d7f-a930-0ea222b9d1d9", "metadata": {}, "outputs": [], "source": [ "class DecoderAttentionBlock(nn.Module):\n", " def __init__(self, in_channels):\n", " super(DecoderAttentionBlock, self).__init__()\n", " self.conv1 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1)\n", " self.conv2 = nn.Conv2d(in_channels // 2, in_channels, kernel_size=1)\n", " self.spatial_attention = SpatialAttentionBlock()\n", "\n", " def forward(self, x):\n", " # 通道注意力\n", " b, c, h, w = x.size()\n", " avg_pool = F.adaptive_avg_pool2d(x, 1)\n", " max_pool = F.adaptive_max_pool2d(x, 1)\n", "\n", " avg_out = self.conv1(avg_pool)\n", " max_out = self.conv1(max_pool)\n", "\n", " out = avg_out + max_out\n", " out = torch.sigmoid(self.conv2(out))\n", "\n", " # 添加空间注意力\n", " out = x * out\n", " out = self.spatial_attention(out)\n", " return out" ] }, { "cell_type": "code", "execution_count": 14, "id": "15b9d453-d8d9-43b8-aca2-904735fb3a99", "metadata": {}, "outputs": [], "source": [ "class SEBlock(nn.Module):\n", " def __init__(self, in_channels, reduced_dim):\n", " super(SEBlock, self).__init__()\n", " self.se = nn.Sequential(\n", " nn.AdaptiveAvgPool2d(1), # 全局平均池化\n", " nn.Conv2d(in_channels, reduced_dim, kernel_size=1),\n", " nn.ReLU(),\n", " nn.Conv2d(reduced_dim, in_channels, kernel_size=1),\n", " nn.Sigmoid() # 使用Sigmoid是因为我们要对通道进行权重归一化\n", " )\n", "\n", " def forward(self, x):\n", " return x * self.se(x)" ] }, { "cell_type": "code", "execution_count": 15, "id": "6379adb7-8a87-4dd8-a695-4013a7b37830", "metadata": { "tags": [] }, "outputs": [], "source": [ "# 定义Masked Autoencoder模型\n", "class MaskedAutoencoder(nn.Module):\n", " def __init__(self):\n", " super(MaskedAutoencoder, self).__init__()\n", " self.encoder = nn.Sequential(\n", " Conv(1, 32, kernel_size=3, stride=2),\n", " \n", " nn.ReLU(),\n", " \n", " SEBlock(32,32),\n", " \n", " ConvBNReLU(32, 64, kernel_size=3, stride=2),\n", " \n", " ResidualBlock(64,64),\n", " \n", " SeparableBNReLU(64, 128, kernel_size=3, stride=2),\n", " \n", " MultiHeadAttentionBlock(embed_dim=128, num_heads=4),\n", " \n", " SEBlock(128, 128)\n", " )\n", " self.mlp = Mlp(in_features=128, hidden_features=256, out_features=128, act_layer=nn.ReLU6, drop=0.1)\n", " self.decoder = nn.Sequential(\n", " nn.ConvTranspose2d(128, 32, kernel_size=3, stride=2, padding=1, output_padding=1),\n", " nn.ReLU(),\n", " \n", " DecoderAttentionBlock(32),\n", " nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1),\n", " nn.ReLU(),\n", " \n", " DecoderAttentionBlock(16),\n", " nn.ReLU(),\n", " \n", " nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1), # 修改为 output_padding=1\n", " nn.Sigmoid()\n", " )\n", "\n", " def forward(self, x):\n", " encoded = self.encoder(x)\n", " decoded = self.decoder(encoded)\n", " return decoded\n", "\n", "# 实例化模型、损失函数和优化器\n", "model = MaskedAutoencoder()\n", "criterion = nn.MSELoss()\n", "optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)" ] }, { "cell_type": "code", "execution_count": 16, "id": "e9c804e0-6f5c-40a7-aba7-a03a496cf427", "metadata": {}, "outputs": [], "source": [ "def masked_mse_loss(preds, target, mask):\n", " loss = (preds - target) ** 2\n", " loss = loss.mean(dim=-1) # 对每个像素点求平均\n", " loss = (loss * mask).sum() / mask.sum() # 只计算被mask的像素点的损失\n", " return loss" ] }, { "cell_type": "code", "execution_count": 17, "id": "404a8bfb-4976-4cce-b989-c5e401bce0d7", "metadata": {}, "outputs": [], "source": [ "# 训练函数\n", "def train_epoch(model, device, data_loader, criterion, optimizer):\n", " model.train()\n", " running_loss = 0.0\n", " for batch_idx, (X, y, mask) in enumerate(data_loader):\n", " X, y, mask = X.to(device), y.to(device), mask.to(device)\n", " optimizer.zero_grad()\n", " reconstructed = model(X)\n", " loss = masked_mse_loss(reconstructed, y, mask)\n", " # loss = criterion(reconstructed, y)\n", " loss.backward()\n", " optimizer.step()\n", " running_loss += loss.item()\n", " return running_loss / (batch_idx + 1)" ] }, { "cell_type": "code", "execution_count": 18, "id": "94457c6b-4c6e-4aff-946d-fe4c670bfe16", "metadata": {}, "outputs": [], "source": [ "# 评估函数\n", "def evaluate(model, device, data_loader, criterion):\n", " model.eval()\n", " running_loss = 0.0\n", " with torch.no_grad():\n", " for batch_idx, (X, y, mask) in enumerate(data_loader):\n", " X, y, mask = X.to(device), y.to(device), mask.to(device)\n", " reconstructed = model(X)\n", " if batch_idx == 8:\n", " rand_ind = np.random.randint(0, len(y))\n", " # visualize_feature(y[rand_ind], X[rand_ind], reconstructed[rand_ind], title='NO_2')\n", " loss = masked_mse_loss(reconstructed, y, mask)\n", " running_loss += loss.item()\n", " return running_loss / (batch_idx + 1)" ] }, { "cell_type": "code", "execution_count": 19, "id": "296ba6bd-2239-4948-b278-7edcb29bfd14", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cuda\n" ] } ], "source": [ "# 数据准备\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "print(device)" ] }, { "cell_type": "code", "execution_count": null, "id": "743d1000-561e-4444-8b49-88346c14f28b", "metadata": {}, "outputs": [], "source": [ "model = model.to(device)\n", "\n", "num_epochs = 100\n", "train_losses = list()\n", "val_losses = list()\n", "for epoch in range(num_epochs):\n", " train_loss = train_epoch(model, device, dataloader, criterion, optimizer)\n", " train_losses.append(train_loss)\n", " val_loss = evaluate(model, device, val_loader, criterion)\n", " val_losses.append(val_loss)\n", " print(f'Epoch {epoch+1}, Train Loss: {train_loss}, Val Loss: {val_loss}')\n", "\n", "# 测试模型\n", "test_loss = evaluate(model, device, test_loader, criterion)\n", "print(f'Test Loss: {test_loss}')" ] }, { "cell_type": "code", "execution_count": 38, "id": "cdc0d608-6f0a-43dc-8cc1-8acf68215d18", "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'train_losses' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "Cell \u001b[0;32mIn[38], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m tr_ind \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(\u001b[43mtrain_losses\u001b[49m)))\n\u001b[1;32m 2\u001b[0m val_ind \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(val_losses)))\n\u001b[1;32m 3\u001b[0m plt\u001b[38;5;241m.\u001b[39mplot(train_losses[\u001b[38;5;241m1\u001b[39m:], label\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrain_loss\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", "\u001b[0;31mNameError\u001b[0m: name 'train_losses' is not defined" ] } ], "source": [ "tr_ind = list(range(len(train_losses)))\n", "val_ind = list(range(len(val_losses)))\n", "plt.plot(train_losses[1:], label='train_loss')\n", "plt.plot(val_losses[1:], label='val_loss')\n", "plt.legend(loc='best')" ] }, { "cell_type": "code", "execution_count": null, "id": "849b1706-1a98-4571-989f-da06d949c843", "metadata": {}, "outputs": [], "source": [ "torch.save(model, './models/MAE/final_40.pt')" ] }, { "cell_type": "code", "execution_count": 20, "id": "40a803b2-4891-4d47-ab61-cf88db8007a0", "metadata": {}, "outputs": [], "source": [ "model = torch.load('./models/MAE/final_40.pt')" ] }, { "cell_type": "code", "execution_count": 21, "id": "a8467686-0655-4056-8e01-56299eb89d7c", "metadata": {}, "outputs": [], "source": [ "from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error, mean_absolute_error" ] }, { "cell_type": "code", "execution_count": 22, "id": "016c3045-0312-462f-82ae-7272944ed92d", "metadata": {}, "outputs": [], "source": [ "def cal_ioa(y_true, y_pred):\n", " # 计算平均值\n", " mean_observed = np.mean(y_true)\n", " mean_predicted = np.mean(y_pred)\n", "\n", " # 计算IoA\n", " numerator = np.sum((y_true - y_pred) ** 2)\n", " denominator = np.sum((np.abs(y_true - mean_observed) + np.abs(y_pred - mean_predicted)) ** 2)\n", " IoA = 1 - (numerator / denominator)\n", "\n", " return IoA" ] }, { "cell_type": "code", "execution_count": null, "id": "dae7427e-548e-4276-a4ea-bc9b279d44e8", "metadata": {}, "outputs": [], "source": [ "eva_list = list()\n", "device = 'cpu'\n", "model = model.to(device)\n", "with torch.no_grad():\n", " for batch_idx, (X, y, mask) in enumerate(test_loader):\n", " X, y, mask = X.to(device), y.to(device), mask.to(device)\n", " mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域\n", " reconstructed = model(X)\n", " rev_data = y * max_pixel_value\n", " rev_recon = reconstructed * max_pixel_value\n", " # todo: 这里需要只评估修补出来的模块\n", " data_label = torch.squeeze(rev_data, dim=1) * mask_rev\n", " data_label = data_label[mask_rev==1]\n", " recon_no2 = torch.squeeze(rev_recon, dim=1) * mask_rev\n", " recon_no2 = recon_no2[mask_rev==1]\n", " mae = mean_absolute_error(data_label, recon_no2)\n", " rmse = np.sqrt(mean_squared_error(data_label, recon_no2))\n", " mape = mean_absolute_percentage_error(data_label, recon_no2)\n", " r2 = r2_score(data_label, recon_no2)\n", " ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy())\n", " r = np.corrcoef(data_label, recon_no2)[0, 1]\n", " eva_list.append([mae, rmse, mape, r2, ioa, r])" ] }, { "cell_type": "code", "execution_count": null, "id": "d5b01834-ca18-4ec3-bc9d-64382d0fab34", "metadata": {}, "outputs": [], "source": [ "pd.DataFrame(eva_list, columns=['mae', 'rmse', 'mape', 'r2', 'ioa', 'r']).describe()" ] }, { "cell_type": "code", "execution_count": 23, "id": "0887481a-764e-4fd5-9580-45aa813a4391", "metadata": {}, "outputs": [], "source": [ "eva_list_frame = list()\n", "device = 'cpu'\n", "model = model.to(device)\n", "best_mape = 1\n", "best_img = None\n", "best_mask = None\n", "best_recov = None\n", "with torch.no_grad():\n", " for batch_idx, (X, y, mask) in enumerate(test_loader):\n", " X, y, mask = X.to(device), y.to(device), mask.to(device)\n", " mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域\n", " reconstructed = model(X)\n", " rev_data = y * max_pixel_value\n", " rev_recon = reconstructed * max_pixel_value\n", " # todo: 这里需要只评估修补出来的模块\n", " for i, sample in enumerate(rev_data):\n", " used_mask = mask_rev[i]\n", " data_label = sample[0] * used_mask\n", " recon_no2 = rev_recon[i][0] * used_mask\n", " data_label = data_label[used_mask==1]\n", " recon_no2 = recon_no2[used_mask==1]\n", " mae = mean_absolute_error(data_label, recon_no2)\n", " rmse = np.sqrt(mean_squared_error(data_label, recon_no2))\n", " mape = mean_absolute_percentage_error(data_label, recon_no2)\n", " r2 = r2_score(data_label, recon_no2)\n", " ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy())\n", " r = np.corrcoef(data_label, recon_no2)[0, 1]\n", " eva_list_frame.append([mae, rmse, mape, r2, ioa, r])\n", " if mape < best_mape:\n", " best_recov = rev_recon[i][0].numpy()\n", " best_mask = used_mask.numpy()\n", " best_img = sample[0].numpy()\n", " best_mape = mape" ] }, { "cell_type": "code", "execution_count": 26, "id": "f7355895-ffde-458f-b4e6-b8afd95ea663", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
maermsemaper2ioar
count4739.0000004739.0000004739.0000004739.0000004739.0000004739.000000
mean1.5404012.1998790.1955540.5857990.8480160.778401
std0.6473150.9094180.0922390.2139930.1069870.127430
min0.4620700.5938540.068942-0.5515870.2185040.145717
25%1.0213851.4727570.1441700.4601840.8050110.711952
50%1.3678362.0562080.1761190.6240060.8767700.805993
75%1.9758252.7927770.2174190.7453750.9239440.871612
max5.1865179.1588840.9600810.9683760.9921960.985054
\n", "
" ], "text/plain": [ " mae rmse mape r2 ioa \\\n", "count 4739.000000 4739.000000 4739.000000 4739.000000 4739.000000 \n", "mean 1.540401 2.199879 0.195554 0.585799 0.848016 \n", "std 0.647315 0.909418 0.092239 0.213993 0.106987 \n", "min 0.462070 0.593854 0.068942 -0.551587 0.218504 \n", "25% 1.021385 1.472757 0.144170 0.460184 0.805011 \n", "50% 1.367836 2.056208 0.176119 0.624006 0.876770 \n", "75% 1.975825 2.792777 0.217419 0.745375 0.923944 \n", "max 5.186517 9.158884 0.960081 0.968376 0.992196 \n", "\n", " r \n", "count 4739.000000 \n", "mean 0.778401 \n", "std 0.127430 \n", "min 0.145717 \n", "25% 0.711952 \n", "50% 0.805993 \n", "75% 0.871612 \n", "max 0.985054 " ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(eva_list_frame, columns=['mae', 'rmse', 'mape', 'r2', 'ioa', 'r']).describe()" ] }, { "cell_type": "code", "execution_count": 27, "id": "ee712c69-2b57-4ac6-9c7d-d73ba0d1ecca", "metadata": {}, "outputs": [], "source": [ "# 可视化特定特征的函数\n", "def visualize_rst(input_feature,masked_feature, recov_region, output_feature, title):\n", " plt.figure(figsize=(12, 6))\n", " plt.subplot(1, 4, 1)\n", " plt.imshow(input_feature, cmap='RdYlGn_r')\n", " plt.gca().axis('off') # 获取当前坐标轴并关闭\n", " plt.subplot(1, 4, 2)\n", " plt.imshow(masked_feature, cmap='gray')\n", " plt.gca().axis('off') # 获取当前坐标轴并关闭\n", " plt.subplot(1, 4, 3)\n", " plt.imshow(recov_region, cmap='RdYlGn_r')\n", " plt.gca().axis('off') # 获取当前坐标轴并关闭\n", " plt.subplot(1, 4, 4)\n", " plt.imshow(output_feature, cmap='RdYlGn_r')\n", " plt.gca().axis('off') # 获取当前坐标轴并关闭\n", " plt.savefig('./figures/result/40_samples.png', bbox_inches='tight')" ] }, { "cell_type": "code", "execution_count": 28, "id": "e89feac0-d03a-4686-8a38-722e6a54a96f", "metadata": {}, "outputs": [], "source": [ "best_mask_cp = np.where(best_mask == 0, np.nan, best_mask)" ] }, { "cell_type": "code", "execution_count": 34, "id": "a87835de-836b-411b-b4cc-68e98b6638f4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[30.36338043, 30.67309189, 30.94369125, ..., 11.77855492,\n", " 11.96412849, 11.9506712 ],\n", " [30.04488182, 30.25416946, 30.87792015, ..., 11.70056629,\n", " 12.05164337, 11.96099949],\n", " [29.82366371, 30.49637985, 30.7125721 , ..., 11.49174881,\n", " 11.77280235, 11.96125317],\n", " ...,\n", " [ 8.4842186 , 9.02253723, 8.97320557, ..., 5.35319471,\n", " 5.15942717, 5.25348282],\n", " [ 8.59376144, 8.57794476, 8.91248322, ..., 5.41437721,\n", " 5.41615629, 5.49798965],\n", " [ 8.4524231 , 8.80022049, 8.73760223, ..., 5.64806128,\n", " 5.53445244, 5.61840296]])" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "best_recov * (1-best_mask) + best_recov*best_mask" ] }, { "cell_type": "code", "execution_count": 37, "id": "95e3882b-9962-4aab-be80-4240f326ef51", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAADeCAYAAAAJtZwyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZwlVXk+/pxzqqrv9PSsDAOjwDCssoiKSIyKESRuwd1I3HFJRIPGGPfoV1QkrlERFTQmGBf4uSVG8yWuURRRvoiCuIAwAwyyzzBLT/ftWs75/fGe9yxVdbtvbzPdw33m03PvrVvLqbr11nmX531fYYwxGGCAAQYYYIABBhhggAEGGGCARQq5pwcwwAADDDDAAAMMMMAAAwwwwACzwcCwHWCAAQYYYIABBhhggAEGGGBRY2DYDjDAAAMMMMAAAwwwwAADDLCoMTBsBxhggAEGGGCAAQYYYIABBljUGBi2AwwwwAADDDDAAAMMMMAAAyxqDAzbAQYYYIABBhhggAEGGGCAARY1BobtAAMMMMAAAwwwwAADDDDAAIsaA8N2gAEGGGCAAQYYYIABBhhggEWNgWE7wAADDDDAAAMMMMAAAwwwwKJG0u+K5edfCAAwhQYqAygBABDSvnYSIJX0WUogS4HOkN24BLQBuhOA1jClpn3tKmAKDTNRwlQGKDSM1jA7C+idOaqJErrQ0IVGOVHBaANdVBBSIB1OIaRAMpxASAHZSSBSCUgBoSSNJZUQqYLoKIihBHJZBjGkgOElQKKA4Q6NVQogSYCVyyCSDBCS/lTi3wOA0YAu6X1V+mUAwNt1ltM+J8boO1HzHRjt96O1Xy4lIJN4nyrzy1VCrzIBOiMoTBnvFhqFzjFW7ICGRqlzGqYpoY1GobsodYWxYgKl0ahDGwNdWy6DsYffZSqBhEAiFaQQbvlIOoIlyQiEkFAiifahjYYxGrnuQhsaX2VK3DexE92yQK5LlFqj1BW0MShNhdxe48oYaEO3Hb2aaJwTpYG9faCNgRQCSgCFNig0UFT0yvsK0bH3MX9vb2ekyu6jon1PBPsIx1RoYDSvUGnj9v2Vv/hc4/ouJNx22219rffpT38a55xzDkztmj30oQ/Fpz/9aaxbtw4AoJTCPvvsgzRNsXXrVoyPj7t1P/ShD+FjH/sYXvrSl+Kd73wnlFIAgE6ng9WrV0PKmfvWvva1r+GMM87A6OgoAODYY4/F17/+dRx++OF972NsbAxbt251n4eGhrDPPvvMalw/+tGPcNZZZ+Huu+/Gli1bUFXVjPc1wJ5F/d4foB2Xrz8SQDylDS+habUzLJEOp0hHUiRDCtlIhnQkhRpKIIYTDJ97aes+Jz72HAglaE6387tIFc3tiSIdw87f8s/Pb92H/ubf0KCkBDqZ102koAHyeymBREEkCYzVV+Thb53z6zTAAG3Q338tvSntXMGCVFb0XmsYbXrr12UFMzoOU1QwOwuYokK1tQvTLWHGSuiiIl261FBDCmooQTlWoBwvIaQgOYPX5xl8TDWkIFMFuSwDUgk5nJJePZzS+6FQHqXXr8NzCuQMSeL17kTRHwBICSGtzm3IHoDWfh+MLIVgnVhI0r9D3V3YcQCkqxsNFF0+KXod6Nf2HPY+/bpvw1akdOMZe3QhBRm3StCNmEqILPUbsMGojb3BNN28WkKghNEm3rckwYWGncgUlDbQhYZMJVIlyPhdYn9Qa0SrVNH6oVHLV68yQEcEY69ovKW9abs5rZulNM7RMZhkAmJ4iTcyZSAouiQh0SWMvSmcEBZd2iYf8+uyEUsrBgKXxEas0fQ5yYILHhjWocDa7yQk3cyg/bNgZKqDQucokTuhAwApEqRSIpElENrTdp+lqVBq2g/fvHVoe2P1+r4yJXLdhRIJjNDQ0Kh0CSkkEpnBGA0hJCQAISQEJCQEpBD+VQh3HH6vhABAAlAZg7GCvlciFEYSNHtRnVBUBuhWBhOVvy3oHOizcrcKbcPgfZEwx9+7Y2qDvNLIq+aDbCHjL//yL/ta74477mhV7G+88UaceeaZyDK6X/fZZx+cc845OOKII/ChD30IP/zhD926mzdvBgBceuml+N3vfueWn3jiiXj3u9+NFStWzOJMZo8f/OAHeP/734/SPhOOO+44nHPOOdh3331nvM+HPvSh+Ld/+zdce+21+Md//EfceeedczXcAQZYkBhZ6vRv8PTKOq6QAqayDmoAQhZ2mUGimvMIQ987DjGcuPkblX3VmvQPNlgnc0JJAUjl12G9xDm0SakWaebmZqGCeXuAAXYHdpBzVo8XLnAkpPQBpGQK/ToBxPAQRFnBpAqmqKDHaF/yAUNIpCQjt9CkB2uDRJtYD5cCybA9hl1eFWRQylR5ZQkgg7MQQLeEBiC0JvonG64A6ddaA3lBn9nw7WS0f2fMCkBbx5JKyKAtcmfkGgCQgR4i7bWJrkXidevQ4GXdOnxlPXqgX++1+nXfhq07yxr4BnOeHtl7onIGbguEkjCo/LGk9dQG+3PR4cDD5K5e3ahtQxW4Jcoy9iABzjtmspQMZaOtoW231zqIuLILQvpJUJPR6wSKt0GwD/YkRVFgO0GrxK/jDODAEG71BNnot30VQkIKGXmAjNEkqAL25vYPBRYgaYR9L6FN5fYde5W8wGk07wUDDW00BDQAEvrKlDCQUCa+1aSQMEbWlsW/ne4RLWEBCAWh/h0v19o4waH5QtjvDADhvEB1oeLbqNDemxUeI/QgAfRZTXbvLSD87Gc/a12+ZMkSZ6wCwMTEROt6o6OjuPrqq93ntWvX4vbbb8eaNWtw3XXXte7/zjvvjAy8TqeDLVu2QCmF4eHhWUVIGVpr7NixA9u3b+97m5tvvhlXXnkl8jx3+7j33nvddRBCYOnSpS7S3A9WrFiBE044AUoprFmzBrt27cKuXbug9fQf0AMMsBjwkN9eDwD49bFHumV1m9NUBkgpClQVmubwordMLHnPf896XPIvLow+6/99XWNwIqkpxXZONps/CugSYv0bZj2OAQaYDKYkK8F0K6AyEKmEUQYCsUE5pX6dkJEJ2IBRqomt2EmgKUQGdAVMt4z0a6MNyaOiZWzwKgC6CoJZgNejZWD1VGQkC2gyUlm/1sZHWxPvmHIPBm1ipS2EXU9ICSN1rJgxQkYk69Zs1Aay3OqoCiO2A/06WB6/Lkb9uv+IbScjT6n2VOTQo0QjCqxArf3ZSOndueGVUQICkoSo8mcupAA6iR9guI30wgclIIYSek3tWHLthNJoA1H5X8lYOrMEKMJcVn5sSeJfs9R6iTwdIfQQmUDgkHRiirKpCZGUaPUkSUmCxVFg/gx4AzcU0EAAKlM6b5Ex5Lnh10qXDaFzQ4FEphIksukZkkIgMcZSFdgLJd13UqiGIEhBdAmmWYhayraBFTwjUSCP9gkAduSRp8p9Z4zz6gQ/Ifj2C8HbjRW0jQoEuDKWLqH5VjWB4JLwhejlOapTLEJkStIMsIiRJAn+5m/+Bqeeeqpb9vWvfx0XXXTRlHTM7du34z3veQ9WrlyJX/3qV30d77rrrsOrXvUqHHXUUXjrW9+K/fbbbzbDB0DR4Te84Q0YGRnpe5tbb70VRVG4z3/4wx/w2te+Fp0O0ahWr16Nt7zlLTjqqKOmPZ5DDjkEH/vYx3DTTTfh3HPPxc033zztfQwwwGJC1pFIEj/nsJKstYHUBqaiP11qFGPEyFq6OwfINEimP2apV2yTDEjtfM70RV1Ovc8BBpgleurXTLsHrP6MQJ+eXL+WIxnMkPKMB2By/Vp6vVra701RTaraUAohRYBNoSldoKNpX6xfJ5YxwfTjMAWAx2/Pz8DTPUL92mlpMjBZQt1Y1fRrpibrQIbdq30+caR2oF/bZXuPft1/xDZRgLa0XqYFhFFTRuSNCaKaUrorZ9q8NCrwBikbka3I4xTTlq2XlSnIHWUNW0s3rgwEEG1jglC2gKUks1dLaqAMrhp7mJIEKAs3foPKR3jdztjrK2Oh4QcN4I3UulHLE2nl6Q/Rd4B/reXphl4kFjoniPZzLyiRQAptvUX+d/MCZBoepzZaBH0nHZ1B1sYYjRee0gHUz4WOWfdQkTeK39Mre4V4uxBMlSg0UMCgjeEWCqx7r5mW4T/WBa4K7qWqduvX3y8GhFFZxtDQEI4//nicdtppbtmNN96ITqfTyBE1xkTG4MTEBH7xi19A2PskyzKUZTlphPLee+/Fd77zHdx999141atehVWrViFNU7ePfiClRJZlSNMURVFg586dEQ16Jrjvvvvwve99z31et24dXvrSl+LQQw/tuY1SqjWiu2LFCpxyyilYv349LrzwQtx+++19j0Nr7ejRAwwwXYy95UkuirL0w9/Zbcc98ipKN7jhxKPdHMy0Y0ZYK0MXuzf/XJ704SnXMfd9gd5ooi2au/+FIrf7nznPoxvgfose+rVgo5AN11D/DPVrINavAcqBTZuBo8n065AtSYEnQqhDOyUp5WMa0u8q7dMFXM6uTUEMjVh2KNXHX0ebfi1bTJYwzS9kRAoJqIAZ6fRpHe9roF8D2Lv06/4NW3sjirq3qK68honhLq9FgHNnezCRPb0BPo8XoKJUAiRYXAgqPFNHheYc21TCVIZycFPlxqm7JcxECSElRFHRvqSESSVEXviHRgnKdxjr+nMIC0xxnoPWMImGqAuHrAlUSCsOc2jDaCxvp7J4GexNG3D5jfUasVcp9Cz59a3R3lL0WokEOqAytHuJAsGD9xp1Eu+FouWUxC6Vp2kYo2GEtltKpDJrjIWOa71g1hvlBDDwLrFHiW8xEggWqvrdbpBKyhXw5+ppEaEPJub607K6lyoUuhYGPvKKvV3G0STUNIyyPYkLL7ywsUxKiUc96lHRslNPPRUrV65srHvTTTfhk5/8pCu6tGLFCrzqVa/CkUcSDbEsS3zxi1/sy8jcvHkz3v72t+OQQw7B3/7t3+Kggw7q+zyOP/54fOxjH8N1112HT33qU9ixY0ff2/aLbdu24QMf+MCkEeUnPvGJOP3003sa5WvXrsU73vEO3HfffX0f98orr8RnP/tZR5EeYIBpgR9qbQ+v3YB0OIXRhnJr+TleEGOqmvApRQsSSQYwtY8nn0HO7QDzCVsISjBzsK5Xa3iqLwDkLQzIEJbWbIqK9GnOrUV/+jXr1aaorOIl3X4BGosZs7nyNStEpApiSEGtnkf92p1ATc9mtoXKUJmSqMOqt5nD+jWASMfWNaOW9WyKkA70azrXhatf92/YuhvQXkBXrS0wxd16NaOWlzPqpGo24RFEWvl7jtBao1Uu88ahCbZzObYKECmo6MRwCjNWwIxRlUOzqwRSCaM1xJCBWJZCaEHnUdpzSkBJ78hJyNhjVs8h5uOm1pNU9xoxei0PBbRGiQiNU/YShV6k0KitdBmvD09z0DaZPPQwCSGhIKGDqm9hMrkUAolQ7tjsNZKCnBLh/qWtzqZ7eCvIy9TuaQrHxHSJkOJRGRMJXDhOIPbiVIbGroSBDm5+/qnYCRmCU8YrTZnddf5+KHRVj8mDk9rzykAZIFskdOQzzjijr/WOPfZYHHvssY3lP//5z/G5z30OW7duhRACw8PDeMpTnoKTTjoJAFAUBa666qq+DNstW7bgq1/9Kg455BD81V/91bQM2/Xr12P9+vX40Y9+hIsuumheDNvx8XFceml71VbGqlWr8NznPrenYbts2TI8/elPn9Zxly5dis9//vNRZJwxqNQ7AADk5/+lnwMr45RQVlyZGbXrdX8eM6IAQBssPe97rfv942knoBgrcfAPfjXjsakhZQ1bCUyUlIulDUzRZCH84U+PgUoVDrns2hkfb04R5tsFER8z+tVYka6zt4KUI66cOqSesnvHPsDiRFhICfD6denZhUDTuI3YjFlc+ImNWmOLSEWR2T71a+EqCBFHlSKzPuzWmImkgFEVZJXCrNS7T78OEejOMBqmR7QzNGTry0N9OjQUOYo70K8Xtn7dv2G73GbCsJeoO0HVzsJE8Xop7xA1D5RhQQlPypYR5+85x4C2p4R6wVXbKgOhjfNCucJRLNRjJUyXKsOZsaCtUCEgCgVUBnqb9K2BpIBYVnnqB1ddDKPPdQq11jB2XZEElY7DqGtIt6gLZMDt55u3Hp0FgMKW7qbvtTNo2bhtQ8Tjt8cIvTqVSKBNDm15/5zYDsB5lLRNeOey45w7wGXCpUigZEIFBgLDW4AEUtjj8pjpZyu9N8w9NGgMpa6cEHLFNR3RI9qXuXOqyQcnqYf+j5AGQedC41aG7te6V0gJQFkpD4WTtpd2uWnddm/HmjVr8KIXvQiHHHIINmzYsKeHs1fhuOOOw7vf/e6GYbt161Z84QtfwB//+Mc9NLIBFgrEUOLmQCMpBYeKMxUQWgKpVTwDRZQLwUjVrhABgEwlZNr7+36QDClUpYaRBkACUWpUNmKrS00dAIOpMUkWEO0+7fj3YZFH/hzO4+FyO8dzLl6ly0Vfe2GA3QQ2SrmCcALSrV3gxhCtF0Hwp157hmGdXELZ7VMFgwoikz4SOw392khDBqrVc5xxC2888zZc70ZXBmJbskf161J3J73kvQzGOvvR57LGlOTQAFYyGejXWDj69TQM25HYg8QGblkG0VnpjVtGnS4hZU96lCsABUBAuZ517nvbzw4IKBKMQEBNpR39Qo8VVAGusMtsJUbX+ocLYEkBycLdIWETdn/eixTkOfCyvCAvFQARXk2mGiP3whdWSxZURc2YEoWOE7/ryenck4oFqTKlmzzZ+GWhqnPxw+WhIEhwdbcy8NR4DxIto8+ppIedF0i+0RLXT4s8NKVlnNcED/6BUGlvoIcUiVJXKKNlNKKw3DgLHD9HmeLWJoQMHW3fpECwACq7LXuF3HLpBTIN3FjUf8sKbYO2cf/A6tWr8bKXvaw1qjvA7HDkkUc6aneITZs24bvf/e7AsB3A1ZswFRVXsWURKR0HACpqi2MAmgtty52pIFMFlc6Oeqs6CURRwVREeZOQzrDNc6BrdU6eXpP+NZH5BzOoWuAiKmGkxGhn0CJQhnspzgMM0EBUIIqoppDw0U5p9U7WJa3R2SjgCh80inNlbf/n6erXUkQGLjQZVqaqSM/uVqgmrE5nI7xCCqjKQI/me06/Vgkqyw7xQaNmZBbwOnOoH/P3oQHL0VtOBwz3nUBCWcN7oF/vef16GlWRl1BYf2KCjNnOEAnj6DgZu3UKciCAsA3P4ZLbg2gtXzUpIGRgENcaRpu2q6oECWbokWYjNujZZSYqoCCPsZCCenJpA33PuC88lUrvtbLV3VBoX5XOVXYLKrxxUnySND1GruGzfRglnTjHNu2g1F1UukRhrGGLpoBpaBexbXiNjI4mWtrOClfN4GXUhZuEOqQ/kAcJgPM0UW8sbxhnKm4O7e4RSPscTVxZdNi9C/vQCb1gIUWDbhU/Nu7ipG0QnirRC1th3t8zdsPmvRGAbxFaTUBBoBJWAKeQGcfvdwJov1DkgeNqbr3oFAsRH/5ws4CKUgqnnnpqZKReddVVuOyyyxrU11tvvRU7duxAt9vF5z73ORx66KE47bTTcMABB8z72AHgmmuuwQ9+8AMcdthheNKTnrRbjjkZfvGLX+Cf//mfG1Tk/fbbD0972tOwfPnyPTSyAfZmJGd8sed33XOeZiM1wNJzJ6fS1yETCTU0u1BjvU0fV0M22qAsSV89afP1szrGfEHIU1uXT1T/181RTuGUCSA804rn3UrTXL1t4suN/DwNjQcufcXuOZkBFgdWLvNMSG6P4wJIbOwZ6vVqdUpR1gqv8bpBBR4B0nWNNFTpOOSPog/9upYJIyQZtdDGNSENnWW61Ci7FZLxEhnr03tCv+bxBEYoox5tZV1VGG8oAl4f5UCSCeSb9829Y92+B/r1gtCv+/eTDo0AuoQwGoZvNm6+bL0qjepm1pD1+QKlN2bDwhYsZGHEVkrveYJNZbZ9tpjyAFu6nD3SpqiIdtytLO1YO4NWF+StlrZKnKkMyvES1JQ6gUoVTLeESBXkanoIcOlxztcVUvoy5fxqqRSifu4saGVOXqQ0FrxC59ToWefIK3Jfs8dHOG8P3aAcsWUDNxSw0OskkURR38kqqfnj+MbNAFVvS4RNSJeUfE+V3qSbzAFPiQiFWtl8A1FbFyAPlnEeLB67sTkHMvrMfH56lgtIEd/UDT6/vWfIodgUACmAVAoU2jghlEpAmUAAJxGcShuE7eTc3JAIVEagqAyU8j27Fjre9KY3NZYNDQ1h5cqVkWF72WWX4c1vfnOjurExxhm7H/7wh7Fu3Tocc8wxu82w/dnPfoa3vOUteNrTnoaTTz55txxzMlx22WX4yU9+0lh+wgkn4LGPfezAsB1g9yOziqSefA5og0oljJ69Yev6zitBVEaQj7ssgcVYEy2vus6RrERCUWhT+rm6RmF0tMBaft5kVVUHuH9CjKwmPTEbhXGBIKs7l5U1akHGXmfIMyFZB7evUc4tR2xBKQtiSNFzAf3r16HSIwAYba0hcD/qCtVE5WS9nKjQva8LoQSGxkokQ2qP6ddCSBhdorSMSNZV+TPLojMUrT4bBowAeIdUEMl1UWDosJ5S/JsO9Os9pl9Po92PrRRYlRCyBHRJgtEZsoZrcFA2ZFng7GduQs0QU+TxCCk9nz8ofhEKpIO01di47Y/NvdWV9p7iiQqi0Eg6CrrQyEfpBjfaoEorZAAwpKGVoIpv1sMlUwlMlBBJYMRnqadeQ8a5N0L6nni2l5ZWnvPP3ltHMWYhqnmWWPDYoC11HhWSitY11Li50mUgnOFNKiPh9JfNc/wBRMKketwenLcrA0Fzv5l9QNTXryfBs1eIK8KxN2s6cBSJHkIT3iLknSLCXrgs9DCFUMqPRUkBW3SbvFqC6Re0jXaerWkNf4+hrQ1PURS4/PLLo7Y1V111FaqqmrRYkTEGWuvdUtDo2muvxTXXXIMrrrgCZVni5ptvxsUXX4xNmzZhfHx83o8/Gdqu6d13342vfe1r2LBhAx73uMe1VpjuF1u3bsWPfvQjbNq0CVu2bJnFSAe4P6Dzpv+c8bYyldNQDPqH0QYPvm5hRmn7wbLsWQCArd1LYIRVMJG4eSY0WOvtQfjfIFI7QCuC/smRfp2lXtfktL8+9Ws2VMkgDXRoi2np1wzOra0Co1gKa+RqauNl91WOFagmygWjX0sDJ4exLlwSvdpWGq47nnjdeqS3bnwO9OuFo1/3P391lrtcElQlUOUQVQkzUtDN54pJWepxWcGMdV0uQCNCqzyf3wmTfd9o5yMRlCqvgm1ahHg4AQoJ0a2oGjJIqMtuhXKMeBXluIAuNCZ2kGFbjJVQqXQR3WSsgFQSclUHYmlCBmJhX5n6EApeAl8REaBlaQfj5SgAS4co4oJPfHOGHtzCerCYOsEJ4aUzbGPBad6s1gPGN77RMIYFiYQ3pEPRZfPlxPkze4OM8Mt5nzyZ1yEh3T5DmgRgqQ4ygdbcZNrvN7GFABIpkRjfjJrGIlAEDZ/pmvh9FvYDly3n5PLQ40TPcxK4VALQwlVxo/QOu4+WpPZwXyxw0bZGRAIoF1tD2wBlWeKiiy7CF77whWjZQqrA+61vfQvvec97XI/cq6++Gq95zWtgjFmQbXFuueUWvPWtb8Vhhx2GSy65ZFaG7ebNm/G2t70NGzdubK2UPMAAc4V0OHVFpmYKqQS0kjC6cjTkvQW57ro50uXnIZ7z6h0LBpHaASZFL/162D7ruxNALmamX6cKIjRYp6Ffe0ZkMNaaLMtUohgrnX6dDFHgqLttAsDC1K9DI1XJxNljbbVq6mkEgHdicbSX9oeBfr1A9Ov+DVuV+JC/9ShFzZa5mpsrKkV5rUZr6rnV2F+PQXIfrCTgrZfa0R8A+OprwT6ML/PlhF0HFGRdahTj1vCTIorYll0SPJlKqKHEJcEPDScUVU6pIJWo7ENFp750udYAlL0uVOofKiOqsc2drVcypoplwY0Z3IhhhTMWkMomoHPid5vnxfPpPTVC2IIW5KlqUgzaEI6lnp/LnqN6ifO2c/Djij1d7HHSJs4PqdOm66XEe6WAVCYWuPptxetIQVSJWoqJTeQH9CR0jHo1tvpYbPoIgN6OzoWEJz/5yX2tt2nTJvz+97+f9v6llDjmmGPw5Cc/GTfccANuuummae+jDWVZotv1lQ611piYmJiTfc8HjDGYmJjA1q1b8eMf/xh33303HvrQh2L16tV972Pr1q345S9/id/97nfYtm3bgjTgB9jLIAWknB0VmaIw/hnP1ZD3Buw/fAYA4O6xf3ezHlUH1W7ODPtgDiK1A0wJXbb3Sg7zTqUEdNW/fm3TAYwt0OQqG9sqxYyp9GuiKVsnlfZ6trbF4Rarfu06iliWI9CeVhqyLly0FiTrA/16YerX/Ru22TAJnspICKscyEuIrAMkCUxeUNPlsiKuf07ViA0nmUvhcmiZLuxoDfWE904GDHeckSzyAqgm3LphNTcWXLO1S3m13YqOO1aiHC9RdivoUmNi+wTGt3i6YpEb7Nhp5QYVkqTCPsUo0uEUakhBKIFkSQIxlABFBUhBxahKDcHVLzipP0vJ45Zk9CcTjFejmCjHGvk2XFFNSe+5CdFGOeZIbdmgO2oAsmHwSqEdjQFAQLFoChJz8sMbn4V2shzdkBLR8EY7VkuzkrM/58qOVcLW8ISEgIb3DqWSKquxw4tqFXgPk5T0aOglnCyI7O9QFZ0dC1KKwBvUg6YR7pPrn4X7pz9haymYnv6ahYQvfrF30ZkQ559/Ps4+++xWmu1kUErh5S9/OV7wghfgn/7pn/ChD31oJsPca3DXXXfhLW95C9atW4d/+Zd/wWMe85i+t/3Nb36DM888E3fffTdGR0fncZQDDEAQndn3qJGJV551oVFOlIsyr3YyFCaHNJyXF8+V7JAOFekBBuiJwjpsjY7/OHBUVnA9svrRr5VwrXUEAFdYKgGlD2ZpX/o1Cg2jtHdSVdQnm6oh0185US1q/VoJitgqkZBzKij4BHhjONxG2igt1bsZ6NcLTb/u27DV0IAAZJIBlSQDVwXN6LiyGXP/Ac/vb9thvWF8uGwKGBtyF7ZgFTesNrZ/l7Fcf/YkaZvgPtH1TYm5gIWT9wSocu/lkKlENVFBjRXOqxRWX3aV21zv3izyKlX5Dje5AS10Bl2irbeyNuE2xi0D+Ac2wbqGfhlb0hvgSmsSSbRvDYUkcsqFghIKmLRCCiDi9vN3IZyXy8QOvxBhftFkVCxKaichDOkH7esyBaLdi9QrT11K4YTYe4x8UnrbdlV0veteuSY1YzFEbFetWtXXesPDw32tl+c5fvvb32JoaChabozpOx+02+3i17/+9aQRydtuu62vfe1u7L///li/fv2U661evRpLly6d1r6Hh4dx2GGHodPp4A9/+ENfEeoHPOABOPDAA3t+v2vXLtx4441R9HuAxQd90/voDacAcTpQNyfld8cu6K1dpK+8ZFr7HX7f/8x6bCs+/cNZ72Oho9IlIJPW+c8Vi2rJuxtggAbC/FGVkH6oEgidwCTWwE0SYksyJtOvQwSOaaMNxBSOaqM984COQaaRCbuPWP2a82oXon6tRfM8TYt+Le16YS5udPkQ94TlpeEaU+nXvG0igUrHHUx4nYF+PXf6dd+G7VixgzaQGaSQyIZX0s02MUqVyYZttHZ0DOhOQGQpRVMnqmYpcb5iAFGOJ3yJbQAkFd0Jf7Yl58pa2kWLAUxtfShSa7olitEC+WhuvcUVutu6uHeLFzStg0NYwet0gM5QhWFtkAwpjG8Zhy40OiB+t0klTCohlnWAkWFnzIusA3SWQytpG7N3XV4s8/k530ab0jds1nRD04PDC06pq8b5AU2vhzYGueY8XO0qnkn4hHWO5GbK8vQjGoNBIpVLaJe2F1cqbdW2usHboDN42lUoVFzdGfCl0vk6+B5hnusvQZXbEildbhc7Igti3LgbWlo+vxL+egQtjBH24+LbJLxd6vXKlCAu/0RlGkIG2GMH96+SwtNVhLEUNKtXlovAqp0HbNu2Df/n//wfdDqdaLkxBjt27OhrH3fddRfe9KY3IcuaJfsZ27dvn9U45wunnXYa3v72t1N+0CRQSmGfffaZ1r6PPfZYfPazn8W1116LV77ylbj11lun3ObZz3423vjGN/b8/vrrr8crX/lKbNy4cVpjGWBhQQwvt5NXl+ZGdiyPdYG8gAApGwPMDypTAhowQgImni+ZFunWG2CAydAZIdmtbJVfmbhXoXIyXjn/dGy8P/3aKrqNolIySJidRL8WUrhniqk06dcTFfRYgWK0wMSOiQWrX9NfbOh5RmNTjybd2TId6y0yoZ1OHuqt4bZT6dfaVOiWBRJZ2T8FI7KownHYm5bGOdCvZ6pf923Y8sOZej0lgLS0gCIBRAmRJDActeVWQPYMXPXjsHR4TLJu8M152/o6Rpn4SmpNVGT763DEllv6VAVVReY2A2GVdNcLm3ZDXiYBdEoNbZPdy4nK75sLVmkT5z0IeuU2PCEfPxS6sGlycAJg74+exIvCCKO2YVnvaHuXJ2Bq39WPPTXC3rqhoDHqyer8vRJ+Pd9XK/YsRdFn63fU8GMOBYEpD3wNwuXhK+23j/MK7r+qagocHb9929CzVD/WYmn5M5fQWuOee+6BEALr1q3DyMiI+254eBj777+/+7xz507ceeedjaJUVVXhrrvu2m1jng32228/rFixwn0+9NBDceCBB05p2M4EQ0NDeMADHoDt27fj8MMPh5QSd9xxx6SR26IoMDY25vrqjoyMYN26de7z9u3bkSTzUfd2gN0KlQGSKItC2icoV0kFgCyFyNI9OcJFieu2vM+9D9t0hJC23Y8R2lP3WvbFc92N2z8KYzQOX/n6WY/v7rF/RyIzrO781az3NcACgUzoBmIKMmCpuAmQACLNYMpqZvp13bnl8nW15XpKQOm+9WsuLLWQ9WttDEqbZ2rJ2FZva0opRSh9Kh9ThdtQN1xnol/3ouWyjj3Qr2evX/et3XSrsShqV8gEamgYsrKFpJTNi2XYXFuRpRBJoIRJ2Ri1kP7uN0xDcGdJPHsxnNp1pV+uDfTOccqrHSsoWstNo1n4gqIVWUb0iLFddoillx0pgW6XdjtcArLQyEcLVIXG0PIMshgCxgpobaD2GQ6qtglLHdEQijy3oZAVOke9txS/spEa9pcC/CTaJiTE1/fGLXulpupbG3qc4mNoSMGUBnJcaFBfrDBHgSPLdhRuuYE9rpDOSy0gyZNt8xUEJLT2JdhDbxIJo0FelehWBfKqRKGN8yYB3gvUS0Xznjj6XJmwkhvca72Itrumwe3YJmyhFylEWISwmoLecX/AkiVL8MY3vhGnnnpqz3X+7//9v3jnO9+5aGmwaZrib//2b/HMZz7TLVuzZs28GLUhNmzYgE9+8pPYtGkTXve6101a1OtrX/ta1Ff31FNPxXvf+96+qeUDLBIMryQluOiScWtfkWYwRe5pfANMC21zaZ1OLKChBSAMOaZJIY33I4WkKhhWJ6gznmaKelXUARY/qsT2UrXta1zklnu1CgkhEzJPuLdt3/q1/Zwk/nlQ07GFDa8uVv3anUpQZNXp2DYLlr7XqLugWN7ZOAVafAGO/SiDbQRKXXnHVqCX1/XrRCoMpwKJzJDJjjNEpZVl7mVbN2QH+vXM9OtpRWwNvNeEaTiSy3CrhKK2WUrJ6Zxny56hECw8lgIBqbwQ1rwTNErOLxB+fyUAHZQ5r6iyWh0mWB7KbNtw+Dut4YSW/4IL4TdKFD0IrEcJaE6A9d5WfNM1J85e1Y7b1+0FpiJPtX6vyZtzg9DynQoT4K0h3NgHqEqcgS95zuvzWKI/xJ8rS3PodROH12g60WemWIS9x0PUj9ePV4o9S0yVADBpI+q9FVJKrFy5EqtXr8YRRxyBY489tue6N954I/bff39s374d27Ztc5FbpRRWrlyJNI0fr8YY7Ny5E2NjY/N6Dr3A58YU6SzLcNhhh016jvOBTqeDI444Ap1OBwceeCC2bdsWfR9ep3vuuQf33HOP++7AAw/EHXfcgVWrVk275dDSpUuxbNmyxvI8z7Ft27ZpFxYbYA7BSrDR1CKECzvKBCIFTJaTgjhDjL/zNIiO7w0fRoSG/u6rc3ACex637PykUxgLTYrfZP0e6/N0vc9kL3C7jj9s+2cUusDRq9884zHvu+SFM952gIWJypSAATLZAZT0kVupqbqPshWBp6tfc6Aoqq4s4nVLLFr9ur6srhP20qvb9iGFgg84abQxFCffRxjBZX03NtokOCoLsAHrqiGjf/26gu+cEv4N9GtC34btRDkGJRMkOoMWVH3LCE3VkhkqgxgqgZESJh8Dtm63Lhobyc1r/RfDBtMIPCl1Q7YujFp6uhUjkxAFGch86toKTTlRuQJrgLens4yWcVpfSJ0QUkAmEsmQQjqcQiylCm6yYx8uiYJIMmBohK6BoAbRE9UYuJcW/4X5rwALmx96uDz2trCQxOca3nCJlNaQVU4I6sfyx6wbvBqlBqQwwT670NAuzxaAi+Dyz+NyhoymUt82kl+YHKWm4j9c9U1YT1NpcmijkVelo4loY/xnXbnz5mbPXCK8Xg7co3055wDQe751jBMQbQBZ4/v7/IF4XyxI4S/Q66GQL4bKUfOAlStX4uyzz8bDHvYwHHXUUZOu++hHPxqf//znceWVV+Ld7363y5tdu3Yt3vOe9+Dwww+P1tda47zzzsN//Md/zNv4J8OqVatw9tln47jjjgNAhm59jLsTa9euxfvf/37s3LkzWq61xvnnn4+vfe1rjW2uvPJKvOQlL8Hxxx+Ps88+e1rHe+pTn4ozzzzT0ZgZv/nNb/DOd74zMqAH2M3guTeXZNgKCdc2pATNU8OdSXcxKbShaE2hie6ohY/o7CVw9D0XqQkjOwBQ7xXPc6mm6JGApY4mkKLZwiOEhOxZBGaA+zfyyjOYBCTSJIurI6sMSDTEcAJkw/3p16NjZJyGvGDWpV0qiqUjswNMCq9fB619XLXlQsNwtfM9qF8LQfVglCEKN+fWAoh0aCfPQdSWERufwhVeDberI4zchgYvH7u0y7gDU0elbkyErqtenMo4x7aRk99Dv67n3LJTzuvRA/16elWRrWdT2v6owlhPUpIBumOFMCG+vtEw2ZgXJubz85k5YZP2zAOvCAtf6GWKBlPFUhLGw63QcTPf0CPERdb4EPw5tJ/5OyEFpO29hVRSb1373nmSZOJKkHPpbdeYPfIieaM9pAhI0aQchzm44fJmRWQruLDVzvrySrUbtwiS3rURVDlOl9CWIl7pEkZIKOOT2+Py436ZP296lCgkTmkIDffQi1SaKuL+u3OueQDrnr/wvPgaAd5bVOtFbpeZ4Dv6kmkVvZxBoaCFHqP6/ve2aG2WZVi2bBmqquZY0Rrj4+Mu2pplGR7ykIf01cZm3333xb777ouiKLBy5Uq373322QePeMQjnAHJqKoK//3f/42RkRHkeT7nfVyTJGkUvQqxatUqnHDCCXjkIx85p8edKTqdDh72sIc1lldV1dP43759O6655hosW7YMRVG0rlPH0NAQ0jTFYYcdhsc+9rENwzbLskYV7AF2L7SAdTjaaVzbV0tdc50Kpomxt/k+185Qk/HDbuIjzwYADP1905ECAHc990/Rva+LcqxAvqvAUb+6ftrjmA/szL+OXHdR6RK57i8dYrLIBUds21hOk+G3W9/v9kvKJ01oJ+z3f/rex0xw2+inwW1R8qo7Jzm/A8wezqixPVUVEkdBdRFLxQprEuvXQFN5cZZmFS8DLENSxwoVR1pcr9xalFIJ/xdMIfOiX/OKQpJ+rRLH/gurjHP0E0igWwq0NXTdFuPWfRdFakMa8eQyHRq4PjoaGLxCIpGqoV8b+J6zfC4heunXYT6xCa6JM2gj4/7+q1/3bdgaQzkledV1PO9UZhg3GkolVCWZK7kBRE3m99aTbMbHXW6AyzTn/lx1b1OSAJn13mjjo7t54XvlsicJkvphAeRRQgU1pJCNZJTY3i0x1NHIMuOo+wB5kpLEO6tY1peuHsLQ8gydVR0kSxKoVR3IFUMQHQW5xHrBlS0/ng0DaccZtXnVRaFzV7WNetAaF3UtdeUELKQuMHrRHnqW2I6qqPWmIHsPVmxMe/6891QJId1kzZ4xrpgMAMaQ55m9R5BeAWJBdzm7NpeAIric4B4/AMKHTcjDV4JKhTf8Gtrz/MPrIoMm0FobSCl8BXkBFJWxvbpImML+XFydjYVMOSE2dnm7YOX2+70RT37yk3HAAQc0lt9www344Ac/2HcrnzYcc8wxOP/8852htXTp0taWOVJKvOhFL8Kf/umf4itf+QouuWR6rUumwkknnYQzzzyzQYFmdDqdPRqhnQs8/OEPx2tf+1occMABWLly5ZRRViEETj/9dDzjGc/A4Ycf3jBqB1gY4ChPlnYgYeekyubWlrl1vs4uwmoq7XRjAVBxmT7CjqaiojILDZyTxpBCTtpCIozc1pdzhJaNWl7Wc19WIW0rAEnfz//1KqxeYoxGoftzcg0w/2BZ1kZDycTpXp10mPRqpuRWJYCcDL6RYdKFuxN0e7Iiy/o1NwKlHdtXK8xO8689H0rPojSlLcRa6YiSDAAqlUiXJNCFhuzKudWvOxmdlyopvxiALHJkaQeVKlGYnOwQlC4n1euXoc4b67gAG59B2yH4ziFt29X18Ta55f26fdaiubyM9xkGh7QAUiRR3nwv/ZoZoGEHFdajyc5oN7Dvj/r1tEpjuh5QGqhkCWkLDRVVDpUkUEnQqsNod1OSQOYklFKS0CUJ3byS4tMhz979DNycmY1hbVziPJcwF5Ja5QhFbiED7w1KlyQoxwoIJaAUGXTDKFupEkIKVCX9yOlIinQkQ7IkQbIsg1iaBkJnm1tzv7EkA1QGA9+Mve0GZGgYR03mFNTpTGi9PE7u+ynyAnpFbfuJ+ob9bbnXF+fS8md+0LhcWxHkEUxxmsz/j5PQRWMdP+4mlz9irNsdsQDqQFhJGI0TPBY6J0TSCn4gdG0UCf7ej3fyc1xMOOyww3DYYYc1ll955ZW44IILXCufJEmgtXZGqhACUspJCyqtXbsWp5122pRjEELguOOOw3HHHYfrrrtuhmfSGwcffDCe8YxnTNpmaLFAKdVqoB900EF42tOeFlWrngrHHntsVCBrgIWHUucQQtIr0xeF9O72knrN600foBZA3QmiJ9oet+rZ/9a63+FzL40+j73lSW6Ojh5vSqD7T093VU31aA7dLdG9L67YrTXwywcdiR07gT/74/xGbvV3zwJWLgOGl0CsXE3O5+VrAZWhkM3IiNsuSP/pVeuC0RbF4fkuzItrq7cxF9iZfx2Z6mBIPaXvbTiXmFuiNLszDLAnEXYdMZqMGYUEhc6RqgwwGenPxjqahIRIMhjkgSVpn/1ctYnRFs3VpKc1UIbU5YBvGm1vIJSATBWEFHOvX3PbMkMsUZjEFdBSknSNqRxS/UIHzX3aDNx+mJBkyDZbdIZGcF2/DvPy2aidSr9mpkVU+dlGajlgNBnuT/p134Zt6GWoULpcSv5B8qqLLOm4h3m61E4qVUlGbZlDVCWgcpixcRI+ru7G5clDrkJ8BRvvRSKBhBtOC8iRDGZIE5Wh0JArhpAWGmpIQabSCiDtf2VRQUgBZaO81YSnMQgl0Vk5hKSTQIykEJ0EcsUQ5LIl5Eka7gDDS8io5cJZUjaKqChB9AkpysjTkUC5Uth1z06detyG+s3LAiUNUZITphfU83V5O0PtCfhzIpTNyQW4iXNIcwA8x5/LoHN+tTBkrDJV2dGw7eRpbPU2wE/q/BCoT6wSAsry/hs8fGOcF6l+rdp6aCkBDCWiIZiVCTxK2kD3qMYGWIFCLHSVNlC1DVRIr7+f4OCDD8Z73vMe7NpF5Q+LosC3vvUtF02VUuJ5z3seTjrppD05zPsVpJR4znOegyOPPLLx3YYNGwa04b0Qhfa0fCUSSCMhlK2sajTNv4B9dsO6zzWl0tRrVEwCkSq0PSidU9n2Ye+laapEINEGnd1xC/L8nKWOxmgHi7oiX3e2tqUAtUNDGwEgiNDaqAUbt0BQMDEoEmOi+b5mLE/D8O23oA0jpDDS9mba+xhg/sCyTPeI1bWFdo4Yl3PLBpG9X4SQMB2r1HCxKA4CMR+Yde2QF8xwebese/u0OQe+yZmKnEqoIWWHsQTpcDK3+vXIMERnCEg69AxTmde3A/ptL7QVkJoMtkxTwKQgHblX0dZmFFdH3/vLJijntiqtbk605FC/lpbxQQ4xTKlfh4ZsfA7WyISwEdv7t34942aGHLlVIoGSCXLdjR6cpc6RJBnSbBiYGKWb0k604GziME82LBIVGbVs4deukBVEYX9S0UmATFNubWWAZRlMpZFpKkcuE2k5/QqiQxO16CTkab6vC11pSEXHF8MJcf6X0qscTn01umErgDLx+Q+Cb87AeAOgrLDERaNEj9zaqYWx3ZNshY1qVkMaES1vrGt3wW2CpPTjYZhgIo63p4mckt1ltH5l+f9hpFoKT7+iZe03KJc858pqIUKhC0uMV6ZV14IUggSwxtUH/G3nBKkyyFTT+96WOxCCKRzusx3I3kpJrmPt2rV44Qt9Zc4777wTp59+Oi677DIA1BLnIQ95yMCw3Y0QQuBRj3oUHvWoR/W9/gCLGxyxdcVG7HwsufYDF5IyGkKXMJn2UZ3OEPS3/xZmxy7q/b6zQPrKdpr/kvf8d2NZ95+e7nvLQ0d5dwApsEKRsiukQJIY7BZSRJb6/r1hjuIMUaczNo1fnvMRGbf0DX3HOlE/1ZOvuuvddn8SmUqQqQSJyJCpDhKZYUky0jPqPBkOWfFaAMAN2z7UUxEfYM8hLBzkAgKSPgtjc24l1a+BTsgA5R63uoSpSmJklJU3ciUFf3z3ERHr2SHYgLA5toatFs6p5VcpIFLpjFaZSCQdNcf69ZA3Zm3HFc4znmkV/ragURiRrbcB6lUdeLrOIG0MclMhkaSbh/sKnweczmBsYak2/dpXPY7r8ISf22yE+6N+3bdhm1cTkIL6MEkDVyxJS42qKqEE0SbYy8ERSwBIZQKIILm7Y2e4vKBZgLPMuVCUrYoW9dxqK1POfW/pIBTKzzVRo2An1+EE2aoOhE1QRyqphYGU5ILQBqKjoIKrLYZTmpSHEtpu6RCNOUv9GNh7Zj3CicwATeXamYqsjUYqU+cJahZO8vmm/WCy9bjNT+hVck2Zg+1CLj4A6JZJUtgILVdr44mZqNbayRwXi6JzLf1x3RgqSBF6iGNDvl69LpEKhQ4UBTsaSINa/aKopHjcPJrLmVtqRBU+0NjrJDBuy9bltR3ntZL2LEx5ZWzeQFMilRR7FQV5tqiqCt/4xjdw2223uWV/8id/gr/4i7/YrQZVp9PBX/7lX+KQQw7BN77xDfzqV7/abcdeyNhvv/3w2te+Fps2bcIll1wS/U4AtQ769re/jR07duAxj3kMnvjEJ+6hkQ4wGQqTQxr7nLY02wolUmWrJafBs8xoypHNrAU6bGzktoQoqzZS4uSoPfAEeTwhNSm6uhBIl9hIjhQw2kBlzQIvc47hJWTUqswVdmRWVaXzKHrK104LTSkzMi762Ia64thGS2aFVXE0RtS+s1MSFZUxjmUFyMD5TYattIEDJRIf3RFB5dQB9gqExaOMrXECXaISvq1mojJIBN6hKrcBIw0hS5hOUPQpsS00XSsfGfeGdW19WpgbLLOKjFgggSg0MTSsLAs2YG0/22np16miZ8VwCjGkmvp1oigIxvLLsmwDSJwjHrIAueCWFgUSKanbR5T3Khr6cyjLdapw2LkklnkZrOOPD86dF6z7CretBOm29CejGjZUVb10v3d4iLp+zYWheqE+/vuzfj0Nw7Z0D1yIBNpSJ5TxjYX5BpPwRpGERJoM+x8N8F5j9jDxZzZmGz23pOfdh+Cqb9pAZCS8BjlMpZ3wiOEUahUJlehQCyFpX4WNrZuaJ0CkktYfSiASRfQIZ2zbh0RQGEtDu8JKicyIQqABoHSfWSCpl7U1boMeU0Bv+nEdzcJPvndtPYE8XB+AozJMdSwZGLYV5w/7pODoWKXOkVel246/802v4/V94Sw/VikEEqGgAuo238yh4zCEqj14WOho3yR0deF0TaZrnH/2CnFJ8bp3KNcaedUUPCUBZYjmkSnRoFLcH6G1xqWXXopLL/W5eq95zWvw5Cc/2eXi7A4sWbIEz3ve83DyySdj48aNA8PWYt9998WrX/1qbN68GT/+8Y8bhi0AfP/738f3v/99vPGNb8QTnvCEQYR3AaLSJSqQE9lAQ0qahwudQ6kE0gR9bvnPlSq1iq4tyCjnoB+xkAJGCqghyr1LrINYpRJaG0dfnFd0MqIwhkpxwKpqV4ats1YDiWyPyMbLEDGxODeOadl+Hc/cqtOSw7mbNVnWBRLJERZqCaJE4pRhxmzydTkdqF99Y4D5R2mDQmTgJvQqEmfwMlU5U5b1aDTl0EtmPJZUrFWXlKPLRaWA3vo1F2J1NGThb3cpAWm8EVokMKoivbgyMFpDVElk/fSrX7NVJFcMQXAx1kC/FqktzCqTiIbsate03PvcSiuR/hmj63137e0+VYCoF1syjvAaq+sGxi282RuyN9modHJdL0QH7k2rIwN3Mv06HBedvfHfB5Fd2v/9T7/u27AdK3MkkryIAjrKuWV+eGUsL1zSOoD9gTkX1UY4RZrRz1BvHs+GY9jiR2s4aXOTcUBjdpnKNqroaM7WmFUC6CS2D5ctKz5Mp+2MXz5++CtJQUZtOA4pgU4GEVAjWNjCqmVhxJa9LZO18XGTXFi9rCXa2uTWy8b6bQgnsFDwAcqxZaFLZOaEjh0Vdi0YaBQmjyjXJqCe03FCr5c3cMPziCLJtXPka6FEfC5KcN4AXwc+Hr1Wbt/8OaZH8Guh6S+vNPJKR5XYlF2v7lFi8GL2KjmqhBYIbbX7Cx15urjmmmtw/vnnu4JSBx10EJ74xCdO2mpnphgZGcFTnvIUbNiwAevXr0eSJHjCE56AlStXNtZ95CMfuVuN7dlix44duPTSS3H33XdHy4UQOOmkk/CQhzyk730tW7YMz33uc3HiiScCAMqyxP/+7//i97//vVvn6quvxsc//vGGYbtp0yaMjo7O4kwGmC1CKrLWtv6BTFyakAx7YVYloDKIzhJSfqUkxTYsYzoNdN70n9Hn7j893bKmAKVJnhJr4OqUKquaofl/Noqs46M9HOlRdE00fM9a3TA0rVO+YeyFjtp2pdetaaOqjHCuDvNrpZA4YuUbJj2PjdvPc5HasC2INsSxqqCxPf8qAGBF9pypL4zFVMcdYM+AO2dIERhuEpBaApKKSkktUSAoJpV2fMBIW4OokhDDgOFOI6Fs1/Vrfg11aebRSwnBNWwggSFLL04NBY60oarnAWV5Sv26BjE85Httd2zUtjPk5ZdTKmTiqnk7pii8HloHB+BCI5DkRjgjj6952+8wHYePZ2P2Hktk1HLAL7CfgMCoNdo1aOqtX0vLHA8oyEFga6BfT8OwHS26SITEcDIEqbxnUkO7RsKAzb/UgJS+7UtlSqqYzFWTUw0hE5gRrnZszypLneAJKUk4ucAUV1DuDHkKRVkBIK8UGbQVtfsptKNTcOELwfz+VBLVmJtUh82qOfk+BBfcKCsa19Cw5/wLKpoV5tKUOkehczd55tVERCGoJ3SHxiD3uwr7T4XbcbTVD417b4WGo3HCROuI6DWpeXzCPJ5EepqLkon7jZUgiltVUf4s29BckMKPR0THY89OG/WaG0jXjXymZ7VWSGtx/LVd11gAvcAW2qBbaowXGuOljo/BglWTu5YUAeeJqgznEIjW8Q3g8eMf/xiXX365+3zqqafiMY95zLwYtqtWrcLrXvc6nHjiic5off7zn4/nPe95jXW5gvNiwdatW/GhD30Iv/zlL6PlSil86EMfmpZhu3LlSrzuda9z/YgnJibwqle9KjJsf/CDH+CHP/xhY1tjzIzznQaYG5QmhzASuWXXSJvvKiGp8IyQUGkQ4eF80yqHEGMwifKFZepO5ulC2blWSaIdW61IVb7jQSNyMx/gFnxJRq8qcfNxGLGtR2+1gWOaUY2J+r3tYzF1GGhn1HKF09kWZspUxxm0UaTWFrahDwP521vgGZEUuXWsPwnntGJWgRTSdyDRpWunSV1HKCdVJLo//bozROtw9FZrOm6iAC0gtIaRBgJUwwZVXBnddCuYoupPv2YwFbpj+wHZiK1YssTLLzulUkrtK6vYsGX5dVWCOcXAGn2sGwcHtQP2UczJwHr5ZEZwHW19chOpbDBQNuS50RLILuNzCoNINCZRG5MIbAs50K8D9G3Y8sXkkPiQklEebVjpy+Vmsl/FWKouCyPnBrC3mD1G9rOwPbtEkvjbj/Nttaa8gTIHyhKmW8IU2tMe6lculZBDCshov2JIUYJ6KHiMsoXuDPgS5FxpsVaUwnldjKcLVAG3PabnekqDtBWJGY38W3tjxE2XvWAmCGgXtRu1XmKcBS6R8THDPJ5onFwUpIZeE3Y9EuzHSwZ5GURup5+AH++zvTG0f88UiQnbV4sFbKIKKBLGRELmGkvXlC9l4sT1+gMh3B+vu9Bx8cUX97Xegx70IDzsYQ9rLN+yZQt+8pOfQCmFk046CUuWLMHjH/94PPCBDwRAE/FVV12Fm266yW1jjEEV5FvMh1G0YsUKnHTSSTj44IOxdu3aKBK7mIzXNtx33334yU9+gk2bNuHee++NriVA1/eqq66a9Lddu3YtHv3oR0fOhPC6KKUakdn677YnIITAwx/+8En7Cd9555346U9/iomJiZ7r7G3oO/qW0Z/Z9XUf4VEl5EGvn7OxCClhXA4d0RgVEkAb6IpqYYgZpmlMfOTZdp8CclkG0Uko2tMZslWQqRKyWLbKK8RB0RljCxuyrsLzD0dI3DnY/FdWjmndqe/9kH7MCI3bkIZ82IrX9XXOB4z8zZTrbOl+yb1W2hcfWrf0ZX0dY4CFgzxI1SO9jSrpcheS8WoUspIYUsN0n0pAccVvZkNmw77Npi4hhpfCZLnXabngapt+zTq4pSC7SG+SkHELQFDT1bj6jxIQuZxav2Y9H/CRYtarO0M+L979UeGonixI1I1C2VxWKxI1WY5tvLxNnsP6Ne06LOfStunX0rJpGMyu4Txa2q9/ZaOWnx0LXb/WBuiWxuXKuu2CSCx93j369bSqImsYjJUTyHWJRHovMQDkhnjgnYTXpclEQLqet6qzHNz6BwBEZ8QKVEl/LKCAL2euMiDJbW+vwAguS5huDr19AqZbOfpwFBvXBmJpQqXEOb+AqQ/cOZqjsb0S6QHH/xfDS+nhATgPOFMiKl1GhiBPjlTYo7S9a7mJu08m9zx6jbwiwa3fpFzwib1M7rM0jQgsITZow+bQnSR19CbAVtG0Hv9EZrYxeCxoAFfriwUmziOI1/djJ6EbKyaC7eLc4qjtAbxHqgh6WMXeI6I89EooJ0qEwVhpsKvw+84rg7wij1JemUiYKu1pEBEqAyVjAeXtMiVRwYDdUYslv/blL395X+v93d/9HR7ykIc0jMKNGzfiDW94A4aHh3HxxRfj6KOPxpvf/GZnrBZFgde//vWRYbs7cMABB+Dcc8/F4Ycfvlf0pQ1x66234i1veQs2btzYarxprXHxxRfjK1/5Ss99POYxj8HnP//5eYmSzyeUUnjhC1+Iv/mb3sr+j370I7z4xS/GPffcsxtHtsjAim9Y72KuoIQrJuMqjxRU/0IBU5fCnGzX+w37ehfcR56LzVgKoxga9pFa2yKkgkbFDCrTnKMBn5snAYq3CJ+KQ0plrBOEcymv16vaMc/3oYI6l2i2/OhNzxxgYWNHPg4JgVyVnrpqi8EBQK67yKsSK4ZWgnNxO2rYR24Buu+NBvIxit6mHQpnuP63Ob0H2vVrwNKXhYvYss4tuBhV1MVEQLC+3Uu/BppMSC4S1RmitL6w0Juy8pt0iG1RjaEyJXVdsYzINn07BOnesb49OV04lunJEAaZwlcOIk2mX3PAT1tWDReuy6tulB5haq8LVb/eWVCElnVpoiDHhilRkne/ft23YcvtYXKU1kugoUTpwuvMaY9zMz200eRhMmyg2nU4Fm0rFwLwxq2xRqzNZwUstSIno9ZMlMTztxfITZ5ByyCRqljo+M9Vh+MorQSkpl+VL2BIpUiUnzR5XEkGY/NO+cYMvUr1frBtNya/r3/f9pnhefai9VpHRaVqlIpQwJg2xe+jY0Njohqzl5bOqbAPlzAXF4Br+RB6qcM8BwnjKBD8u3Kug0/CjxF5fXrQQOqJ6/5WoDfE9w+9R96j1Mb1r5cZd9tVaElqt9czGPpiya99zGMeg/Hxcfz617/G9u3be65344034nvf+14jinfHHXfgwQ9+MFauXInhYXL0hH1SsyzDgx/8YJx66qm48cYbcfPNN8/LeaxduxbHHHMMEkt12rBhA1atWrXoDLd+MDIyghNOOMFFxeswxuD666/H5s2be+5jYmLC0Y4XG9I0xZIlS7Bx40Zs3LixcR7XXXcdiqLAyMgIHvKQh0AIgWuvvRY7duzYQyNeeBDpkyji0gPm1n8GjHbFZ+Thb53GvnkeN/41LK05A+j/oMijXDrk5+xOFs/liYJIwpYgidMldEBbnK7BV5+7G2ObJBcvnLdDyvNcI+qJOzBoFzUo8CGAanL9mnVLYahInBba97jlIBEHiEziUxD4Xgl1rbp+zX9sFWgOJAmvr9eiv25Zm37tuprU5ISZmbU8WseysH9h9WPdQ47qOnK9V/R00CbT9Ro3veBpwjHlONSvw7GRcd6NqMd11M9loenXrrWPNWqZmhwasi5SW3uNjjMP+vU0ikeRR2AMZPVnlgaRqQQQxCHPFEX9Qo8F57aw5ynlhsshFZGjoECcN8KCCgBJTlXetu2kSO3WLkxhc2q1pqgtQM2eh+3srQRVSx7u+MT5LCWqBOAjvGUF1CcGKalR9NCQfxh0lgNLVnqvdzaMKiePEvdw5ST3UudTUhfK4BqEFGPeJtw25O/LIC8wNFrpc7ycqBBe6Pj3CdcF4vwiAfIi7ci3Ia9KdKvCUaMTqbC6A5eP63r0Bfm4AP3uiQSkSFFqpjgb6/GSgecwzncIx8S1CXpBc2K6lbyi4pxeMmrHiwqjOd0Xrqy4rb7GBm9befFQgFhIuSKbEsIdLxK6GrV5IePiiy/G7bffjpe97GW46qqreq73rW99C//7v//bWH7cccfhvPPOwwEHHIBly5Y1vldK4eUvfzle8IIX4H3vex8+/OEPz+n4GSeeeCLOP/98jIyMuOMuX758Xo61p3HwwQfjox/9aE8Kd1VVeMc73oFPf/rTu3lkuxdf/epX8cEPfrBh2BZFgZ07d+Loo4/GRz7yEaRpipe+9KWDStjTgZ3bBNMZpwExnELYZ6qZoGe7mYVRCwBYudzSFgNaIyvNbNSmQYQnaBHiojpBxDTMXXPjFhLSwLbdoGVcF4TRWtlfKKs0aqIv19KSAETHbaMrzxahMeuiO/NwnAHmH5ziV5pqUv0aoArJlS6Riy6USChyKxOqmCxlHBgCSJaNBlKbh8v9rev6NacDaj153RlGOBeF+nVnKDJsRUiZBmInlC0o6wzchKqaM/W4MHkkx6FMMcJ7P5SJkA0ZDbuWX8tpe43TCyjM9SBUo3aNpSCHtGPWs3lsbfo16ehDcdE5xM+ncLgLSb+utKFc2iBgREEj4/TuUL9uM0znS7/u27CNvBWCBDGXpa32xYuDIgeGejS11htVCVV1Y8HjaG3YmoCO6o3IsIhUoampvDVqG/F0bahCIyepA17QWrsOy1hIw765LIycUysl2cAycfnDuiZ0jd0HJf2b1zUWmF7wRm1v2lPbNr4SWuI8SKEXqT5enuh5bEx3iKoa2/dt2/JypmKHOUpsXPtWQLrxkGEo4XuCAQLFJMn+4c9emZhewRx9+mw9SdrTHSC98IVJ627fAUWCiznw+Jyg2QvWlgi/EHHLLbfgrrvuQrfbnXS9brfbus4999yDzZs3I89J+U3TFBs2bHAGJkARxpGRERx66KE4/vjj3fKtW7filltumdZ4b7vtNtx999244447ouW7du3C5s2bsd9++2HDhg0ucrs3QimFVatW9fy+qqopI9U7duzAr3/9a9x+++2NfW/YsCGKui8kGGOwefNmXH311bjppptw77339lx3YmICt99+O5RS7v4coD+IfSlCau75V0BpmD+eT4Wm+sjFFVLQE7oycUqQxdDffbXvcejvv9bPv432f/69SJJYOQ7qXkwX7dGg3j3mW6M7iBXscJ9s3P5h2z+7ZYnMIIVEJjsuFWh156/6HvP+w2f0ve4ACxuRHjiFfs2tF1vZkSwDHKkFvM7K+qsJIrisb5eVZSvy/rSX4RZ59lWUgxxa1q85bRA2nzcclwwM2vBzTX5Z9+znmk2+Tn/ONdJJOerpDd3pyH+IXo6spn4NcMGwcNu29IaFpl/nVdOobdOvgclyaOGXz6F+PQ3DNryJJHbk4+hWBdaK5ViaJtEPUdmGwyr4caWQSLnq7tAIVVgruiRUKqMb3Ca9RwZu0YXpjgM7RoGxLkxOBaP09gmqflyvO11oGFVBDicQw2kslDw55oX/TIMjT1MtciuSoOAV4IXe0iTycsx5lhxP3k5ozIuPjP1g36WunJduMoSVzJq/A50aeYv8+t6bJO13cT88R5OwORwaOqJNQFBpeUd1aBHgXr3ElEwiKnZdOUikhDaC8olhbF6xCTxeAplMqDiWjItoFdpAG08XLtjjpP33fj0SvHFqHNygXvhy4rA8fjhvE38XUpMpcT2O8lLVNoFMSSghsCSdhuTtQTz72c9GVVWNljH94g9/+ANe+cpXuuJMa9euxcc//nHXNibE8573PDzpSU9yn7/5zW/izW9+c9/HqqoKn/3sZ3HRRRdh27Zt0Xc///nP8cIXvhB/+qd/io9//ONYs2bNjM7n/oLf//73eMUrXtHImV6xYgU+8pGP4FGPetQeGtnkqKoKn/nMZ3DJJZc07oE6br31Vpx11lkQQuCuu+7aPQPc28CpQmoajiIV17eotwKZFpjaGBqynSEfuQWIScVRHhUXi2qcjs2j1brpeHaRoIDuOFnRxLi/rUSpK8rnIzcyALh+77wfP2fH+1UmGRCIBwAAV1cFoHtsuvp1K5xhmwCiRkU2GjAUwTVFFxgds+ty8CZkTpr4MwCMdX27sI51iLLMcq0a1q/rRmy9ACvn2XLkViUwujtpv9o2OyxmZjSdUs1Irf0sKAgUr6+b603yPtSTWZcOf7Ne+nVelRgrx6JI8MqhYSq8hzhFcKHp1+OlxmhROdoxo65f8zIAu02/nnGIg5Ooc11iGNrTeOwkIQEKg7d5VWQClwugS3/Dc7NplGTKs3Ebtvfh9gFhMyUgjsRS1aY4YgvE76PxSD+Zao7UBp4lRt2jxIJUozmFnHkV3tw9Kg3T/uyNHfXaCrxnQENQW0+lVgVZQLpJt27UCs6JNk0KE/f083m8OuLrh/QqN4GDaGxe6OrR3ql7hLnjGW2rfNOxZdB7q1mxLRQqr0/FxaHY6yN6b6v9ukqKhrDSsf1yWjemJbRRmxcaZpvzOjExEeVy7tq1Cxs3bsTatWuxdu1al3cLUEuZsH/shg0bcMghh2DdunWTVio2xuCee+7B9u3bsXHjxtYxj42N4ZZbbsH++++PjRs3unzKJEmw3377LdgI5J5Ct9vFrbfe2li+fPlybNq0CevWrVuwOalbtmzBli1bplwvz3Pcdtttu2FEey/EPmcAAMydF9DrbeeR8tudALo5MDYO+egP9bWvoTd8fdrHl39+fvRZ/+If7RfB3BwqxqyMA5NGbMNuBWFEtR5ZraNeG4P21fs5X6+rUd+m1zzYi401wN6PqMCPkLPTr+dvkPZV+78QITvSrmcAV4y0VZcOqdM1/RpoD6DMbOjtjAyA5FLDADVKcrPTiKckx51Oekd3Wa+eTL8Ou6BwEEsK7QrYLWT9OtSZgYWjX8/IsNVGY5eNNmYqgTYGHZVSDoCE9TbUPEwm8BQBdAMnGSW4c8SWL3h3B0VzORcgL4Adu4jvbw1WY+nI3D9LLsuotU8ngRhSkEtsLq3NxXF/bYYuUydGhuPlqc3b4ZtdUfRWI7i57PtC59CmbLTmyRSipO+2dj5uOPZm5zY+/H2uuaBAFV1X2ibuHRtSlqUQLoosrTHL9CcuAMUTvDaxp1qJBEvTZchUHp0PvyeBKt39QEKVu4dyPObeCgEbzXweXNZcGyvw0NBCIJXaCRztw7jP3crTJICwSbRxghRWZCO6RO+k+bpwsrBV1OzQLfP7M1DK5gfcD3WT++67D+94xzuw33774d3vfjdOOeWUnus+5jGPwZe+9CWMjIxMmg87MTGBj3zkI/if//kf/PGPf5z0+L/5zW/w8pe/3FGR161bhw984AM49thjZ3ZC9zPs2rUL733ve7Fs2bJJi08NcD9DkHojpITh6Gm/lP+5auwdGLQiCfLzOMITUhvDzYQkBqZ13nKLDW6NE7b/McE8SMtMNOfxsvC9NpVTRBPJ5DDdsl6sDLvvoKeOug1wv8Oc6dehMRem0dWcQiLJYJaPkH6dF03asRuYBkbHYPISopNNrV9rA+gKpqxskbcsDha5gFZY/M3nydZzTaUhNgQHasJKwfU8+raqwJPRiukgfP28odqsPM4ehth51QbWt1OZDfTrALtDv55xxJat9rwq0S0LJMInt4dwEb76jx8+5EMPLIMjtYD3DrW147HRWWoQL4FU0meuZMwVkkOvblukyH4f5QQ0cgH8udQrLTYnRf/e98QLha3Fu1NLSK8vb1t/Kg+NNpSs3oawcIYEvDfbxOXIE6kio1pb4W8qAQaARmkq15KIE/d7JejTeUhnlFO0moTRfttoRM+sNykFqpryFFZqA6aupNZapc16lKaDXkJ8f0BZlrjxxhtxxx134NZbb8W9996LkZGR1pzPVatWTZoryjDGYMuWLbjtttswOjo66bqjo6O47rrr3OetW7dibGxs+ieySLFz506MjY1hfHx8RttXVYWNGzfO8aimDyklli9f7hwUxhjs3LlzkCu7hyD2o/ZK5o5P1iqnCujL3wCMjgN5AbNrN/cOrkd6WtBvpKetsvBUlVB5/qNoC+ez0dw3eV5u7zlw7fCL+xrvAPcPzFq/ZtSXSwnXwSrUu5k2zGl6PQdmA0od9K9faw3Us+5CfT9cP9L95g69ck2BONLJkdtQvw334QpKhQWZ0FtX9FWSB/q1W7Yb9Ou+DduJir2O8fJuVaDUFRIpMZwS9Y9awkiX16lEEjUnjhLXAV+1jSu2TYy5fFsTGrd0hoASkCuH6H0qIZSgPnephFiWUc8t19InELg6daLxWQS3q4YI++tC0vpVCaG8V4kpveyN8fSCsKFzTEdiygGjbqD6Km6xt7hu+PZTSIppDYXOUQl6uijhvda9EObdJvb6dW2lTEpb9YZ86Txk2o1fG+rHG1Il/LlK26dNIJMqGm8CQAuDUgNhYrwSAkOJQFFRY2gpBFJpAAigNK4nV+hZqvP6lQBQcWly720K4QpPuarJ8F4krtrGrZPs8rwyyEBerOk0kd7b0O128ZGPfASXXHIJzjrrLJx22mkz3tfQ0BBe+9rX4jnPeQ4+9alP4T//8z/nbqB7ESYmJvDxj38c3/ve93DjjTfu6eHMCvvttx/OPvtsHHrooQCA8fFxfPCDH8Rll122h0c2AACvxCYJOZkTapVnwrnZFpSh4MccPQtdvq2Io02cn1dbFkViTVzhuA1hGlFbJ4NeXQ1Y2ZTCuHmt2cKvrpBpO596muFU4xtg78e86tec0sdokSFRSRi2eLkwFEMKUkUtq1F2qjgHvh/9up4+wOOQNQYGmi2yHJsCvdt2NaO1QaAp1OprUVw6PRnIsrAU7zgSGm8b67OeEi6jcQjWu1t07cWiXyshUGiDQjcjtwtZv+7bsG1jFSlBubZaaISGl/8+cf2bGlXC6kKnNVwDaTYoTU0wgmbpYogaRouUvEaioyhq64xaUdsWbtKl94HwciU3HXgypPTjCoduNGSfly3MqWlbzu9dlWJwP1gWsqbXiLZp0pHj49VzBXjypErOMJ6KxYZ5HeHDhTw+VqidR8s/MFi43APFerZK7T1L3K6I98XCHBr49mz8/msCy5Xc3E8o7B+nfrTco/3066LvgveNh3rTw1SnRLiE+bl3Ni4aVFWFa6+9Fr/97W/xF3/xF31FTaWUGBoaavTKlVLi2GOPxVFHHYXvfOc7Ud7uVMiyDHme93X8JEmQZdmU6y1ETExMYHR0FL/61a9a2zJNdW7GGExMTPRsIbS7MTQ0hOOOOw4PechDMDQ0hG63i8997nOt69bPraoqTEzs5sjh/QRi3avptcf34aOwuDCu6jvxoWcBmFmurdv/g8/ue11Tfqd9eY0K6PpJ2tcoctvLkA2jPsHcGBaUalN+25RonigOWfHaPs9sgL0Zu0W/rn/Xhql6hSZJnIoQ1rGZTL/uhSmYFW1yGBm9fTIzeskjf67nyXIAarJtmwEk+77O5Gw5/cWiXwNxBeWmodrUr1ujtLtZv55GVeTgoAJIpS8sFEYcla3A21HDWJKMOI8SqhIY2+Z3wnQigPJpq9K+5kCZw5S2rxbTj5cvpUps40SVEKntkbU0ce/B1Y05WusGr+lXKm2hKj5rVxVZRp9FvRdY7SGhoW2fWh+1lSKBsF4Y8vwW0QTZVl04NER5+GFCOPPo4/2Ixvb8nrfxy/ykm8gS0nmIMmSyE3H/Q+829+INPcnhseoesPpYvSDqqNof5zBQxWJv0IcGPHunqH+upyAWWjuBqcsFg3n/gBceJYSreswIvUl5FZ8LABhtC5QBqCTldKdKEuNdEc+f+P5N79L9mZLMqKoK//7v/47LL798ynUPOeQQ/P3f/z323Xff1u+llHj+85+PRzziEX0ff2xsDF/84hdx/vnnT7nuySefHOXnLhbs3LkTH//4x/HLX/4SV155Zes6J510El72spchTdPW77ds2YKPfOQjCybSe++99+Lss8/G+vXr8ZrXvAaHHHJIz3VPPvlknHHGGa4y929+8xt87GMfW7DFr+43SC0xz06tRu7m56GUbh7jOhicJhTOca7PrX216mLDCe0VXVII3Xzm0otIP5EmnItjp3LbcqC9UNUA90/sFv06DBxZlqQpc9KxuxP0d+822m7lMs/O0NqG+loUr1DPLkvbbxqx8Zso0qmLLh235BZdthJylfn3KoOyfajD6CfroizLYY2berQ2KqjUEq11rXAiWQ8dW+Fp9seKpFft2nZ11DAy1WnVr92f5o4qZfScWEj6NX1n0LU9bAEboW3Rr8O82/GineEC7B79esbaHCciey+BjToK6YQtkx3Xsge69O19uNw3J7yXuf0LBJCNWi7sxO14lA3T2SJSYiihKK07I5vEHlVwExSN1dZTGlY+ppNxm4uQMgE0aRyBpzecmCT8NtpNej7nhopLtHb1bXjj+OblUt39VDrj7biFEHtucvtQLCtq/D2clO73SWTmHhBACQ02rHNnvEvnDWx6ecLxtnmQeJmnaZlaaXWKGcP4flteYCsUuv1hA5AHSEYV1Dz3v81z1IvXHwpb/dVoQ/eYFCgAQEm7T55kSAgzJRv9b+/PMMbgqquuwlVXXTXlug996EPxspe9DKtXr3bL2FgBACEEjj/++KgX7lS49dZbccEFF/Q0+EIMDw/jxS9+cSNiLISYtGrznkae5/jhD3+I7373uz3XOeyww3D66af3NGw3b96Mf//3f18whu3o6Ci+/e1vY99998Xpp5+OQw45BEqp6H6gli0Ghx12GJ773Oc6h8QPf/hDXHjhhQPDdg8jfdmXos/5+X8JSIH8k8+lQo8M7lzQURCpomI0rEhbB7X8s49M+/hCnooEpNgMBdPtlu6X3FxXmTJSOMMCiv2gdQ6Ej/RMHYVq0iH7wZ1jF6G0TmduL5hXJY7d5y3T2s9CxMr3PgFVXmHnu76/p4eyIDDf+rUpS69fs2E71oUZHYdIJAWSZBD40TrWmd1AAxqytushCDTZ4lS0TulfubiVTpo0afgirSG4LReAnkZtlEowSV4t6aOV06971bwJA1O90hF4eylEQC/OWvVrGDijtjS5c7j1cqi5c9mD+nWh2743Df260oFxa6n1wurcu1u/7tuwDW2CMKzM/ZESKZ03aUgNY0gNe4FzObTWQ5DzDW6NxnwM0CVMkfsIrcutNQ1ag0iVpyCPDMeDc9Fau402/ngsmNrUorUsnBXlGdj9CaOJ+8+wY5IqQ6Y6PqKp6YHjPMTwwgBXkUxGN2soDK7/FXwzbu5BG64PIKp6XJoqEmY3TBjkFUW2u/Y1sQKncR86KoVY4h+WzSR5DW3YQ0R9+kodC0e0fkBtCIUuGndt/PVqbvXt+XuG4+YbTuXyObVcP4yKLWhnwLLXB1y9rYrLk1fGC1obRIsh3AvZ/bEc8hzgj3/8I8455xxXIXlkZARnnHEGjjjiiN1y/CuuuAL/8A//0IjYrl27Fq94xSuw//7775ZxDNBElmV4yUtegkc/+tFu2aWXXopLL710D45qgOlADKe9n6OZdPO4g6ZctYYmNUtUunQsK1NTkNvA1Y4z5aM7UihoHSvCoVPZzWU8hwfk7TpjaypndRtKnTs2VaGLyJE9wOLGQtKvAVBf2yQBssSyHJN2w9adgGxWRWawrJWlV9jQW7+Goo4dBj6oUui8EfkMDVq3i+BzLH+eTluX3TY0dfVQp29nTmpjsH1iOxm4PfRrZopUtoMKyzDpvO3PooWgX/Mfb6WEQCYlKgXkVdUwdBl7Sr+edsQ2pNEDdEEzlSARynmTUlvimgXKeZL4IcxRULvcTEwQjSGM0IZNooOLI2zBCidonSyO0Hqie7B94G2SBq5fLhvALIxlMElICYMcItHNCm5VDsWJ7kJDC39DVqaMJrl+PT1cPc0Y7W7SREhoGCQ20tvIpa00YtqCPw4LTWmpUplMKHJrKoyJHCPpGDoqzlv0glhGDwifjB+3Kmp7MJROCHtTsAA44dQ6ftjwvitj0CYT2hjXKJorByoWOmushhtGJciDSC5HeNsEL1zWJnyVBpSi/Sj4MuSLoYftQsM999wT5VGuWbMGj3/843ebYfv73/8ev//97xvLH/SgB+FZz3rWgjVsjTEwezlDIEkSPPnJT46Wbd26tdWw3duvxWIFR3CrS17ii0xZJM///G4bR73q8Mbt50WfI/ZVo0gjVS09bs3bZj2OX93zXkghZrSvA0b+ZtbH3xP4y/9+CcYLjVxrbO9W+PnzL2mss+0f23Oj729YMPp1NwdkAchhshK4zVfkhAp07qBievy99n1I+fjAlPq1UNzSR1pjy1OPAVjDsD/Gg9M/gzQCrmGDWvqBFMJFReEqn3sdfTJoYzBadKGNmVS/Ziqy19E9hTpef+Ho11oIFDCWHkwGrpICmaUOV8FPoaRAVfU2aneHft23Ycs9jTgIGoLoEsKVsE5stba4GFRA6eXPurReHLu8rHwebN3zkyhguBNHWpmiLMMKQsG+QjpzWFmRo7p2W8HtJXh713xawWhN9GSuvqhJECuTR8nfqcwgDRumsSdJCtWIctYrIWumKwQ3LHuN66hXRQvBfc+SVEEb7SK2mUogQfSWRNJDsk6zYIoElxHnKm0AnJcnFECf3E7jyXUtV8CN3Xrhg228FwrR+iHPv9CBn8I6FisDTJRxBeRuRXQJwEdugSCX1rTTk9vAQscUCQYl1wOZlFiSSnusuLfWgIo8e4yNjeELX/gCrrrqKjz1qU/F0Ucf3Vjn6quvxv/8z//giCOOwNOf/nTccccd+NrXvoZdu3YBALZt2zZl79upcO+99+KCCy7A2rVrAVBho2c84xk4/PDDp72v++67D1/5yldw9913T3vbgw8+GM961rNc8axt27bhq1/9Km666SZs2rRp0m2vvvpqnHvuuRGVN8T27dtnfZ36wcknnxxFXafC0qVLsWHDhtbvHvvYx+Id73gHpJR43/ve55Zv3LjR/f4DLDyIJSnEAilSBsBFfBhhDYv2go5z47Scq/0sJjCNsNLNojADEBa8fl2rQ9OANn7fHR/djerVJIra/sxQv64MnauGBqfa1asC01BCQ9UzJTgVkCm7JPMqylOldUvoWvVdpvYyi7IuxxxA4u8n06/ZKOdIbVhDJ3o/j/o1jcsbr4U2mChJjy40oG0lZNav+b6soqCRjdwqiSUpV0OmnSoloaWBLuNn/u7Sr6dFRWZvkjaeeuMLEikoSWXHU5l5Xn9IlXBXmITQ5IWPkrLlUlbNqKqjOaTA6hV+fcALGhuwTKvgfXHTafY2cVW3REFkqS81DgCJBrQA8oDGDB2vA1jBK53gCduIWRjpClEIeAM3RJuhygiFNJxcfXI5fS5N5ShIdW9T2OuMfx9tNDpJFkWCAaJhiVDo7B8br92qiCLLvM+w/HgYxS215+2ryGi317Hl/Os3K/+shQaKykBK38CZvyfh84I3UbVUaws+t/Hz2esEtHuWQsGTTGkGLOe/RnV2xxkYt7PF2NgYLrroIgwPD+Pggw9uNWyvvPJKnH322Xja056GJz3pSdi0aRPe//7346677pqzcdx77734+Mc/7j4vX74cD3rQg2Zk2G7ZsgWf+MQncO21105725NPPhlPfOITnWF733334VOf+hSuvvrqKbf9xS9+gV/84hfTPuZc49RTT8Xb3jb7aBdA1+Pkk0/GJz/5Sfzd3/0dynJAxVwUyII87wWQu15ocviGzKPQqJWC5lHJaUpzZI9OFfXZG1GZwbw4FRaNft3LsM0L+gs6kjTq1XDh1lnq134Z6cbNSKcvmhTLtKcMR0O3+rWTTYVW/Zr2GVN+6+l5UohZ6dcAdot+La1Rqm3kVutAr7aGLAWMfI6tc1DVRDlTAksSOufxklIBqT0PjWpP6NczqoqcBs/mRFLjaM4BSGQGpUHepLb8FUOeJBgNjI3HDaHzgg6UAJDKVzhmSOmiq36Z/Sxt1TRHuWAXGFMvhBfgejsgpm4w7DFFElRv44R8mQBJBpN7o5U8ML6ScJjDQ9fOXzwuw+2LMoU0KA3ugUvrcM9bGXuQTDhBeq8QCZWKttXKuOOG+bmVKZHrLp2nkDR+m9CeVyVyXQaUDI965Db0OBVa+8B57QZMp5jPeTsWmqIyGCsNUknbMu+/CIQrpFNUxkRV2ehzXL2N12MoKVCChKxOj1BKOtoFr+s8SJN43RcDHfnMM8/Erl278J3vfGdOjcG5RFmW+O53v4v77ruv8d1ll12Gqqpw00034bOf/SxuueWWvlr7zAZ5nuPSSy/FnXfeiZNOOgkPetCDprX9TFvq3H777bjooouwbNkyAGRw33PPPTPaVx1Lly7FE57wBOy3334AqJr1j370I9xwww0z3meapjjllFNcxFUIgYc//OHT2ke328V3v/td3HXXXTjllFMmrY7cCyMjI/jzP/9zd24D7FnIJ39qTw8hwtGr3wwAuG7L+6LlPC9zG7xedShmir2h0NOFv34VupXBRGUwVlBEZ8xGe3bllat18ZW/oBSTbzzt3wEAj/vK8wEAJ3zxdIwXGuNlhY2v+PoeO4+FhLCI7ILWr8P0vtBYdumB0kdqwzHNk37NRbZYF6XCSToyantFWWejX9M2XveNc27nRr/2hZ70nOjXzHIMT7QyPlI7ZpmQhTY2gBRHakfzKi4YNYWN2aZft1GPtaUcA1RxebzgOjnUR7fSTd19Kkw7x5YvIP+QmUzQUamjR3TUMDC+wwtXvX9WSJHYsYuqsYVgIzQZAjpDEEuXeWENPTuhF4hGYhfnQGL3z3kEZeWN2kRBDA1FYzKcm2DHKrIOHYf3PTQMDI24ZtZcwAGA88bwsomKClSwMMURWOF6j/HEGTaQV/ac2Pg1Rtv8UeENyWB/tK7/CROhyIAV0lKStds29kpLaFOiW405r1ihC1d1jSPCvsR4TKkI12E+fkgNroOMPeO8ROH42TitC123MthZGHSUv+cqG61lYeP3eaVRaYPxMjBs3biMM0rbxlY3ahmZIopFSIUA0FpZmfMLFgvN6uMf/zhuu+023HDDDQvWsM3zHBdddFFrH1OtNbTWuOaaa/CGN7wBxhhUVdWyl7lDt9vFpz/9aQwNDeETn/jEtA3bmeKGG25oRDvnKkq5atUqvP71r8cjH/lIAHSOr371q2dl2HY6Hfz1X/81nv70p7tl060uza2MrrzySnz2s5+dkWG7evVqvOlNb8IJJ5ww7W0HuP8gzKUDKBLEBgQAKJm4qqYDELbnGmOFV4YLbdAtybE8XupGGz0GzdN7YMCLAKyCpByDWaj6tY0SG2ZHdifIYA7164A1ON/6NRmcHOFu5qiGRVh9r1/Wt5NZ69fdskD4/Jgr/TpMNSy0mbV+zY6TovI5tDQuuFQ+SvGzDMiACUkUY2D7RIm8MliSyEYktRfagkbhq98H0RUoOGWjvvb+YL16XnJsU8k/tHKeC/YmUf6mdBW/kGRAxXz50nuXbD6AYXpw6PUBYpqDrgltSOERQY4AUx1cYjh9FpZybOoV3RLV2JcQlroBS59IbF8tR03wHiV3jmh6cSXYS6RavUNT0ZA4cluv1OjLfcdlzetGa0hXjpPL47whXt+3PjCR0NFxTHR8+y44V+Eip6HAtQampEEKAW3CXBJan43TojYRTlSWEqEBblNcGRbMwCDWvsJxW2U2FnolAWgRGb1ALGhh+fE2A7aO+jqLZdL+xje+gS1btrRGQ3cX1q5dixNPPBG7du3Cz3/+89aI61TG6gMe8ACccMIJU/agraoKV199NW699dZZjbmqKuR5jiuvvNJFUAHg8MMPx3HHHddY/7777sPPfvYz3HTTTTNuQ2OMmTe67fj4OH7yk58450ZRFNi8efOs9lmWZaPN0rHHHosjjzxy2vvpdru44oorouVHH300jjrqKBx66KF41rOe1bhHtm/fjiuuuAJCCCilFl1/4gF2L9qKOG3cfh4MtFOEF2vRpvkCR2mdUlyZyKBlJ3MdP/2rZtGofrHsnY9vKMMykdEyIQWk1YLrCvTdr/vWjI+9O8AG7ZBK9rx+Dcxcv85SIO1ExxG8rbG04yQjw3aO9GuOukoTG3X+ex3p3t549fTdhaZfA4iMWlfQaRb6db3aMe+bI7acS8uvHDAKWZCVMci1RgbZamRn0i6XAAJ9eqqCUYwqOAdXF6fy/XL7DR71Pet3FNEHhtMhJNYLIoXASNpBJ+m46GOuu1gytIaELLGV2yZGgaqEmRij6Gle2PxXS2FgIewMAZmkq14GCosIhEzVPUpJLHhKe8NXSIghBEn1QV4BI0i6F8rud2jEUyPs54J74NnkbwY3gCf6gUYq01rjde+NCbfRglIdALhrx7kC/BrSoLQxlr7gy3jXjWXP1dcRnRmwxaOi/WnA9sELy42HHiP2JuX2QZPU+vB6L48XJF+lOLh5NVAIevYx8YUN04nS8/gL7R8iO3OD0YKFgR9EPre2VfC0z60Njc5MEZ2hQhjJ9cMT0hbyUnD043rieojKmIb3iKnQiwFnnHEGtNbodrt7bAzHHHMMzj//fGzevBkvfOELccstt0x7HyeccAIuuOACjIyMTLrexMQEXvOa18zasAXI4PrXf/1XfP7zvqLrWWedhWOPPbYRmdy0aRNe//rX49Zbb92j17oXtm7dine/+92uuJQxBhMTE1NsNTnGx8dx3nnnOYNSCIF3vvOd0zZsAfrdPvGJT+DCCy90y972trfhqKOOwimnnNJakOq6667DC17wgnmP4A+wd4OU4d7tgO7P2DqhXQ0Mpify62SG7WwgE9mgM9aZVtwbM1wHQKNH+ULE0jSFhNiz+nWImerXSUb6cwimIjtDNol1+lnq16QzBr1+YanAQSssbTSUoEJw9VY4C1e/tg6kau71a04jCPvUskE7Xvh0glC/ZtnOQS1+gLj+DeXGSr+N8GPm9+F1D68rENTFkQJVZaBEvJ6Som7798S03Nn1H5lD59qUkJCOLqChIdkAVSUJR2hUSglITa16+HNZOioDuGmSNpM3Ow8T01n4hCRvgUzoL9xe1vZldMwf5f2xR4npEiqB0V1XGCpsHM2f+83BYU+wsWPlnrFuf8ag7vmpM2Vjb0/gRRLNnrZ11HN/J1s/kRL1+cl7sSQJmCSPSh1cnZj2LyDtKwuB8yQFQhcWmeAocHjufEsUdUGzVAn2KBEv32+YV144gaBqso6FrZ+KlZU2qAR5JTgvwO13kehAo6Oje3oI2LFjB6655hrcddddMzam7rvvPvzqV7/CkiVLAFDO6DHHHOM+M5IkmdPI3cTEBCYmJnDwwQdj/fr1OPDAA1uVp6qqMD4+Pu/5vzOFMQbj4+PusxACRxxxRNTiaPPmzdi4ceO09ls34n//+9/jRz/6Ud/bb9u2zbEJut0uhBA49NBD8cAHPhDr1q0DQLm8aZo2tt13333xJ3/yJ6iqyvVGHmBxQm/6gHsvVAJx0Ov34GgGYJz3Z/8yZ/s64MJnoqo0jDao8gpGG+hKY+ub/6ex7nT6XjL7ClgcrcCo8vEC0a9DnXq6+nVIMXZ9aVvydnnfc6RfR4Ej6EiPZt2ODeLFol8zKIJJy9mona1+zZTkMKfWF4hqZ0K6IqzBmCv4lL9e+i/Zu14nrxfxquvelab0QdbTXQS3JWWw57Xte80e4LYwUpSQQrgG0pxD2lmynDxKQkKUXeLmc6+sLKWryUnuYS8sJxxhb9kgWsvCwZXX+AbkGyLJ4uguUzWiwee0fdqJ98keJZl4zr8Oq5p5ynBYvY3hufx0KiHYk8MJ5mE/rnrSex0hXcLvX4K9VtpoQAHS+IT5cFttquimqtMheL+U40vJ8RIV8qAgFf9pYzBE/F5o7Q3Q1EY8uUWwtsJXVNwgm4RvrIhpD0yVYDDVqQgMUiVEI4/HC53P4QmFDQDGC43RgqxvFg5tTMPDS9vR/edoFrr2O0hrPMPn7bLAk4G98CfRhYBf//rXeMUrXoGqqrB9+/YZ7ePnP/85XvKSlzij8qijjppxTuZ0IYTAC17wArzmNa/B0qVLF0VUYCqkaYpXv/rVOP30092yT37yk3jPe94zK+XwkksuwTe/+c2+19daR/eElBKveMUrcMYZZ2Dp0qWTbrt+/Xqcd955AICVK1fOaLwDLAyIbDiIFO1eSjn1zAQGubXzCzZqe/W8ZIR0xnDODg1Y/q5XRHcxYrfr16HuO1P9mlmQnLebjtSivkHRqDnWr4nyWzk9mhFWDk5qzKpwnYWoX1eSAz31Ac9cvx4rqeAbMx8ZLlDUol+7VzTlygd3mumAgDduw+PUq0G7despfjMQ42m0+2k3uMijJEDheQSVy6SjBCjm3OcZhLQ3vbSFsrXxJckBL3x0UFeFTUjpk+Pb7ksncOzJSmJDmIWMj6G1F8zQoO1x7kLQ+QjbAEAbohC3/MbxsGwfvHBfbYITHy8WyLBCmlteqwAXru97dPllLOwh/cLtH+2epbBMeuhdideZ/PzDnrJsI4YcfxbYeq4ufwdQxJXa8xhLkbCRWq0DgTPR+xC0XvyQqU+SQLtHuJV2bKO2/EAIBX+A/pDneWt1X6UUDjzwwIhefMcdd2DLli2NdScmJqLesPvuu2/fFNR9990X++23n+t5O5XhJqXEgQce6HJrpZQ45JBDWqvujo6O4tZbb8WNN96IPM8b3y9UCCGwYsWK6Jw2bNiABz/4wX1XdTbGYPPmzVFO8ejo6LRYAvV7IEkSHHzwwX1VOE6SBGvWrOn7WAMsYCSZV7ynqE8xF7hx+0epP6jFhuVnzfsx5xMX/e7VTql95YMXTlXqdZ98OgBEc3DdCF39/ie593VjtVfBx17rLwYsGv3aVfKZSr+Gj8qyIVvL0w3Pfab6NV8j/765QVu+bPjd4tGv2wugAlZfFkFXEW0NXg1o3ayF43Rva8CqQDefSr8GfFSVERZrDV9VEKlVYmZG6kzQf45tktIPARH8gBq5pr5LfMN0qjGMl6O24hhVFBxaMoJ06WovAPkYUJUQynpmgDgBnRG85yrHdLNLL1TMFEhtpTWmEYcwGjAJ5QfwDSntMqBJuXDb0J8SCQXyjITUEloQ7x8akJCoQOsYQdVauX8Vw1GPLZQVZD75kBLhH2Tey1PqKmoizWDhA/w+8qqk8ucuMV4HLXkMQo9QKERtFeEYVAHOBP10Pbg4U5j0zfBVjP33XOHYlRa3d/qEjdAyCu29R6FHKa8Mtk+Urvx4iPFSO4qyHx9tUzdmw7/QoNWSqBYVpQtE5xmy1mlck1MwBpg+li9fjrPPPhuPetSjABCd99xzz41yWucCz3zmM/EP//AP+NrXvoZ3vvOdKIpi0vWHh4fx1re+Faeccopb1suA+uUvf4nXv/71uOuuu+asNc+ewtOf/vTWXNZeGB0dxZve9CZ873vfm/ExV6xYgXe961340z/9UwBkcO+7774z3t8AixTZcBxRmmcoQXlyGntHbi3PxwugbXCEKm86H6P5uM5+kXGUll/D+bwetV0sBi1jwevXimnNQRCI15lMvxYSSDo+mFTHLPXrylUW9r932N4nNBhDRmS4bDHo1x5k3GodBo1In+ZzAoBu6Vv28DqhSMxEvw7T+fzYeiM0bh2ske2WtdwS06Ec98I0Irbt1Fh/5/ON5NvXSEF5AXwTptkwVXCrysiAFFlOP13tAjR5vIHghN6fEEyjaJuYpPsv3pdqMXDDYyrrUTK2t52hdbXUQAXbvscOGbLJXrXL6gYvC20br54ugXYenzomywmlUuEVJIQTWBasfvJI6wIYV4Wz64DHq+n5WPltm82jA6EKBc1FbJv5tdHyKF+2WTBKSdQ8S/4hAyl6GrUhWqO1jusfn1PUyyvwYi2GHrYLHUIIZFmGIduSq6oqV9xoKpRlidtvvx1Lly7FmjVrkCQJtmzZgm3btjUihqtXr8bhhx+OQw89FAcddNCUhu3IyAgOPfRQHH744VOOQ2uNPM+R5/mUkeBVq1ZhZGQE27dvn3Hl5LmCMQZbtmzB5s2bsXLlSixbtgyrVq3CqlWr+t7H6OgoNmzYgIMOOsjts99z42jr/vvvj8MOO6yvaz3A3gux6oXztu9NO853xivPyVN1LVhseNGDPuneX/jrVzkll3PuqHiMj9442qIGLjxl7vJo9/nAk937Xu0++kFbddU25tVixILWrzVRcKMIbFjV2J2E+8/vSyWezlwXL67MHOjXtAfSl10xqCn0a39tTENnbV5TDSmUe99Lv54Mu1u/bovShpFP1pd5udYmYkP67+ZAv+6hz/TSj9vX9eMPI7pzib4NW+d9EIA2FaQJk939zVJqjYlyDEomTgAnqjEkMsNIthKZGoHMhkn42KAc2wZRdL0wFV2q8AYgKlkuJUxVEm2isn1qjQa05euLmlAy6hHcsJR5uL4t5iRZAjlngD09MoNC4st4a41MddwNaYxGbqnGpu6K0CUJa026ua9t2M+Wc27bGjiTAMN593hZvW+u3wdZnNwzK9wPQJXY6lx3f8x4rOHEnwQ3cqGpAE1R2cpr/DwGMJwIN5EWGpgIJtd6Rbaw5Q95kox7dfmypcZoXtF3rlk4b+ONWr4WuiIjVpfNXB4hBVSmXEny8Lq4odj1c2goG0lnIVbS/nERqcXv5N/j2LFjB971rndhxYoVAMhI7LcFzS233ILXvva1WL9+Pd73vvfhwAMPxLnnnouf/OQn2LRpU+s2p5xyCi655JIpqbZKKRx66KF9jeOhD30o/u3f/g3XXnst3vrWt+LOO+/suc+/+Zu/wbOe9Sx8+tOfxmc/+9m+9j9fKIoCn/jEJ/DlL38ZZ511Fl74wukbFsPDw3jjG9+IV7ziFQDIsP3Upz7V2o+4jv322w/ve9/7cMwxx/R9rQcYYCboqGGE1VcZQkjK99vLcmulpNxAX0SmuQ4rwnNd3b8qKm/IVtaotY5wIURk5IbGahvluJdx26ti8mIxeBe0fg0QExJoN2qn0q/5LGxwx9H9JZwBLIWEsUzGMK82kRnpxiipLSd8W0xtNKQknd0EOnecg6ud0Vmn+/bSr0MtXdto+Z7Ur0eLrnNKSS4kJbwcV9ZHoa1RG4K34560viZMGLHtX78OEVYtDqOyTj8WvanT0X5qxm3d8OfP05HlaVdkCAXQJZRbsKFVmRLQ/garAGhQqXJjNJakw4AsvbAUtoom03916YUjVDi1BrSgfrOWquAOX/c0OUpEUKUNcMJG/bIo/y21zdgL+xmS+oZF9AlbEY49RsLQe2roTvs0QtvlcdjfQPtIL7yHmIXXeajg82+5ZDh7k0JPEFFVfEugkP7gLhV7oyzdoleFNh08NHm7tvc8hpBuwUilRCqpiFSBZtQ2hGsUrb33yPWkDSOhtUhuPTm9LZe2FyYTCDZq6562sDJb2FdrEJWdX5Rlieuvv771u06nE1U8zvMcu3btcp/Hx8dx7bXXuggt7+uqq67qebw1a9bMeU7mihUrcPzxx0MIgbVr1/as+pwkCY488kiceOKJ+MEPfjCtyGgbxsbGZtWuxxiDjRs3YtOmTdi4cSPuu+++xjWfClLKRqT1O9/5DlatWoVutxtVYWYopTAyMoL99tsPD33oQ3HsscfO+BwGuH/CFP/j9AkuQFPqnOZ5biVifH9MVq51zQEtQQq2gcSmHeej0F0csfINu/dk5gF/fQzl2H7sV2f2tf6Lv/1S28KHDN1Ln/mFaR9z9fufBG3Lvvacg4MSI23RXCEFTE2hbjN463TkxYoFqV+3sSLb9OswF7VFvzZWpxUiCB4xaromy2VIQVagqC/vh7u/KEgyfNuSgw0Zt3VMrl97g6pehIq35e9jqnN8T3KEfbb6tWzQkSeHz6fl47QbtTPRr8N2mpFYRstjPVm5YFFgCAc5vSGYXTlbWZ4xFZk9FlJ4j0ZiKYOU3K79A0tQMvlYscNNKEomgCaBy9JOIHQayAAhE6pabJtPm7zgM4fbseRIbRBhFbnzPkWnqfxExoJRMo3D7i6cAKmdTQKhwgdLDCEklEzc/gAriCDhdYLMxq/gUuSeAkXVF3W0D7qu0nHvQ7AAJUZG68breEO2NBXaPElhPke4HJAoDffT9Ua2u5JSRhXhtDHoqAxSlFCijHj/fFzOpQ2bQIc3uRO8WkI69ZINjF3tl2cKqIyItqkCKenXu+PWU7F3SDqvE/e2bfa1rdx9Y6LXAeYHz3zmM/GiF73Ifb788svx4Q9/eEH2iAWAQw45BB/72MdajTmAjMCjjz4aAPDsZz8bD3nIQ2Z8rKqq8C//8i/4xje+MeN9MIwx+NKXvoSf/exnePazn42Xvexls6r6fPrpp+OEE07Af/7nf+Izn/lMg569YcMG/OM//iM2bNiA9evXz3b4A9wfwcq2jfpIkI6hACiTxPNsMN+G8zF/p6xaJKAB2dlz5zQPUIIiZ1oA0oZ5OAlDthR36VXltF+0saTqn2XCRpZfFkII4ZSvyXrXtkVpF0vEdtHq1zJxkVitPUW6l34NwBWsquvXnD/LEFamSX+m85IgPdo5qawsK5NEkVzAjskGjFxKZ6QLcxCK1g/1bZ9/a3vcVmVje2fgwhujnkUZ69VzoV9PVKXLpWWE8hyCzzdMsIopxrGBS9/zPkm/ZqGrp/gBgK5qLXrAfWYNn6bblx8ryXE/ASmjDbScufz2b9jaH8wnStMPnkjVEikUADS09ZQoW70NGtBSozC5o/5RZDQQHglKOueROQ9TcNGAuNiTlH5dXt80ef31CQ2AozkAXlikASqjAQnP+xeylUrso600PJcDwNHYhtGJQMi0E95on0HObbhuIhRKcKR28rzD8DcK9+vH7Suy1UP+4fbh8mZOgBfoTCaYECVSW2k+TFrnV6Iex71pGb2qrYXftaG+LuAnu+l4fXrlR7QZta7NT82gnY9cgQE8Dj/8cDz5yT5fa2xsrLU/rTEGeZ5jYmKi7yrJ84EVK1bgcY97XF/rHn744bPKKa2qCt/97ndnvH0d119/Pa6//vo5iZ4eccQROOKII3DTTTdhyZIlDdr32rVrcfLJJ8/KqNVaoygKZzRzrvbe0IZpb4UZ+09AJRBDp83pfnkOVkhsdNYrw9RHXkfKcaVpuQbN/VrAVWflyC07vevKc72ial6VLu+uXiE1XAZY53JNAX7k/mfP6bXoBWmdxvVYVrMAJOXZnfT/Pc8VZrzqBf/fpPve95//wkVq62ibl12lY2Na+9cClKfbT8uxxUZBZixa/RrwqXnuPk9a9Ws2WisX7Y316+bd6I1kGYxHG3I+kRNKRoEkgBxSoTwbl6Pcrs8GXhPSva2hWmpA1nrX1qOsLuLb0oe4/n7W+nW9Xanbf/C+5qzqhbpRG0LZUHjIVGxDWG2aFtBg6s+Qtv33a9yGr9NB34Ztritoo9GtCmhjkMmk9YfgV/JexJTb3HQhtUQqMvKm2spuSEcA3SEPkvW6uopqFiKzQlX/cZmu4bbTPsmdKyTbaG1lPUosQEqyZ5aOw9QlA1sdTpe++pohIeP2PdroBr3JNYCGBFzk1lKWhXRCGlV1MyXyqgsD7cZXzxmgUuK20psRlDMQUBP4oUj5GXWPVPOmqAthTKlgg7wtryD2NNV/f6YkFzDOS0f9q4DhVKDQAhOVpl/AUiVYCNibw1ACUEpgvKQ+tHSt2isQh0JChq6k6sYW7CXuNdlG10YIa8zSvjL7UI8rIod9awcG7ULD1q1bce6552L58uW47rrr9vRwBrB4/OMfjwsvvLChoO6zzz7YZ599ZrXv66+/Hp/85Cdd/9s1a9bgNa95DTZs2DCr/Q4wjzBTP4/7hpSRvkBzsIyULGlkML/595X0OX1MXS517qJOACLFPYzyhvmABpoqpgY5fUR3tOlPNbriVIVu5gPUC5XmZ+pQIBx1kaZZE83F5NA1UEZEjKh+0Va9uE1RNdr4yG0LjOldAHKySO1iMXAXr34tIQQbqF4OgKZ+PaHHXA2bNv06ZFO4cQliO8ZdRUju6qEd1q0BT2WuTOl65LIRrQOdvX5dw2CQRIVEyoZ+HH4O79hexuxc69fawHrg6OoCBqkUtMhQ5EyFstwHjbmtXSUXjWoDy3KdUVpx5M7K3XjF90LMgAQQ6c5tebRt7Ix+0bdhyw/r8bKgqGMqkDE9oJWDLqNcUg2aJJRInEdJSOkSwskADQRLSBpdOPlpDcjSe47C5aHlYbSf6KQ3IOseIaY3hJTgSpeATJznNrCPUAUGKa/P51vft5tYZULeX0ttruf0lDp3k6MIxuo8zEY7T1McwY37bvWCM3rDZYGXuM2r7NcTjfXideP8g0QqK3hemDg/oKPo1SW/N4RIBJQVE3l1+u0T65QY9jixAFlaQxsNqu495m0yJRvUY9qXz0ngZPq23OUB5g5CCPfXD3bt2oVLL710xsfrt2crYzpjWyyY7jXvB0cddRSOOuqoaFl4rcP3cpo9Su666y58+ctfdn2N169fj+c973kDw3Yhoz6Pz+F+hTy1sTjp81YeL79FuwkojfW6GKyAs7HsokWyrBm32hepEfFc6ubXljl6vqCEZ42xkVspgaLyc7OSlNaj2rjJAB72+edGzt2Nr/h69P09r//v6POK9/x5q6E5VaGoNtSpzZMZtwD6ivIuBCxa/Rpweekc/GFMV7+uG7Uhwm4igGdjcA9cdx0CJxMASE2sTWmkk1V2CHDE20eSS4StNsO2PT6lzxvwbehV3Xpu9Wv4i2eNWyn4mYLglZZzex1lBJSxsi1c/ba4o4jxji12ZPFnZejU60Yo69B8zSptoBQ5zKqKbSSKPCvljdo6ehm1M3FSTSNiW6v6BWG9DhKZTJBIT2uVNjrJNzk5D9gTUtqbm/djKxGrBI1m7DKhXnZ2+6gceWkLPXHzZ1ETPIatdByCo655FefmMSXJn6N0QunWMTFt2eXLgiN7SeOzi9hCInFGJUV/S0EPIy7jHhrM/LnQOYzRSKS2r6Xz6gBEfyJPn/a5AAi9RH4iZU9gG/efUfcgcXQ45P6H24d0GZkIKFGgqGJuPU2kwLJU2Fxb/o5ex0oSiqJ2x7u8AB33p40S0Rtl603Mz+DxJrKZv2MLR7V7lOjpG3quokhtzZ21NxSvWGgQQuAZz3gGTjrpJDzykY+c9+PdfPPN+NznPucif/3gcY97HJ761KfuNcatEAKnnXYaTj75ZJxwwgnzdl7XX389vvCFL0QFwABqrfTiF78Yhx122Lwcd4AFAl0C1fQcGD0RdjSoF7uZJjpq2NXKyHQZKdz8niO4TmEP6nNUuoRUGtquk8ipizjuLqRKBDUxDQpt61gogVRTHQwp2LGrkSmBylgGkxCOgaXs3NgPppoX6wryZOtN1ravXh25tSfuAsWi06+1BqR2Ri/3og0Ny+nq1yEDso66Y4kjuS76i9iodjq0LKG016/DfdRTE5kxyUGw0CkljQgMVBVQxqeSZe5BPHv9utSVi8CyY0oLAJVxoqhaXrUgA5dr1ighUMF4yrH1MlR2HONl1R7BFXBBI93jEeuMW7tpXb8GfJQ2zNlta8E5G7bFtCO2DBasRCgkUjlBdL2n4Gm7ALyXxBgqzmSk87YYowERUCP4lcuVu55Y7oz9wMIcAF6XX+36oScnrJxWmdIJAAsVGY5Z5CFqFHkKhIBydoKHjL1EXAkuSuaHb+8jA8M30ZmnPwXC5iK5QkYPhULnkMIb1nlFv0+pK+Q6zinkyZTbBHnDtnlnht6heu5QvVIbEFOg+ftEKpRGI1Uxfz8VAqoChhKBtOV+HVLARGWgreCE+ats1OY9ImmNSsU24TnslUUnhWYSETiP1ufT1hFGaTnpvqh0g2I1MGznHlJKnHzyyXjNa16zW453++234zOf+Qz++Mc/Tmu70047bdEoUf3gsY99LP7+7/9+Xo9xyy234FOf+hS2bNkSLd93333xuMc9bmDY7oUwd30arpJqvU3ILCDEKQ1q4oyRjyFNO3C96lGP6sSGLH8O6Y4KQKXj3F6ei8vGHD3/hu6X/3AWCq2RSkpnKmCIrii59R7No1oYpHaZi/IEdGQ2aCPleArIRE5ZHblNse2FunEb7cOQMbtYKMiMRadfc1SX6csqsbptbCBOV79uj2x645e/T4XXp4Gmfs3HUyZxxn09oltPJ6wEybIw0ucGyxKAjPRhZ9AKuEhuWx6tHX1wHrPVr4MIrvS1alLFhiSPw7hcWw4oKQHSrTmgJEUtIkvynRcmav/D3zt5D43bSXJv2X9RT+1rM2rrqEdow2rp/cr1NKoi+xA80VmoP1Qe/lgwrm9TIku7buLWz6xHNZWZ4//zjWhH7j1E/ixJsOr3e9rx2/B6xlImTCx8UYPnmgHqikEJiQLkpSp1Tq17BNEXnHe2RfA8TSkhurH09AsJ/zmTHXoAGADslbJUCqkSpDJDYYWUBY3LtwstUYnST6YooYGI7tTrJgm9QPQ7tie5t1EoMhXfHvUWQjK89gBYDjOZYEgRraNwNzj9jB1FvfTqtQr4faUNxu0kyEKQKUlepVpGfHvjam981tE2CYd2LuUHxN9zT78qGJ827Tk+/eTwDjA5lixZgqc//ek4+OCDAVD08IQTTpi341177bX49re/7YpM3XLLLdi5c+e8HW8hQymFJz3pSTjuuONw4okn7unhDLA3ouj6OV4mABZg1eF8DNzHMyxaAyGhFOUVhi2F2JBQJqGcXAmXWhRWr9W2wE1bziS9zt/8EeXzaWOjOADn5wEGhYiJTi7q4wzc4DtJRi73dp8MQlDlY54z6/PkZLm34Tr1v/C78FjA4qEgMxa8fs3RXhXofGVO9GbOvVWkAxshZ6xfs1EcGr7kdJmmfi0klOpAQzv2Rb36eb14HDMjmbIsjAwMNHZM1dL3NJzey+kG7b/vzPVrHRjPjh2pK4S5s8pSj1PpWRg6+o5/PoEMQF6BmBq1QJKSIJaGbvag9QEi09O4rReHY6OWrnNTJidLJaj3qJ4Optnuxwufhvc88g+RqQSl0MikgjaJyyvl3NLQq6JEgkRmLrJpzwSu+bNNLndGU5RzVfM8Afam1j65HXBUJ5lQVTgR9LOS8MLDHh06Lw3YBu08Xk4+Z6+PsOflq7DxBOipEU4Q+cFSdGnCrCPwnqW2tHoqyVssbaSWPVB51YUWJIA6KEPuqjAi9ADRfhPhi1YBNMG1JbmHBaW0nXw5z43X4aJVeeVzEaLfwwp2IiWWJhmNq/TUEi0EhhTJxJjwHicXDTWwDaN1JAQjmWo0jacort/e7afFqK0LdhtCT5JbZmJDltFWvGKxeYgXKpYuXYqXv/zlePzjH++WzWck9Be/+AXe8Y53IM9zt2yxKUVzhSRJ8JznPAcveclL9qro8wALB6boQlR2fg9biSwkjO/wPUA5qiyDMUsycJWQUMkwGbdWRwBACp/w7C5mibGqWQX05lDhnk+/aCIUtKAkOSmMi+KwMgxYZdjSjbXw0RwlDDIlUZnKRXc4ajtVBVTARlw0IJSg6xHMwdPNn2szbAFAV7RfZ9j2SW9eKFjw+nUJWj8MZujSL2MnlUpcIGm6+nUIAR+l5cKr09KvbdFYKSSkTBD127XjcIXhROnklFkXxhqtJrAZtKD0AvpNiO7gKy03jV4NMzf6tfEGZCIUXUMJSKNRcKEpe+toexsVGpC2iBQZxRy5FfTzBkpy6LjKlESmDCrR1K8dm1FScD+nC+mvT0Ar1tKmPnJObU2vbisW5fZT6ogBORNZnla7H+J0084TW6U3UwkSQT1XE6nce+JZkyeG6TxKJM7Lwg97SuamH0SqYBIBANMy6YV8/wbvP3gPEG1ClCSU9iYHEFEeuNeVsbQEYzQKbv/j8lVr1GMj3Q1PXie4vAbXb8vm0NK1Cx4ida8sn09VBudG+QqJzCAgqb8XP7i077GrRdGgMHgPClVoZENW1zyr9cIVUkhXAc5VYBb+uxBtVd60MVFer2QvnoWjBYtG4NUuF24y9UWj4qqMXkhgk9DjaCogUGkg17rVOxTuG2g3ckOjuC06CzS9x7xsseClL33ppN//v//3/2ZUTThJEpx00klYv349rrjiClx//fUzGt9URYt+//vf42c/+xmuvPJKFMVUhe3bcc011+Bf//Vfcfnll6Msy0VvzEop8chHPjKKNt9www244oor+i6GVVUVLrvssmj9Bz/4wXjEIx7R9ziKosBll12GW265Zcp1r7vuOnS7Xeyzzz54/OMfj6VLlwIAli9fjgc84AFuPWMMfvazn+F3v/udW3bUUUfhkY98pLtP1q1bh+c///lRVeR9992373EPMD8wt3zIzdOmKgFNGWVCAuKBZ+3ZwfVC0QWq3M/H9UgXJ5jJBFJ1XH4hNCnJrBNASAhoSOmpkLQdINiohXbtSSYpCjxrPO2QfwYAfP2mv6M5WhoUdswFaF6WUkDa5+D5j/uXOTs2K6T3vuH/9lxn2Tsf3/M7oD2/1n0X5umhdwRoISOvVSNmqitT1zOry81EvzbWGMuUjcJOV78OdVYOHBlN+rWsbevGPzP9muEo1zPVr8Mglyzj85IJpJRIZEYyKQFoa2jbzSuULkLMlGXudgKgIbPUGshHXTlWXQ80kb4+Pf3a09BZJ+JuJ5Kirq6SuYE0IjBE+VrCfe6aoJdtwEIMoWyRJyXjQFEYW6IiU8HO6Yd0ebpuvUCXr2Oqaua7pSpyL0prJhN0ktRFBjOVIFMkWIX1iEhNN0gnHY5yTH2PqwQwGkZIeugL+CIQoVLGDaP5fWg8GQ2gtNSAYHlV2mhuRl5YESera5AAOI6/9eSErXfC3rXhZxe5FTRxaU35AypY31EqtPZR5dDzxQInpRfEJAM0eZqkyhxFI7Het8RkLq8n+j1Ms9pwJ0khIVxU160feJCY4sCGLS/z+7bR36D0OTeZBiS6ZRHlD4X9t+qQEkiNcJOoNlxcykQyEpYC54bRSigSWkXfZa5heXzOozmiPIG6t4j2iUbP3F7lx3vRn5hSpa3EL5ZJ9IILLuj5ndYab3/722dk2HY6HZx55pl4ylOegr//+7+fsWE7FX784x/jda97HfI8R1mWU2/Qgu985zv4/ve/j6qq9miv27mCEALPfe5z8exnP9st++xnP4srr7yyb8O2LEt8/vOfxxe/+EW37PWvf/20Ckh1u11ccMEF+K//+q8p19VaoyxLHHnkkTjnnHNcH1shRNSfuKoqXHzxxbjwwgvdsle+8pV4xCMe4dY74ogj8IEPfCDqY9vW43iAPYDQ0awpami03o21gKcHM7bTK2xSQqiE9A6VWOpm8CoklEpI4ZWAMglFay11UUE6eqKL4FqDgimQTtcQ/cnpbJAIBSiKDnFrPmUPS5FabgM0dwhzbHthqhoVrc5k0z43L0bstDlbHWUp4roi/UkC0nhdeyb6Nddu0UYjldn09ev6/MHLOJgkEW3DhvQe16/rBnrIulCkW0NKCBtAgiYHMRu3ToaFD2QpeMoxGe3W6FUxVdkHfESkD3Oe7HT0a5ezKn3BqQQ+ckv3CrEuCpsHGxu1zKwgQ3W8qCJdlxmTjCW1BwAxKO1rWDROci0B5p03A2h5m0WLyYNDc+GUmiYVmd/7JOZOkmI4yVzEjykQvB5DiSTysIQcet/03O4fQAUNJaX3LoUGIH9maHszVyV5Wjn6yTeykORlrWSDKiENFWMy8B6l6LyDsdZ7ZCn4BH3+xxDWcyYhvfeo7lFyK/MDpkSjoIYhioQQEspGcpXOXdQ2kToqRjFVb7zQS5Q4KgR7ARN3nvXy6nRO1HookVVEQUisx1Br43JFtDHWePa/KxBHZhmVMfE6vJFNNvcUCBKqejsgJVryAew2U7UImqwHbV/CZxZf1DbLsp7fGWOg1PTKsAwNDeHhD384DjjgABx44IFYsmQJHvawh+GpT30qfve73+HGG2/se195nuOKK67A2FgLbd/il7/8JSYmJmZlkO4tBm0IpVT0283EsKs7Cq6//np885vfxEEHHYTjjjuurzY8ZVlG1O6pIIRAmqY970spJY4++mg88YlPdMuOPvroaCy8j/sTPvObVwEgZTiVwrFzEqFchG5PQ6x/g3+/B8cxLWirRbKhVZ+r+TV8b5qtRtpAsRZbqVZQLiJHhaQBNm4/zxWbEqA5/pAVr52zU+P74qs3vhZK6CjXVtqoLTC7eexB//Yc1zkgL6q+CysabbD8Xc02TSElsW3enWx/iwX1opXOCLIBiEwlGE6zvvVrwNZqMUHBM0GBHzYW+9avAa+7hr1wGdp+b4tILQj9uj72Fn2Wz5MNcTa8eayu8FVNnjm1TwQBNEpH5ItBZ+Yvjv892UaarX7trx4ZzcqlDtjRCB9V5ZTYqJjqFPo17UsE7X9sPr2NyvajX7fV/elll8y1Dj3tiG3YrkYKgZVDwxhOlkc3INMFAH+TyuAm5R+VvTl8wfkm535YQmbkVQmN1BCh56jo0t/4Dph8DKIzAiQduOqLugQSDegEMu0ANg+BPVpc1ZARlhDnB0YFn5NgrNeGvUrM+Q+rHUvIOPeX/yIvGeAS85kaEtE9QB5hfiBZD29Yppw4+XQRw4T0JLhefENx8QGmjgMklJnqUAJ+8Ju587Rw1BdFLQzcb2xzBrQx1mgl4ZNCYkglKHWFqvIRWSm9d7jQTaPW5QGwRNKg6HsFx/3nZwcLJ/e7rSM0gnuh7ljqVayijR4xVcXHvR0rVqzA29/+djz60Y/G8PAwlFJ46Utfihe84AV473vfiw9+8IN972vnzp143/veN6lRNlujdoD+8d///d/4wQ9+gOc///n46Ec/OqlTZL4gpcQZZ5yB5z3veW7Z0NDQtHvd7m3oWLf8kJIuopNI2WBXDTBL1J3krvgVva+3++lV2ZWXCniqshI0r3IBIAAux491i/lAJhOUkgrQVAooKs6xhS0mNXMQw0ra+VhCy+lXPG5b5ubiSZzJc9kyZHeCg2SpbY9C3SukbfMjMZIOYVm2elr69Xg56nrbCiExUY1BgIpLZaozPf2ajdqxbZQnnw1TqyDWr6scKOTC0a/5VNoMWp43rK7MejQb3tr4Dii9nFRs3EpIF8CkStW6kXfrtxHIZAdDybC/xLPSr4WL5HJRuJQeKE6/DtML6Lr1r18rCSgI5KDXyl5X1aJnhxHgEI1ceNmfbt36HJhGuti0npr1ULpLXg96tTa2QZA4biifttfNEjZsrmykUiaxIlWnLjjqQUhDYFqCtDRnpviEN75VBirjPTU8xnBiopsKUZsgpnHw+buHSn2dqTxJ4TnUaR/B+hLkYaPxwDsRAioxFx+Q1tsqIYIy8d6z5H874cYr7NhVkD/gENCowjLqOnhIZSqB1BqlrJBr+LEIX8lNBTkU7CUOk9t7wcqp67lF0dqY79+P4Vrf52SYqgx5/f10ypAvBPz0pz/F0NAQjjzySIyMjPS93cqVK3HEEUc0jM7Vq1dj3bp1WL58uVu2ZMkSLFmyBIcffjge9ahHueV33303Nm7c2JMea4xp9DVd6Ljjjjvw05/+dEpDK8syHHHEEdF1WujI8xx5nuPmm2/GFVdc4aKiy5Ytw5FHHjknhu7o6Ch+8Ytf4PbbbwcApGmKI444AitWrHDrdDoddDr9V9CdmJjA9ddfj9HR0VmNLbx3Fxpe9KBPuvf/edPrnFGbtClz08DO/Oue0igkhtRTZjvURQV55D/2tZ6Z+Fb0WU+iBPOrM16DKJUvssNIqGosgqrMc4x6RP/CX79qzvb9mzO+En1+wAXPgJACaz96WqTMatsyL6yKXJ9Ld77r+3M2roWMIRUHjEKj1ulQPZwcRDnWtg2kp81ywVMBYgNokB3DOa0z0q8jGvIi0K9rQSIo6cYXRnLZmJ1OZXI6vxqVOiA8xBFcr7dHv+Ms9GtXhMqI4HjebmdMpu9Opl+zju0it5JOMCwgRweEN5Kn0OdnoieHOfT9om/DNuOy2jZxnfuhJkFpcX5wlzqPjFz+IclrQwUWGOHNqiTlqjg+vqYfWdZuBmcAaxup1ZaCzDQJgJaVObnChPXs0NVxdF8lY48SI6IhGB1RByQo6TxTHYTlxhv0AvZwlTlcYntgYNLOauvzuJlKHTx0uPKdhK9656gnNgKrjUFiJELnQ+a8UiL6/XgfAE2y7MWjdXU0oYaTsLbXowqqw6WydN6mblW4nAKmxpWavFDutIW20QaDCbeM7gYqFuU9UfYgfqVQ+IKgnd/GN6DmKsnhOmEso24MtzWMnip/h2lWQopF0+7nuc99LtatW4cLL7wQxx9/fN/bPexhD8MnPvEJLFu2LFqeJAlWr17dus1f/dVf4clPfrL7/F//9V/4h3/4B3S73db1FyO+9a1v4bLLLpsyD3XNmjW44IIL8MhHPnI3jWzu8KMf/QjXXHONO8fjjz8eF154IdatWzfrfW/cuBF/+7d/6xwm++yzDz7xiU/gMY95zIz3ec899+Atb3kLrr322lmN7bbbbpvV9rsLmUrQUSkSqRptJKaLujI8QA/YHFvTI0pbBzmP/bxqrE7gHMmCFdzQqb37WAmypdbFXO3XSNHItZWQMJIYT/20/NmbsaazDL4irnF6GvWxlcjUEFKZNfTrypTIKzuXVpS+ExVYssYS68wa1G6nQgllcuSa9MCwevJeoV+HUdtQNkNassitDCOiSbdRphmiJo+cRsBgJoa/ljpyXqUyQyY7c6Jfh8zIRCqXa1tZG5MpyhrMkJymfq1jqnGdktxm3FaAiy7PBWaaRz8NKrJ0rxQNZAMq5r0DOrpJAcRFjkBeDn+ThjeFjBJxwuJSwv6AjahwGKWtI/TmCOlvdpdLEHuOGptPMlmFEer6zU5V2gKvVtv4ekV32jy0oTCi6RkODVk2YLmYF39XbwrfFl0P9xf+hk7wQJOu0v62UYJ+N2lk1Ehcuzwdjtx6z1h8LEQTaVjMyXuKgnxaW5qcuf9T5dCGCItFtbX1YfRNm1qklXT/+Mc/QgjRdx7k8uXLsW7dOhx++OE44IADGobtZFi2bFm0/kEHHYQHPehB2LJlC26//fa9glI8Ojo6aWQwTVM88IEPxLJly6adv7xQMDY2FuU9r1mzBtdff72rQswYHR2ddh/goihw1113uc/j4+O48cYbse++++IBD3jApPfbzp07cfvttzdk8fbbb8fmzZvxxz/+cVpjWazgCvjTidjeOXaRU7rqbTQMvDI8Xn7LRUw8O+uUeT6jxYswMitbdATfncF+treuBvf29PuabJ6eS7zywZ+at33f9sr/AACs++TTW1v9AMD2d3x33o6/GMCBCS7AGRq1pFfJhn4dVhoGfLSVK/pqY+2NIMAWRm650jBARc/uF/o10CgqxdXJ+f10Eeq27EgIx6qFt4WYBTPX+jWNg4JFyr3ypfAOq+no173AVOaqpTDUdNmTk6EeqZ0Xw3Z5tgSAN6ISqSL6qv8uQ4rM3cilzjFRjbkooJscjWwYaLwv5rdX0IABjNCQigQ15ePxDc3FotxOsqZnJ6QqqARIMmhoFJX3JPFkxFQARp0ypCRRr90NGt6w1tskRSB4RZe8SmGODlM56xFcIeP8nRpcvzzb96sypTNYMxn+DkEhEa6kLMvGZMvgfRU2H4O9d2FEF7CCB41MdaIHFffiy9Mucl1ShNbo6CHNPbr43kwlUBmBTgKointbAWOlrerm+BPCRvmNK0iRKUnV3bSOktidJwq9e9qyMIbRWbpNmkLTy4Mc5vnsDRUZp8LjHvc4vOtd78Lq1atdS5aZ4rGPfSwuvvhiXH755XjDG96Abdu2zc0gFzDWrVuHj3zkIzj66KNxwAEH7OnhzAluuOEG/PVf/3WDilxVlaMUzxTbt2/H2WefjTVr1uDcc8/FE57whJ7rXnHFFXjb296G8fHxaHme54sm2joXWJ4tcTm2/UZsSQnWLnIIxKwqpsKGeW7QgJS7P896QUJIR1+sR3naDFq3GecJ8rwaVlCmFbzDYTcZtrsD9SJSrr/tIuk1O59Yni2hSFxBDDeqgSID4zaL9OtC55jQY76IEQDYSKhyNFVK6YNBJMvS+BTCsHKykgkyYdM99nb92o6zMqVrOzQZ2uSYl/O5KesQrLc94iJYgGdb8vvoGsxWvxYCHUVMxbFa0dZUUmXkOdGvgz7WvSjJuqZ4t/WinU/9etrFo+pVrbihMUVi6Qap3wS+tDf9L41PuO6F8Iflwgqq7SGva4LF6DUh1Lxd9UJJoecmPA8WtJDzz+Ck9row0o60z0VgbxZqr6xY9FEMhau2hWBDtv5ZwCfbG0uDCrete5eiyySCB0rgYVagHA6mS9H2RKdKZEbtBCQ3m9f22pgoz5cRepTY4FSi6fVRAqjC9/areq5tvO/Jb7C6UTtZ0Yrw/VQJ7nsDli1bFvURPfjgg3HUUUdhaGho1vtevnw5li9fjnvuuQcPfOADMTw8POn6xhjs2LFjt+XdpmmK1atXTyuyOjo6ih07drTua9WqVTjggAPwoAc9CEcccUTPfezcuXPSSOd0xsXj2bZt27yxCjiqOh+oqgq33HIL7r77btx888244447sGLFiuheGRsbw/bt23HzzTfjd7/73aRVtO8PSIR00Z2pCg5t6X5pygiKdv8nkLCFXWAVVGhI8wOgKiGS3k6HvRVm19eBtIN6B4Nl2bP63se2iS+792ENF/qssXb4xbMe50LD7Wf+JwBgv/OeCoAU28l6296fkEhFqWRcpLXGjAQQBSbC4qF1sJEYUWS5EC7IDhHQEMamHIAos6JNh2Y9VUoACVkMOjAs69jd+jVgxxHo06Hu36ZfWyM4zKnl6wk0GZG9jNr6GAFvTPLvEjq4wuJX86VfyylYjLPVr1Woqwfve6FuvE71fq7062kbtvwj7yrGkesSmRx3hhRFCSniF3oy2ug0zK0HqHE0c+hDz2e9ylskxFICxt6svLjOpWcISfmqKgPSDnLdRaVLdKsxF62sdInS5NHDIJE+d5g9Lezp4khoWL0w9mxbmmdV+hyACjSGJPPjY+9RCK40JwPPE39lvVYCEkZphJ6weqW5Oo8/fBiGec8ICjuF+cza5lkpGXvp+PtS50EOgUZHDWPlkEauuxgr6FqWUiOvBLqiAGoPiMoARUVR1bA6MjeIpnV8nmy995bfTzOX1sackVuKSkhbrrRBFRi+2jk8fb4PI6zEGH7m9/22MlgsEELgRS96ER73uMe5Zfvtt9+cV8N98IMfjH/913+dkg6ttcZ5552Hr33ta3N6/F448sgj8Z73vAdr1qzpe5svf/nLOP/88xtG5KGHHopzzjkHBx98MA466KAp9/Fv//ZvPb8/4ogjcM4550QOh174+te/js985jO44447FjXVe2JiAv/8z/+ML37xi3jd616HZz7zme67b3/72/joRz+Ku+66a6/K154pOknm+lsm04io+qIuNTk0NqJr62HwvMZzs4BEqu6nkVtl5+ZZVOUWkZIbR3tFi7GyNyFs3zMAgQxb7WrX+Bo2pFdXpsRYSc7TMCDBbWZ0oDcz05HhOo0wU8DmviqZIJMdGJAObYRGYfVdoSQkEmDJyvbA0c67gbFt9gDzr1+HHVeUSABT0vGyYa9Pt/XbrevXQro+ttxHulfRN26xGTsIYsO0DuV+m9gZoWSCVGSuJhGwePXrMPe2V9R2T+vXfRu2ISXAGOqdmlcUFqd8AGkLV1R9laoPPRZMaXYtnK3xFVKPmS7lqrbVPTN1QzY0HB1FgYxKrbuuV5wrsQ0f3m87d2e0sjDyjSs8Tz7KUQjHEyayT3mh616y5nWTRlIfMtvTjA3WOne/cb1ta4Ewr0oHD45w3WiiDSZh2nni92HoQcoPnUQSDYWoz0RdKF3+b/tEVp/fVOS+Bl27yjSEjr1JdU4/5wAoYxPdw+V0caCM31baYlNA03PUJoSLHcuXL8fIyEjP6N/69euxfv36eR3DypUrceKJJ065XlVV+Na3vtVaSbgoigYFdbpI0xRLlixxn9etW4c/+ZM/mVZRpF/96ldYsWJFo9Lz/vvvjxNPPBEHHnjglPu49dZbcfnll/f8fufOnbj33nuxfPlyDA8Pt1Zg7na7yPMcN954I37yk5/0Pf6FCq01rr/+etx00004/fTTAZCxOzExgU2bNuGnP/1po+/u/RWJlG6ekkLittFPOyWqWQfDo87YCaNCVS2qAlC+V6VJKXaR24lRuF7yRvsKqoCLlIjlfzUPZz01zMS3gHzM97jXGii79FrlMAENUW540+T72nGJbyEI2Hl6Zkboiuw5AKgCNefhhcv3Ztx51n/t6SEsOLCBKoVAAoWwA4mAr5YLwFGL28CR0CgIxLoOL9Nej6R9Ug0bIbT7zJFdWQu6uPZCrk1Q4v/mSb8GvI7dMCiZWqxLAMFc0JYTzLo1b2PQGqXlFA2AdV9MqV+H1yekV8tg/dBGWMz6dWNfOu5tuxD0674N20IX0efcGrb8wyVSIrEGb6YqJFIhlf7mAPyP66r6BmF4FgADjW41hrzqIlMdGAy79bW2Zcp5HyqBHBoBZNdPXFICoeHL/bYS8u4UOvd9tWykMpUZGYtGAyhdEj/3sVLKe1tS610Jb1TAV22TlSZvUj7mJ3oWJACumlvUNywYLz8kBE12xmjoWkQ1kRmUoeMlOou+C71BfM3D68uGbfS7GBkpQGF1OAhfVY9RV4bCyDtDJz7/N4m8dExpN+Cm0n783EPPuJzbMG8217pRqa1N6Lj/VhXUXmehI3qFAKBRaYMspXyCSipUAae/3hTeVHGOQFjFse6FWuj4whe+gE6ng8MOO2xPD2VKSCnx4he/GCeddFLju5/+9Kf46Ec/OquI3Z/92Z/hVa96lWtjs2rVKqxatWpa+3jKU56Cgw8+uBGxXbly5bQiv5Ph5ptvxutf/3ps2LABb3nLW3DooYdG32ut8fnPfx7f/OY38Yc//GFOjrkQ8fWvfx0XX3wxNm3atKij0XONTHYiOl+d0ldXhEudQweKZ8j8aYtgcO0Fl25kJDKjkcrMVi4t6TnNqTccLTEa2JM5uWUetALU8at9L5Jgfp4M1kh351WVpPjLvtWoBsLo+mTFdAbYu0FyaBCm/HH3itCgazimQG1+fJsYAym002Hr0Ea7KLCL8IoSqchgoOlVBNRelhfp2YAaGhhZAwyvpHtfJa46s65G3Vhmql+H4OeYkolPrTOx/EYRZadHI073Yxak8DRkE+rIglIFjbFBKE11a+pF39r0aw2NvOoSC5WvM7TLlXdF4fY6/bpWNTnSu/esft33EzkUEm0NWCoGZJULvrYSLtmcvU4wZERxYntI2w33yUZXqXMUukteY5F5+jwklZM2xEM3IOoGkoxu3Ao1A5EpEgmgKOGee3uF9AIhJITxdAd3TvA3cJTUHhi1zqB1DwKu0lbGSfeAF7R6zm19zAAgY+pw2IKHm72nyKACjxo/AACf1+zKkWtLedJ0RqFBzttGv3cPT7SrwFe7frwvJROqsKcTJBIuud3dD4b7H1dRXpFy6xgSPnsjO+EDkFdcECo2VuuoLw+N2qhkufsMl+hUBv30QggtYAJ+DwvdYjRsn/rUp+7pIfQNIQSOPfZYHHvssY3v8jxv9NSdLh74wAfiCU94Ajqdzoz3dcghh+CQQw6Z0bZVVaEsyymNtB07duD73/8+Dj74YLzqVc2ek8YYXHfddfjmN785o3HsDkgpZ3SNk4Scmnme47e//e2CPsfdiY3bzwMAV3Ql6ks+iaHGERQ3vxhNRWYAF2kJ1wXgemMCQGEN5xK5fZbLdsOQ5witYXZ+OZ7jhKQ5WWhk6kmzug5tMBPf8u1J2qiUdYaXkDB/PB9RERohKZc2jPLUtzcaSp6KmRY7VyJx13tg1t5/wfo1G7Qh5bWum4UMjMrKL+mI3pil97qmt8c6irBtZISRkJJ0YG1zbxVX8uWgCkdAbb/dSgJaSBiU0BUFi3JNDmYlklnp14DXM12ktpZa134RNY3P6dOhYZs4GeZnXx0cqeUCtxwhDb/vpV9XunR1CAD4SueWqbsY9Gs2VHMbqp1Kv67QYvQuEP26by1jyObTkFdIuIvphClg5UjL305k5m5Mhi8+4QtSMA+fJ1q+aQqdQ2AMUsvGDZapDpRJoJIRqGTERkGDisJ8czP3XyWoqjGUHLG1lYX5Jg8T1xM7SSXWG53JjveAB1HnqL9uneMfJteHEzqvIwNh43Gr+LXScU5CHUomUV/WRk9gu0wJmytldKOXXiIzJKhVNmWvvPDeqPpvCMB519j45uuSigyV7KDUOTKlUWrtiiNIISC1xlBCxxhKBFCGN61AoQ0AEj4uMLUklRhJlRW82EsUJrhzGyAAyJRpXe62bUm0F7bfXlsVN0ZdyLQdwGIybgcgXH755TjrrLPw8Ic/HK94xSsiWvJ8Q2uNL33pS/jf//1f/PKXv9xtx91TePzjH4/nPve5rTTqyWCMwU033YQzzzzzfnGd+gXPifVaCo7GBx3VT+Bl7DwO895Y6S111VCGfZQnR6YSFDpHKjMMqWFoaGTpasAkNoopg8iobcMh7Wee7+x8nOuuZWbNw8UJ+1vW/wA3J4usNveGekP4ylHZIOoTs65mhtRSC4FBxPb+jHoNmzoo8gcA2hX34WggR2q5B66n18aGLr1q1xIskSUKXSCVKSpTIoNGqiliywyOVAX5q1Z+pJAoTNiZI0dhDVuuAeMiyDPUr3mOcBXEbZux1lxaIJZLDva0GrSeGeqL2sbVmvlYbEgyJtOvOSrt9PVJ0kIXmn5dGdKvVy9Jok4iYRCJ8myb+bb+erQHlPaUfj2N4lFZ8OAtbTUugdJGb6m3koY2nutdpxXwjRE2jAbgqMF1KpQx2gmL8xzDN3TWQkNVXaIwsGe1PuEEVIkwkZ3fh5B2e/YOhQnt7AXnSK0zavmahA2qGeF7HpMEWWL1ybTmKQ7bCPBNXzdy2bMUVbNkmjHa+fxhjz3AC3HoxeI8Zl5emdJF3el3of1S5T4JoHQef44epMY7QhJZIhESpSX0k9cI0IpKkKfK39yVMeDetuE9nymJTP3/7L15nFxVmT7+nHPuvVVd3emEHWQLBJFVQUX9ogICzogL47iMiDo6uI067vs2Ojo6uKM4KOPydX4KjOJ3QARFZVFAVFBAlADKHgiBhJB0OtVVdznn98d73nPOvXWrl6Q7Safr/XyS6rp1l3OX9553ed7nFSiMQGEjfh7THzzwWnBQEYkSACQp1yQ2g+vhJXoVrVTAXvQqV0hJPnBs55/ccccduOOOO7B27Vq86lWvQrPZhJiCUXu2pCgKXHvttZOSRm1JEULMGYsyZ95PO+20GTu2eZ7jbW972zZznbYVYeOq5MgG4lrmWQmztDwHkjHssz2Uze01iHOjEekCuS7QjGhO4PkgU+ToOudPR+X5kI3RyBueHRtk5izPbIsYfhEdft25vcawtNFQ56xWsrQcbGYnHCgby3YbIU/c/IEGSKzNdZK3tJzyk9dgItfOAOags/uugYm8QKEJ5vjX07YMAeB8FK4znUyq9ipnarn9i0dRmrKDW5PFzYVAxHqvOFvsO5uU6uhFkLWqHD/XKdKi4xxcJSIIU6kJtjIT+zpEc5ay1lXocUgeW7X9K/a0I4syNe9EDhsYjcRyE4Qtkdz6fexrJpoKieDCEsz5YF+PJCF5FKj9T+DoTuSFTUHTekrCfd/W7OtpO7bV6BAztukgfcxKlRY5mip2y9mhDetpuXDbQKNbtJHbSZN7M+UMRbCNqpuR358UwvVcBYDY5IiTJX4SAtxERP1ZO86R1UYjMxSt5km1SsEdy4DhWEaOpjuWictC00XRvn4ndHDDqHC/f2FdjqEHkidVVgK+5kbnThl6Xn6MiKrAx1iJXFTf1hFQYMC/LBjCVlX4Olp1PoaDX+cEuVZJi6DSkDAIyMCkRmQSJCpHoiJIzZBqgeEoQUNptDONToDClALItEA3r0RtjMHiZoS08FlcFs7gMgMyZ3CZHbkwQMj5qcA1AHxQe+smoR8PI0yhggkpIJWEkQPHdj7Lrbfeik984hM48MADceqpp9aSVc2WpGmKH/zgB7j55pvx29/+ds6OM11pNps45ZRTsGzZMlxwwQW44YYbZnX/f/u3f4vjjjsORx111BYLGiwE4fnPzRMMLRayRIzC7/ZwvUxnyHWBTpGVDOHcvkNzGzwMIZLcU5N4NKwBLHM3Lw7Ho2UnUue9EN5ANKg+cE6lX6A5hCpWsz1hptb1lY9KRjOVVc2CVMuV4vrVtkVxgWYBpG4ON64NSE/pz0D6SrV2k51WWuYlRFewzqZFDo0wY1sOUIVOLgBIm4iKhESuCuSmcLZ4CL9VxpY3yIiCkZM4L+w4QgLCEszNin0NEE1K3eNTTRwBvXa2TWqFpY5VZzZs9cOtlByseEb2NbXl4bGG6M5Nsq8tX4+Kkjm1rzNNjnChiS2ZEkGmBCMuTIUB2TqzSm2b9vX0a2zdxOmbAnP62wVTjEGOAtIIV9gcOrUc3QiL3QuTo52ltvFwgVxr5KZwEywAJFJhxDTdMaQQaEXUxJoJLUJiJ7qIaQkmwWPgh5ui1V1Qwb7NwsKzsbHTF0aUlIg8OZS7MEFk2jItBnelV+HqshX8wNtJlOES3ghJHduda7JtnVFu7h4KX1cJiiIBcAxrPDGH5+aIPvqJ/d0VzBuQ98gEWSqhGg2rrEpaRdbaHSNREaSw2X0jgZhgb604R/jGVEJACQOtgYyDcoKeJEA62BpFjPhtV1BUSZeL2QGKRKWFDrbzy6kpdbBy5RJMpUgcaeJG831QRAOZB3LHHXfgS1/6Eo4++mg8//nPn3PH9sILL9xiLYymkmaziZe+9KU44YQTcMcdd8y6Y3vsscfiAx/4wKzucyC2PjPIyrJxmlXgx2TY5c5x5c/cFOjk5NiyI5taR4vXY2GG1kRFyLVGYud3HeWIc9/GIpaW98HYjGhlLIC3JeqyOrMuIYySvwO9WdpqpjbM2AZ9L40drzZ6k+tqS1JUHPt55NgqKZzxSwFkQRlbW/ZTGOPIaeYEbr4dieNCqehFtS6W7e/QeWVdDYNUgC8ryE2Zv0FCWBJSaRGXPrMrRRuxtR0j62hCA1JarpsaO7HkKOqcuHBm077mQBNQXzNfl6UN4Mc68DU8yZYP+tG561JwQRrMyL7m+xeLsksVyaRkd9dKP/u6sMR3KnJ2/2zZ1wDppzYAJMGTYyXoO9uyYcmfqCAktW8ZtC3a19N2bHOdQhuDTp45x5Pw+hIyiMaFhe8bsw1BYbNEJOjh5LqeTk5R43aeuuixm3iDhykSsieDm2uNRCpEIkGims7BDYu0w8J0Pz5O92u0sy40jOsZNmShUvQg+/59PQX8/JD2RIDha41YEZnAYhKYBJFfRZYFOe+JMHnyKCILELbdj7YPN0sIdch16iI77qUhPQzZwcS5Fqk6Jj4/o93v7gqwoZB16DNtQ8VNiKjp2OGEjcDxdUvkBCJhkFpacor8azRUG1khnL8fa1i4sUan8HWxmoveYShSLOAaTSdKWuiTx0QUGh6SDP7d2AhTEHUqfA1BnYSRJNEn6uyY3KZoVr2Q5aabbsIvf/nLaUNdoyjC3/zN3+Bxj3vcnI7r0EMPxYknnujgsfvttx8WLVo0rW2vueYaXH/99T3Lly5dipNOOgnNZrO0vN1u45JLLsGdd965yczFY2Nj+N73vodf/epXpeXGGCxZsgTvfOc7cd11103aOqgq3W4XF1xwAf785z/jlltuqV3n0EMPxQknnOBaRD344IO4+OKLMT4+PuX+r7766tK1OOigg/DsZz+7L5HUxMQELrnkEqxYsQIAQbb/+Mc/Tvt8FprUZSQAlOaOXOuSocvZnXae9mRq2XimfZeJ+k7Z7z+nHlDD/gvEjP+QjM0oKZUCbbG6UlGZv+2cLHZ7w5SbGnNF6RoPRc+fvWE1T561fW1p+b/P/jYA4B9/9k/OoR2KpIMkX/6Sc7byCOePOEfL6Ww5K+v/Nk5HqxlbDlLx+rnNRGpjeuwbZUmqqN5WIdUEZ6VPhWa0AZFUWBTviEgmGIpGPNu6TRBVnUVm+ZWCbLvNtq8Bj6YIpc5JrNqsNrAmVQQjKNOZa+/ghllXgBI/1J5o0+zrWCYOSVgmk+XAWsAUP137mtuTSQmlkh77mpNbtK2wAYTp29fk5ALScEqcHF0phENYFNpz2hRGex85KP/bFu3raTu2rDTjWcdlTVkxnPMK78Rqo7Gu2/YHkhIjMWV6uf/teNZBqnPn4G7MU3Sth1+ikRYCG/MUSgg0VVyKHicqQtOk9HCJpJatOIRscS2DhnYOdTNKEEmJZuRx62HKv0f4KdEoTZIAeiFNQpazutXosI0McxF5qDxcE1BoLsL3kA4DgpsxZCKsnTXwBelKRoiROBIARxzFDm2e+qgxQ664nqjqwFaj7yHsukghh5ZQFkFoaFmGarTicYomFf7hzXWBoShGpjNSME/Whm4h0A7w+OzUAgIJ8YrTYQWHmITN4hKteCG8U1wIglIUXMyu4aNOEoAWfYviS7dd2aJ3WVFIHmdNjcBASK655hq8733vm3aLllarhd12223OHdunPOUpOP3005Ek9JwKIaYFlzXG4Cc/+Qk+85nP9Pz2t3/7tzj22GN7HNsNGzbga1/7Gn71q1/19LydrqxduxZnnHFGzxiVUvjc5z6Hj33sY/j0pz89I8d2YmIC3/rWtyCE6DuuJz/5yTj99NPRaJDH8tvf/hZXX331tBzbSy+9FD/72c/c91NPPRXHHXdcX8d2fHwcZ599Nq644gq3bK5qf7cHqTq1/bKzrsxHa4eQ4jmQ59tM0zvYfQ8gppslcZOyn0J6x1b7zMmcSr/5erIsSiBUzpRumQzzPJShWEFJqsfjTG06CPJuklDNbJCRrUCLOUAFwNXUsj3dKdKSE8uIN9bn8qvdlhjIArEUiLMOlBAYSydcNjeSCru3UjSjBKlegkQ20VQtRDIptcwMW3V6iqvNtK+rusnvidDOZj0O7W/uRhJ0C1Eqcu9I5hdwta2AQy1ujn1d4tsxIJs6zCy7dqSbYF/bRFnVvmYCQIOAPEpO377uSrKLpXVw+VmRhh1cCWJN5lpbQZBjBphuw/b1tB3bVFvmNZ2XYMLs4LrvFubAisjLIqlc5IYn2lQTeYWfZA3aWVCza/gYBh0pECsDIHP78hOzRiTaMMoTS0ECkUgcrKBwk33qqcStY07Hsi8PQS2JAJQUldbRULaOV0NTD7uqctWxKxayFEVyTm2g6NUItq2QcJBkXgbAng+TStkMZXC/XXNnex7uHPi+sRLxZ576F4OqwLaKnBSP1zO6rJiAd97jJlSjZX/z46E6rCak8Kx9nDlPZIRWVLgXMiuftEXvOniQw6J3Xqykjy4NxcpGmKyjy5vyu2UaxpkUAtq9Oz3lOF0OA2N6sf6seEIIiGoB8EAAAI973OPw8pe/3DlODz74IK655hp0u93a9dM0xVVXXYU07V+D99BDD+HFL37xZvUzPfrooxFF0YwJjQBytuocwRUrVuD888/H8PBwafm6devw4IMPbrJTGx636ugZY/D73/8e55577iZlN6v7fOITn4hDDjnEfX/605+OOI7dddp1113x4he/GGvXri3tJ8syXHvttS7bWrfvu+66C+eddx6WLl2KZzzjGS6oEEpRFJt9nbZ3CXvRMtyYlodObOEIHkP+CjKGC0zkuXtPagNkLsJOyzJtMBuxOtHwWc6hiP7NhZh15wZfdNlAZggP17VOU+cj+TeItrMykwc3fhsb8zEcsPgdm72vs4//JgDgn35xGpSNM1d7aA5kcvGtLsuIiZAQKvwthCBzxrZb6JIdmHFLF13+TseDzdb5hIEWBlLk1jYjBa3a1wCgdFpqR8TJCw6sMTEcJ70iKREJa2dbe1yD3l9pUFpXmBxKlYPBTliPJcp2ZzVI5Tqj9NrXABy7MEGNy0o9J/Z1kZf/3hz7OmlBxjZ5ZwmmlKRWeFKQnRSyX+dGIxIKI7FxwcvQvpahIQ0Q4ZQBZVvBTq9v2ZMoCSXmh3097ellPO1Aw2AsnSi1BMhcYTEPnD5jG/EBvGMbwpS10a62diLPkWlgfddgPPUPEkealBCIpaWuBhBLg5EYyI3A2s44EhVRRMikiGzWFtGIY3JmavJUd0qwiaaKLVyDXxyaFNsWghc6Ry68YS1Dh9eQEx1Hlg49t+sxO7PbSNLDzBEclRAcy+RIc5/t4KgwSzlTW3ZsCx5LcP+dUtqMdCwTIoUynoSg7NBqP+7MMlMKCeQyiHBrBzWGzmHWj9GyZgOOs11KiLxjnfoEUiWQUeJqAgB6+eU6RWZSl03grHsrSiCFQDtPgUD5lLCKxmgAd66mFF0CSOEAP5mmBWP/LVMjXSAoaZBmnrGRtgnILSTcxGwCSnK6dDXORCWqNMjW9pfjjz8ez3zmM933yy67DDfddNOkju1//dd/4Vvf+lbffZ588sn4z//8T4yMjGzyuJRSm90LtyrLly/H29/+9p6sqjEGWZbN6rHCff/P//wPfvjDHyLPNy+rJITAS17yErzzne90y6rXadmyZfjsZz/boxMbNmzAa1/72pJjW5Xf/e53uOGGG3DiiSfiiCOOwI477rhZ412o0ikIEZXpTinLE5bzMOSYy4fY2U11jkxrbEh9TR7tiz6rju28ScCVnNWKIzsdSOMCEeYkmU1x9XtBsHkg05O06NpPr68AXBIpLfK+EOS0yFEYSgqxLU72s6k4uuWaXcl8JgbO2egUBWKp+9rXnKkcjkZdCaAykbM7u3kbazvrAMCiK31fXoYgc7a2U7SRmRSxSJxz7Ozqfs+mkD5ABXhb1vXG9qSxVfs6JIgiZxFzb1+nbfrHY98c+zppQSUtat1pz4OvW6IoAMEs91xv3YoTJDpCO++652Qy+9qjdSjQAQBaCiiIeWVfTx+KbC/URJ6hW1BkN1QadjZiJaxzG2Z16SFKi7zk2HaKFN1CO4VkJ9lBJ+yEqm2xs9QMjeI6AmmdUbqhkVSATCFBTGh50Ae22r8205lzal27IluTIKRnLGMnbFIqdo4Q8d91IsskTWEm1jG1hWnOKUT3WddFxIy296GmtqjaioHFYf6D7xZCYdIM6HRtuEeSAkZRuaDbKXb5sZJBZIkIsGA/bU81oxEJat/kt6GoUSWoZGtDystd3y1ex9be+m38b6GEcPd+NQChQnE7lDolGzi1k4tSytVnAnCQ1skky7JJHcGiKNBsNnsgv1tbtNZ9Hfbpyu67747DDjusdM0Agg3fdNNNGBsb69kmz/PNdmpZ7rzzzlId75577olDDz3UOetCCDQaDYyPj+Omm27Cxo0bAVAd8erVqyfdd1EUKIoCK1euxOWXX4699toLRxxxxBbtIbw9CM8bvdBFhi36mlp2ahl5lWlN83glI8sGMf+daZRQM5+6/o2EppEUbH77EV+ftfO5ec2nXQA8rF1jwhTuXx/JBIlsIlFNMsiyDs1TedA6KKxj6+fQLmDHlusl791wFrpFGwcuec9m7/ObJ1IQ8h9/9k89PS0HMrmUWvEYnzjy9bVhAob1momRDDIdZGgDuyjU7aqjy5laaJ+QKqZpX2cmhTKRGx/b27lJkRti5pX2mCGiU4flcNO9NoFT2SMWnVnV5bm0rxnRGbYscmOZS/u6IJh1pIingHv/MqlsJIFcE8lqU8WEmM0BILdI2jIXUp197X/3yMgeG3we2NfTdmzH0gkUxuDBjRrdgqJDmTZoBL2SpABakUArFtBGINPaYrs1tJQOv88FzmsmCoxnGpm2k2hhShHiTBt0C4osNKx9N55pNDSxIsfStiUoyPEGYKNLBUEbAsx6rlN0Cso2U/RL27phH8VhRsiG8oRThckhReLrdOHX598BwvGXvldrB4I+eHWF9wBKYwHK0SSAFLuqcHXkGwWFomgMkjKmBPOIgG5eZmKswiIMZZeNtlEnbYA0o3/rNvjtkhhoSQDKO/bawiqEhIg9PAUAEknOB2fR6QURuYxtCLkBgFhpxNL3RAYIIaEN0LRRlGpWQVuFY+gER4cYIqGEcK0I0oIjoYHyaV8H4OAPATOb0ca/lJzdNOhjO5DZl6c97Wk488wz0Wq1SsvvvfdevOY1r8HNN988Z8c2xuDcc8/FBRdc4Jadeuqp+MIXvtADG161ahXe//7347bbbnPbTqfuFgD+9Kc/4Q1veAOOPPJI/Pd//zf23nvv2TuJBSDcTsO3+bBBXBew9bW0POd1ixzawM3f7bzXsWXR2hvM7MgyVDmTQHOWmW7JiGajUYNbFrEhzKyg0hpyfaXquPasKhe0UwsAiWq6OsnZrnMmMsdBGcFMhG1PDjz5hIzX6bBriDbG6XKnoPrZTlHOyLJ4O4l0Wkqy2clpMYQ8DdaNNTbZvuYSB2kdTgnyBQANbci5qpJF9UsahbauMdryEdXAh20iLbSF58K+DsfJgTdmg6eFc2xfFynQGYNMWkgisqczmTr7vjA5EtuTOJYxDDTG0IYsBFKVT8u+pnPjC8IsycZ9ny/29YwweNrCHKoNfsOC5UwD3dzYGklKdccSyGzkBzaaQ1Fj45xaPY1aHmoCXh8J1Ma4ml5aN4cw/kHMTRrAPOxLIqRBd5Ex43vIhvW2NvLrMrh98PlTZXaZftwdw/TSibNIyNJLxxjtlM/BJ2q2DSf96jgdTMINXPtIks24mjynm82faUZ/0wGtQhL8Q3BLBMvszPUO/NILIdVVqYug8bNB8HODTHMNCD1nMXzUkSNJOog+TVZtWY0a9Ysi0WXyv80EBjFwbueXrFmzBvfeey8WL16M/fbbrydDOh3ZbbfdsPfee7t9VSE1jUYDBxxwQG1G8t57763NcI6Pj+Puu+/uyUavXLly0rrj6cjQ0BCWLVvWs29jDO655x488sgjmJiYwMTEhPvtnnvuwe9//3vssssu2H///d11KooC69ev76m1nY5kWebqjm+88UasW7cOBxxwAKIowkEHHYQNG/xE3+86LWTxsMTevpU8v7nfwRkhuDnXo6Ps/io1ePRp3GfY/QDaoJD1c/GmSm4KSM1tBLWzL6aTaRGtF5a+mw0/sD8EmVu38iBjOxK/ECMx8HD7/6sn8NkM4cztQKYvIfOxX1bfj9Z/su3Mwf1qRpb3Yz8tIhLauFYtzmcx/pioaRo7XfvalymSIwtR72wDZKfWZmH59xpHU0P31rYCPfbwVPZ1SLhXXR7az6WWZ4BrWUp9Ze1xhPbj2hz7mkt9IuX+9bOvOSNNDNV0LY2R7t3Z95pOYV9DG0z1Wu9nN29L9vW032jSOqiLGxIjxqAd9dbesLPaLSgSRFFeg1ZM/c7aOUV9tJ1Y27lxTm24H76w2l586SIJwk3MmaaaykgoJCpyEWoteSLOUQTNzzt5VmorBMAV6EdSAYKiYtJI5CYFCpSK2rUhJrIYxOzINQBVxetR1AAqwUzHYca2SjtO+7TnKyMoeOfURaECJjoW3gf10yIW6lrRNRGlKiSiPVFWPP7km5MX5NQ2h4DGCNAcIeXj3mFRhG42VmbLM2XmToKGa5ddoGtnb7SgrHkRC2QFKGuPoLg9kMLABk48FKdXwfwyqgMSld/LUSiOKlVrAHShS9+rMnBq559cccUV+PCHP4xjjz0WX/rSl6bd6ieUF7zgBfjQhz6EH/3oR/jABz7QA0Pefffd8YUvfAEHHXRQaXme5/jYxz6Gc87pbYtx7bXX4hWveEUPqVWe55vt4O2zzz4488wzsd9++5WWp2mKD37wg7X9da+88krcfPPNOOGEE/DlL395k65TP7nrrrvw5je/GcuWLcPXvvY1HHTQQfjYxz6GTocykkVR4OMf/zi++93vztoxtwdxPWeDeryw9i6sqWX4cacwyAqaezNt0MmZAZP2ya8w/y6F+9QmMHqkcPW4s3k+lOExACJEkhFQEedpS2VBxsIlp5SQXKa6fIGLkhESbFulHAtRuJ2lgyMzeVTwPQxQZZqQjllhKGMbBKw44xYGrEL7ujD+R05KhcRSm2tf89gB67xKgseGDu6kCaA+wjZuURPoCu1MHh8vq7OvjdHo5m2ySVF2irn+vGpfhx1Xcp26c1DGwpGZ5GlT7GsAGB0mGPJIi5xatqsnsa8BuM4vQtq6YTF79jWz5EMbZDYTWwQ2Ml3rbc++nnGojvRAoKl6C9S1IY+fJ7zMpq21BnSQaXPQ0RqntnosZuUKyam84vq2Q3T8kB69vNM6+vTSsSoY9PK2uhTFEByZQTk7CsBHhsPlwmdZWdF0oIShc1wXwfKwZ/97Vek4YsTQLS5y59qk8gmFEaXcZmBtJClUtrzwcAku0A+Fi/WZgS4wOHTgzPIyfsEQ+58u3Q83nBpmNc7MKvvsUQmC6VmHrpF98VacXC5op6y/KS2fSsQUIawQVjGQsqxdu7Y2m7dy5coZs97usMMO2Gmnndz33XfffZPYjEMZHx/Hfffdh4cffrg0nizL8OCDD7rsqJQSu+66ay1R1aJFi7Dvvvtiv/32wwEHHNDj2O67775YunQp9t1339LyPM/7Oojtdhvtdrv2t82VOI7xmMc8pmc83W635/yWLFmCnXfe2X2vEm3FcYx99tnHnbPWGg899JCruZ2OpGmKBx54AEop3HnnnRgaGsLuu++O3XbbDQBdp80hCNtepTa7U1qme7K19Dr371yXzalkaOlv+vzCM78xtycSngNMCT0ViqhwXQhRJnipEzHyktrlZuP/brJje9+Gr5eM6P1G/2WT9jNbUpz/GojRYYIvjg5DPulT096Wod1zKc+/8FVItcbPXzToa9tPwr61bhmqNmxov7It41EXYRDKbVOxrzmI5RltfVTLJ5B4P9Ozr7UpB9B43C5z2+cJq+oziwzZjoN166SuFK/Xka3Y+sY6vgg6jwTnwxnZ0nd4NmcR7K92XJtiXxNNcTlTywG5PvZ1nQjhfRN3vmGN8wztaxn4XSzU+qc3O7st2dfTdmzbuc0IWseyFfla2ZD0qZ3pUhF7J2gfoG2Reyeo6wkdVV6PRQkgtkzIzIzcVKIUWaAG0+zsGXSKrFR8zzeVotfaEmkU7jcpJCIhXaNqanIcuQc2fKABinDGMgEmxuhBrJJGcd2BZUdmhzZs8M5OHjPFhdAKDe0eTGMpvVmRpJC+7jx4uJ3DHBSSKxkhkgmaqkUF7pDEgMz9a1lsH1vT6VLxel54hasqXtPW1yUxwSaihM6TexQ6J4OY7QoQoQCfW6FzB1lp590Si5s3wDgiSURhVXITbYx7WYfZBa7RTgvjFK+wy9NCu+UAUGi4fnv0zPmet0rA1hb4/ll1lOShkoVQikHWtiznnnsuvvGNXsN4fHy8lgBpMvmHf/gHvOlNb3IERosXL54z4qj7778f7373u3HnnXcCAEZGRvDpT38axx57bN9tjj32WJx33nk9UOQkSXqcyPkif/d3f4d3vOMdLoAwOjpaamO055574owzznDZ1Y0bN+LDH/4wrrzyyhkfa9WqVXjPe96DxzzmMfjMZz6DpzzlKbNzEtup9MIU6wK62mVr2fgtw5BDA7W8fyXK8/FcCxnHynEuRFL1ZGk5c+sdMl3voBrdY+DNhdQZ1ltaRCSD+rBtMwtdbP3LtE1LFYoc1kPycg5QOYdW+8SS266ixFX9lcLbVFIQKlIagwzEk7M48fW3wNT2tYMfV+DSZFd7B9cRQAlRqpHnv2XgtAkhgYlx6t0aV+Z37uBhlxdc2hfYwuy0hte1zgbn9mjhNQZQSj7xtnNuX0eKbkikKPPqnFrrYwT2tRDEWcPkuFXnmjO4kDlaUYJca4xn3U2yrwtjEEtAGtuTNqj125bt62k7tiFcSQoqIpcQlgGNJ0+O8HjHliAS/kJlhUGXYRA2QqAEQSKKohxFdj2UwO9sYd/f5foAjvL66HM1YmEx6ZUMoe+zpUrtiPjBkJNFM432b+swSlLkfSeX6U6Crl5AUHTJCF2qla0yvtUJT/yRTOgcWOFCvD8QRJICheN/gD0Xm62NIqt8kVXEqKyA1WvB4w2y1eX7oEvGmTs3M3m9dZ1RRst7ndpwOf89HeGgDZ2SmHa0aJC1LctDDz20yURHVcd12bJleMITnjBbQ5tUut0ubr/9dixfvhwAOXRTOeJLlizBkiVLZnSc0dFR7LbbbhgfH59RlnNzJM9zrFmzBosXLwZA2Wj+uyqtVgu77747Wq0WRkdHe35vNBo48MAD3fcNGzb03ddUkqYp/vKXv+CRRx7BihUrXDAgy7JSve9ASMLMSDXrUFqPs7WVn6uZnDqZy7bcP7/v/cHxDSLJHBaT17mLwBDGDFEf05G0uNS1Bkx1p2QMc0u+2SZc2hyRf//tGW/TLX6CiaAdyqr2d5yhnOsU+y9+26yN7+IXDkoIpiNVJuRwWXm96e2vmiTqF6QKbXtgavs6hBqnOnclEeUxc9Zz8hpagGzV0Dnztao1DP+8rJLRnUp04ABPlvEM15/MXp99+9oGpULfoeTchrwA0+jUAriAgQx6Sm+WfR3Cj7dx+3rajm1DkZPJDm0rbiASEmnQFw/I0YyATItStrZToCfLVlSUCSj/pg1hvmN772KbqeWJltsNjWcdck6Fd1KrtNaU8/SkGrw8sQ5tK0roM25AighD0QgS2yiaIzRCSMQiKcGQadAaMJUHWkiHiZeCCKAUCAPvIEya64fKUIlQ6aQh51ZYKLQjnao4ikxmJSz+n2sEEtWETDuejc3ocl8tgCJJzMrW6fobkcQ+Q8tvviQmBUtiD5XgBtSaHyUNoagGmVkX6Z7mKOxLkKN8XAPAzw83kWbh6E6Vxr76zPDzkgY1AP1ECQGlACWljTLp0m+QgAIwnhXQeTDB5LrUQLoaQRqwIs+uNBoNvP3tb8fxxx/vls3XrGc/UUrhda97HU466SR85zvfwX//939vkeOuWLECb3/7213mddGiRfjwhz+MI488smfdiy++GMuXL8dJJ52Ed73rXYjjeM7HNzY2hk9+8pMuSGCMwR133DHnx51vwoypYaAQKLMih9AzRkeF7JdxMAmHxsyWaNfSzjxkn4LPEomkej6GQPKcFv6LmYk0nNeqUtQYxaXf076GMdfRFchdezpj7DwuIxQ6d8Hy+SpZwIhcVDJX1e8DmXsp6XJfsqhyFlfaTBrj8ZWAI4WisjU4FmTAu5hM2jpT+xpg1mYN7m5SJxKWAA4GEh4ZyZ/Mbq5ERDwyMvKta+pK+3hZkZMDabSzr+md4B1RISWEIV4cIzSAyBK/kj4DNjBmAANZIqZjZ4t8hMKd3xa1rzlhJCPKSjME2dmpGtJ2WOEsdE8mGj6DHdZscx9blpnb1xrjaTEv7OtpO7bKTjQM12X4LgAHHaK/abKk+lrPeFyNAkwVCS6MQQyfvuZ//ncAGpjIc6KtlsY9mCFxUtheKJRQ2YjCXEHaSbNE4Q1PIlUbIeEHmrH0AL1BjI3KKOnYjSXoGighXZPl0q761AswkCNkfivXBvi6Wn5BuP5a+bifxO2LwYS9LjmSlBe9T3ZijdiKYyvipq2t7WMYVBmjXWZWO2OrruY5VDoOYBWT0BzXPedTQee4B1dYt11X7F6lGK8Wulc/F5JTq7VGp9Mp1aS2Wq3aetdGo1Gqj8yybFo9XpVSOOSQQyaF/s6GxHGMkZERDA0NOYgzQFnMVqvlxj48PNxTX7q5IoTAYx/7WDz2sY/FNddcU7pOeZ47eO9sy8aNG/H73//efV+8eDEeeOABPPaxj+1hXF6xYgVWrFiBvffeGxs2bECr1Spl0Y0xmJiYcM/Cxo0b3TXtdDqb1Fc3yzL88Y9/3MSzWzgSwherEMa630JRAvjgk8+u3e+Hr30DAF97NRvyjVve5FoGsS3hW/sI65z2ztshh4UzihkVNBXceLLfity34KsIZ4RNwPrKxnBhxxG2s7lr/VcAYFaznHMtISsyAOwxfNpWHtHCFs+30gd1Aa/TVeHayLDgnG1vdmony9jOxL6eyHN0CoOm0g5RWU4kyb5MyFIIlyhivXbtuyar8+bzDnWe7WsJQJRtbHZm+T3BnxSMsu81lC5XSXp9Bfs51/Z1pMjo5Swt19dOkpl1hLLsyAaZ5mrAs3pOM7WvwzrufrKt2NfTttSaKoYUEs0oRiQkZW55YjISuSosQVSGWHlmtSLI3BLTGlzvW8ArHgCP5RZw9bStWLgJkS4KXRiOJKxP6aYtTjQakUBT5c7hBoAohC0BNqsbYPyFRDNKEAnr0MoIiWq6vqt+uwpEIGmV4AbItJ+Xw4nXQpOlhRXweRtol8UMI6RciwoAJjym8Uxvme6UalMjqSCVhpIRhuNRROycQwLdcR/lMhom7QCdlCJIIc5fSqDV5JtiI0oNwvvzOTHOP2rSJ39XCbSiFj8GGlneRq5TpEUHmU6JLMqkpcws92vj82BhJchgAqKT8N77S1JGAFAgZSiSLmsbKhYrXBoU+/SDTVQV0SlhjUJW11sIcuedd+Lzn/88HnnkEQAEwX33u9+Ngw8+uGfdF73oRaXl11xzDc4666zNblkzW/LMZz4T3/zmN7HbbruVesbuscce+PSnP+3gx3Ec44gjjpizcVSv069//WucddZZ0woCbK6022186Utfwve+9z3ceOONtetcffXVeN3rXoejjjoKb3/72921evDBB/G5z30OK1asAEDX6elPfzpe/OIX45vf/CYuu+yyOR//QhXf49LXvFWzPAAHccM2aX4+rZNGJHpq9TZXxlODWFKnBCmNNYi1zRr5TG0ZjlnOkHDA2dXWbo7UwRwD4dIfNoYtmLHUQoQzJtNpR7StSmFyB68eyNYTz4o8dVAqJH9iW7koqDd1YQxasXTL66QVSzSV72fbUML1pJ7Mvo6VQMeyqWcFtfMEWJdhg1YGSZ+AURV5oaT3IUKKqcLkUA0b5GUbmDO3cdMnkCzyEdCEjoS3sQ00siKFa4dTKeULk0jV7Li/zsIhMxKboR2KRracfS2tHyGjvvZ1t6DsMLfU1Ibs67GUegp3isz5CEsaw2jnXaRFvt3b19N2bBnim8ioN9rKvxe589SV8K18wnQ2QLCHOsIoKYWDT8QQaETeqW3FkuARjtqc9t/OjIUth5ngIAwhyycphaLCdunHHzq1oeL1Ex3AAZyShQrI4hxf95/LcvIEzc6rgxCYEEbAOyrDeUMGOlqPJloBiUQ23bkQ8xoVrzu4BPfMqvamTaSPGDHcOEr8ufFLRUgPj+CokorsuFIXQWKoE0/+PGaGIIcvk7zyQqlKXZTIv3yDKKUUUAZQZupUQx2ZRbivusL28Hu1Dxf/thBk7dq1+OlPf+qcmd122w2veMUr8NjHPhZKqVLm85BDDsEhhxzivud5jm9/+9tTMiJHUQSt9aQZPyHEJvWdDWXp0qVYunRpz/JFixbh2c9+9mbtG8CUGUu+XtXrZIzBt7/9beR5jmKysOosSJZl+PWvfz3pOvfddx8eeOABaK2RZZlbvmHDBlx55ZW45ZZbAFDN8CmnnILnPve5+OUvf4lf/vKX0FrPmAF7IFNLHWyRlvd/D3FJ12SO7b8+hTK5n7jujYA2+Ohv3lAKRCsBfPio+mxvP3nnkV+fcp2L7363HydndKqcF9UAsz1n074QyDs9Nbfmke/4ua+a+egHRYZEAc94umPzlCnHDgB/Wfd5B1lMZBNN1cKurX+c1rZbSzR6ocgD2fJS5RipLquKEkCGMhy5UzGU6lCRXOIH6W3wWHIwC7X2Na1j0DAexgwwAZWAFgaxEtbkss54H0QmIy4mqw/VRkOppP5HGZXLdsNsbmCDh5w0VYSF27TCiBwGEjzKkwJsPOZENp1TPuf2NZ+XlH3ta3ZoAdhuI2Rjt7MuUl2gk6fQMBiJm0hkRKWAqJYe9F7m+W5fT9uxpQytwEjcQCRVwIRmH4Aisw6jQixz18M2g7CZWOMytllhXJ2PlGVsPwBAEbwhjDplhXFKRexsodNMSs03qBH5695Qua119QdoRYmDICcyKikZPRzlCGYpugONWFP0RghJDi7XmzIkGeh1dCsTstY5hJDQWpecWgAlpQSAtOi4aExIrQ74AnElIgfVkhY2RQqXWnhE6if9KAJaAW5fG98U2lKOizihrDRj/UOmtuA8+B8TbXSKdologxWxXFdblNj0AK9I1TYU7rpXagO08NAbDpwU2vh/BrUF7f3YGUOKcjo1ARnJEhxCCFFaXlU+GU1iLW7HMjY2hi9/+cu46KKL8OpXv3rSzOaTnvQkfOELX5jS4dNa4+abb8ZVV13Vd50jjzwSr371q9FoNDZ16HMq9957L84++2w8+uijtb8rpfCyl70Mz3zmM3t+O/LII/H5z38et9xyC775zW9ifHy8Zg9bTp761KfiFa94BZYtW4ahoSG3fLfddsOHPvQh19IpSRI84QlPgFIKp5xyCh7/+MfjoosuwqWXXrq1hr7dCvdjr2sVApRhjVTfZAAIguxN41XFNVjQPrsD9HJjzJZwXS3/qwaXa41hXsbsocKipAKnty9suai/CFyjVm37MZXkuoAUlHnKdYpMzm7pwlxIofNtgtl5oUtIwFQHS6a68xCpYIL6eIOm8X1I2b4uLPox7DxS/tuTRHXzst0lrX0V25XZ0SUkpd82VoSspIxtOdnFQjW39czmoXAHkgI5pO0I0gNRrkscsYTJFuOvJZfBeQQLrSOMtM9+B1zXz9eadFkG3yn72ynaaKoWjWsr29ch+7Pn3CHnvBkliHRhCfno3LjfeSQVVAWxsr3Z19PP2FqHqRklSFSETm4bAKMoPRQEcyK4EeChEtKIeqdFGyhF27Bj2uPoImRW9pngsDFwNzfQqhyJLgyPh6IuPGESC7JEU8U2E11RsMC5DanE3XdZbtYshITk6EtuneI6BewTpdJTTKKhc+ii85Z8nLfhiJJ7YTDzGpM7MTQCsHj+GhIYKQEpSOmUbeUjI2BotDx+PkfpYSTaaAeNCGFalK21zrjhdkvaQZH5mvL9qg4HevIMRIgGCPu4hb22Cl3+3nt9TUU57fMcSVfU7nppmV6rjhVwoTAiG2NKLW0mJibwox/9CIsWLcIxxxwzqWN7wAEH4IADDpjyGO12G6eddhq+//3v913nxS9+MU499dRtwrGttvgBgIcffhjnnnsu7r333tptoijCYYcdVuvYLlu2DMuWLcMVV1yBc845Z6s7tgcffDDe8IY3IEnKkfQlS5bgH/7hH2q3OfbYY3HsscdixYoVA8d2DuS5Sz+/RY7DTm3Y5/Kzf3hjz3q+T73P+s74WELgabt/fNJ1jLnCf2EjNXlu/bqPfKfXqa2irCqixIlQCoACWjPgSjtkR8/yfMf6M5DrFKva38FIvAQj8Qunv6MtIA9s/KYrg9LQ+Mu6z7uyIO4x3yky5FqjnXe32LO2UIWdDpYqJDYU911aGKkUyGy9awlaah3chmuZWd5H+D2rMT3JdjbudymMbbfpCapiKdBQYWlfUG8LX0sf2thhxpY/uSbWtdc0mlzaOh2t02WAbFXrCIc2O7fXdMcHoyYlIJgsrRxY8P20pXVyhc+aysTa1VvOvibi1bJ9HZ4flSl61A6VW1oSL0NtNRnu7ny17di+nkEf2xSRVBhLJxBJ6ZwsdlA6eebqJzNbPNyKCJ5QKFK4VmXQJWx3yashZi2WahPquox0p6Csra+JISFYtEYsCfvvb750bX6I5c1vU83YuvE6tmKKyAohIaQsK6CK6AEP6wyC75lOkReUyUw11aCmBZHE9GssnenMZTvpumlIcCBBlqLbhcmhEPnCeBVZOEOGWrHKRulSui6myCFCZrakVWJulnGz5KwXto6W2e6oBoQCAp08s88JZZk7eYYQSi0rL+NyQEPY+1K+4VJS77VSg3IXSaLPtAJJU0E7qVJbIBMq6ORQB44qcRBxvkKPP/axj/UsU0rhBS94AY488kj84he/wDXXXNN3+xUrVmBsbAw77bQTTjnlFOy6664AKFtXV2c7E2m32zj//PNx++23489//nPpt2OPPbbEknzwwQeXHK2HHnoI3//+913tL0sURTj55JNrWwXdeOON+PGPf+zgvnvvvTde9rKXYdGiRZOOUwiBE088EUNDQzDG4BOf+ETPOitXrsS6dev67kNrjYsuuggPPvggjj/++BkRZbVaLbzkJS/BsmXLplz31ltvxf/+7//21DWPjo7iZS97Gfbaa68p93HEEUdsMuz7xBNPRLPZxG9+8xv87Gc/qw0CDGTbF4IelgOQ4SvQObZz3Py2MLlHS00l1SwIAGrICGAOM6q5TgnSLMscGtuKsFNbNfrrZDLDdyCzK4l9JsMyrbDsjG2VanmfEsDihgiytGXCVP4e1kZOpqY6tK2CjC4AV4/L63Vzg1hxvbxw6E4+bjOKLZKTuooYox1DMbQnZGMzTwiJoshdfb2rxZWglUN95j+D1pMM1c116uxrE3DXuLH3sa/97wa5zgFEiKRxQaBSAqpqX3e6/kXJsGNLvCqSprepVX/7GnHiEl0GGhPpWjoP3XHQY9ZZX7ZYYcyG6EviNZU+bw/29bTf7J0ig7QPhndGKBKgQSRAnFVlacU2ta8BwGdkQ3rpwoS4fcrEqphgFCxeietPVBtybLWh2t4sKkMvYuV76wJEuhFJKqhmRdOwda4C0MY7aiwS0j989sPX4kbeIRPSTZyuIF7JIOtKcAKOsrACAuFDWq6VIuew0rohKGII++8y7h5IXOE5RG7D7cELIYwuSQnowi/LAcQg5YsSN14+f4Y920GXFJ3rGRhmTcEOjhgVQfCDs7RlCETd39WXNNeXaKt0aaEr/WtNLSRCCYHU+OMWGj1KNx2bLFQ+t2weZWvrnLBGo4F99tkHRxxxBC677DJ89rOfnXI/Bx54IP75n/8Zhx122KyNrd1u47vf/S4uv/zynt+OPfZY/Ou//mvfbR9++GGceeaZPa1hms0mli5d2tex/dSnPuWcvqOPPhrPec5zpnRsAeCEE07ACSecgC996Ut4z3veM+M6Uq01fvrTn+KnP/0plFIzcmyHhobwyle+clp1wP/7v/+Liy++uMexXbx4MV772tfiqU996ozGPVM5/vjjcfzxx+OMM87Az3/+84FjO89EW0NNVUqrqu9KdmizTTRIqpmdflKYHDDlkp2kX8ylzrF1B5y70pG0yKFEvs1CfdkeAXytITkjIdx1IFtKOMjPXDbOsc1T62R6rhpaP3By7e0aiTkTSd+ZvDXcLjwe0GtbhfsHfNuftiWNAmSPfa2EsQRUAq2YoMn0G+lzLGNH/MZZWaPzkg3lie28g8vrQwNSBvWooT4FcF2oqGRTM3kpEyzN1L7OrX9DXV8oEeY4cBgFEtrXGp4Bme3BZgOQFnocN50j695JFfvaZ18JNUqdRFJHwspkddVex/1aQlWFodl0fSlxJCsO8PZgX0/bsZ2wNXF8o3XgidcpTizh2vXATjrSKZztc5vzTSA8tzb0bLAyykB56G/hnWF7QGWx4CG9dHUi7uT00oh1AQmBVOeQhUDHZqEhaZJUJoIS0kdDAphviGWHKDO81U3GrreU/c4Paao77m9WEiEkmM2sjhWPWS/LTJcWagBy1DOdQokIXE+AKEGJ+VEbKmbnzGzI1laKLtkLriLbKyxBt1hXcsAjmXhyj6AXWBiZNoGSTdZwnBnSfESyPOTyNe2FRAAMg/DLOErE+3ZRpsIrWb9agKpUawH84FC/fJ5KURS4/PLLMT4+jhtuuGGrjaPZbOLv/u7vcMABB+Dyyy8vOanXX389vvrVr+Lwww/HMccc40iqVq5ciZ/97Gf461//ivXr12+toW9R6XQ6uOiii3D77bf3Xeewww7DMcccg2XLluGNb3xjT/ugOI5x9dVX4/rrrwdAme3jjjsOBx100KyO9be//S1+//vf45prrhk4tduwnHXzm9C1hqwr/bFBZ2nKvBhAb7kQ/65n2AP3f/7yFixpDOM5+04dTHPHMhoI5uS+ji3Pg1r3GsQyghn7H2IhjZsQ8XNmNO7JpJr92Rry4MZvOzskNIbZiGbODp572f5ge4P5MAYZ27mXfvY1ccp4W5iln32tje1IEhhSpRI+U91f1R4rH0fanTYUZWOlKNvXdFzLh2NhypFUtoUmkbRyB5Cqfe1GEHznpAj3qg6RiEJISBnVE0bZIBUHbMI2OJtqXzt90BpaVnSg1r4O4ORsX9v6WgNAhM6wiiz7cQQgdyRuxugeRzckYq0jvAKAKpmsZ9m2djh6Hd4qdHh7sq+n7diu73Lavryci9GprpY++TtHnwCKgDANOOO9Y5kj04LOAgLdijLy/mMpLLU4STc3aAepb8BSnnMUSwvEoNpdjh4rATSVQW48PLYZxYi0BiKuJ0hc8/VQOHvLCsg9bR07GjysgdevNk3OdErQ3KLtoMfVJu/8cKZWYbjWpRSRsS8ivp5SCdt8uQsJiaFoxEWtYmaWM9qztHFEqdMtK2KrSf+kgIgapHBRgkIC4x1ybCfyjdDGoKGSUmF/td4YhutuTUXhyp/V54if4VI0MljX/a6DOpKgkL0KdeB9UMSJvk+Hjrw0rqCQPWwo7ZjapPHNpeexk5vnOc4991ycd955W5XBdmRkBG95y1swPj6O17/+9SXH9tJLL8XPf/5zvOENb8DTn/5011f2jjvuwEc+8hE89NBDc84gvK3Ixo0bcdZZZ5UYqKvyute9Dk9/+tPx+Mc/Hp/5zGd6fl+xYgVe/vKXO8e22Wzia1/72qw7thdffDFOP/30ntrsgWybwqUh7NRm2kDaKL4SNLcCgHKZGdouVoTKijGze5yoCE01g2JWlLsIlGB8VVEJoHLKqgBlvguGA0YJ/ZtFyU3hAr6TMcDOpaS6g7AeLwymh7W0APxcDeOWMx9Gtf5zILMvk9nXgCVomoZ9nWuNtV2yL70jy8EqcniVQIkMDoCDL3thA5wCVUwiRe1+4Oxr7n8rhUBDwTm1iYzIuRXKkar1s6+rehwj6bGvc50CBkhUUAYX2inCoxVznfr68c2wr9kZ5A4qmpGI1p6vta9Z0sza16n7btIMGNUQKgFEyyaPIpjCZmPtmCfycRQmL7U/4hpaGke9c+6up9Xl8ByZ54bPyWfmt0/7egZQZPrMgpMGLDGUECiMQWxpx/2EJ2wBebnZuhTSHbgw1WiAV8aw31H4NyEuTOU3A98w2u9P2n+hMIlUeRnVh6pK3U01ewsEiih661N8A3keg+9VG9az8LWgzKZnDO5RtABaEEZdNAwifqjtQxzLmloebYvbO11SNla4sXHoiQwiVuTMAtRbK4lpsrc1C+yc5zoNIl704kwURdQIzk3ZXgWbNa68VMJrH0mFosjdfa5zarX2zwPfy2rUKJS+hesOAuEz/IUxhBbXwTMgp64BEFLUNpSu+30+ynQd2h133BFHH300li1bhsWLF8/6OKSUaDabOProo2GMwY033og77rgDxhgURYE77rgD559/vqv5XL58OTZu3Oic2larhaOPPho77rgjAMpM7rvvvgCAP/7xj6Us5/XXX1867zVr1uDiiy/G0qVLcfTRR2N0dLTvOP/0pz/h1ltvxU033bRVHLap7hf/3q8tklLKXVOAghubG9TI8xy//e1vsXLlSrfslltuWTABh/ku/J5lCGI4PwNkxHKdXlivF/6uAXz8t28AAHz8af815TFftOzLMxpjQz3XZammEtF6IdACzLpzyxkem7EVIy+Z0bGnK6VSoSqubhNF3/pJiCU7EZRxZGdAUeA5kn9Tv74pd1wIoZiT2RfaaDzjMZ+clTEPZHoylX0NTG5fAwgy7H77kk0dwkGDtC3by9oYR+IaQpT97xS80ppY0kP7updpuTyPcOKDM7DsuHKf2Wpwqp99TRtzltb/7drgmNRlON1+NtG+rgqX+5Uc85na13nhtzEa0J6bhseb6Q46eersa08M1dvSreyYmp7l7Ky7UsAiR6fwvYi3V/t62o7teKodRClMVzdt/WozoohNy7b3iQFEwva+tZla70yS81OkKbICLiqcFQZtLlKPSIkbVmOY7TiWAp2aJEWzOsPWSLWdQHl5hEQ1Sy0Gcp2iQK/jCsA5fCH8VkAS0xq4/oeYglPtIYBVhScMPT1wXH9afkB9FCkkjwKA1J5HjgIoMoJVV6XIYTpdYGwj0J6A6aQw3Rz5/Rug13YgWjFEUyHeR0PYptGImxTBVhEKS3CV6cyxJDI1/WgyhERpy8BGNbVaaOcEh3AsruFpqhhpkWPClKOTDqZulS6s9eAMQlb49k4MqWEYRFWUELaRdBkWoaSAAjWTJvo9Ma3IUiiTKdd8qrXdVNl///3xhS98AXvvvTeazeacHCNJEvzzP/8z/umf/gnvf//7S5nbK6+8stR3VWtdgtnuuOOO+OhHP4onP/nJpf1prXHeeefhzDPPdMvzPC+1Hrrjjjvwrne9CwcffDDOOeecvo6tMQbnn38+vvjFLyLLskEm0srExAT+8z//ExdddJFbFva9Hci2K8R1wVlaOChkpk0AL/ZtRgrr2YadCNj4BaZXT7XFJErKdXEAzXNzKBwoj+QsZYPTjBhTZQTX0mgSAqzcosRC6CKLg1ia3l7I2wKMeqHJ5trXuS4wlk44O5oztJrhzFavGUJK5o/3SNnPjeGDVuxQsyj7O5Rw9buhcLufXBeQqte+jmTiCKSqaMVq2V+dfQ34cjdGCVbhut28jYnCdxDYHPua2pd6tmdh+2mX2hTN1L5OYmDI6nCeAkJCRZELPBUmx7ruRrSz1NnX1exsrw9h3Ng5yRVmoHOt0SlStHONbr4w7OsZsCLTwapQiUzTRJcVFq5kJ0UlCI4TBaHVEgZc00XuFuFkGl5Qq0RWqtFhmkyFi0JVJXa9teyLQFFkKxLEhBwJhURGlhnZ4/lDx9aIeigRR5rqIrG8zAiJfpe3t72QKf2WW6iEUzD4CB1lOGVlOVN783KqUUDaBoqUJsSxceixDkw7h+7k0Ou6KDakiKgRGV1c7rXFjm2lHiISVI+sjSy/GAzDyRl2nbkIkYdKTF3YXpW62m2WUhaBC/clfOp3CuFtCluf7SNO5X2HDaOrzaON6W0mPR/kWc961mZtv9dee2H58uVYu3YtDjvsMIyMjMzSyMrSaDQQxzEOPfRQPOtZz8Ldd9+Ne+65p8cZrUqapvjzn/8MIQQOPfRQl7nVWiNNU7Tb7b7baq0xMTGBNWvW4De/+U0p8xiKMQZ33HEHNm7cuHknaeXuu+/GFVdc0bP8xhtv7CF9mq6sXLkSV155JfbYYw8ccsghPVnbZrOJJz/5yYjjGLfeeuustRTqdDqTXuOBbLvCmZ2wvo9eb/yetAYxPDIqlBB9owTwqevfCCmADz5509r/hMJtfoQ4foo1e2WuMrP95Mm7/eus71M+gUj/zKqv1/flrUjo1IbzNX3WZX806gzngcy9hDZHlVsmbLXl1yf4qTQ2uaG1dSB9xs7V1eoy6iKsj+Rj98sL1bErA0AsDWJwCd/M7Gvfz5aeOSWiEllQP/taoLe3bQg7Dvu6hrKp9nUkpe3BS/Mmj1vJaHbs62BMoY+RyAg6Kuskn0e/Hse9ZFK6nIGusbu3Z/t62o7tqo30MCSKby5NbBwZiiVsipva7WQKkCJDQxkkxtfWhhTmazoaG1LtrlUYJZYFRQUa1hbjdTiitCgW9tjCRaXCgvlYAq1I2Ppcaj3UihJEUqGpYjSjGMPxECKZuExtU7VKjm0mI1cT4HrECu880ri0gzFLISmSajSUovoA3l/o8BZBYbeHJgtEQkILg9yeEz+8kVDuZumA3ZnbFUXC9heWFIFWIgK648DEGEx7AhgbR3r7GujVE8jHU+hMI2vnMNpgZFEC2RiCaDWAkRbEyGJgaAkQN2EpJtz4WnECbQw6InMZ2Fo8v9E97aDCe+8jYv2fN1a6sB4g/I0jjPQ8UiRlItPuBRlCIzhyFIqSQCEEClP0FLorAWSBUjH232gDXfTH+88XB3ey3rDTkZtvvhnveMc7MDIygv/7f//vrNdkhiKlxGte8xq87GUvw+c///lpsTWvWbMGH/nIR7DTTjvh61//Ok444YQZH/eBBx7Ae97znklb3MyWUwsAP/jBD3DJJZf0LE/TFGNjY5u0z8svvxzXXXcdnve85+HMM8/sCUDstNNO+Pd//3esWbMGb3rTm3D11Vdv0nEGsn1ItzAWMQN0i7B3fFj+I5yjWy3n6Wccx7OFYinychu9hSpGE5SxkEDcPxvMcy5QhSn2Gr0liOYMa6QHsvnC9kyIPAxJ2vgf3SPKmOosgxS2Y4ljVJZYb7IAdeERkUDoxJIuc82tUpPpsigtp4SRdLw33Npzuva1L+Ujc01Zu3U69rUsNEA0yYCQmMjH0Sl8EDVs1bm59jU75vzJ44tFsun29aLFwKJd7QDJV+DsM2eEFzcWY1in6BZh+V+9o1oHTa6iMNg+rz5v27N9Pe1ZwuOvOYcNy/jrT0wKCyUlWDm6hYAShXtpera9Ap2i3CereqzJzoEzsXT1AW0oIiClz+Ay3Di2UCliaSMnkB5S0ZfRmEWJCFL2OrW0/xByTFEcUsa8p71A2CoopNueqg1AtaUPX5NwOcAOrnRYfSEkkLUJ6mAx/3pdF91HJpC1c+isgFB+jEIJIIoIJmEL2nncnP11L5qAFIqFFYihHiGbYlUx/fnQ50zgauUWQP6To48cJXIM2XyKGr2F1m6f/PyWl0shUEwxwc8XR7Yqu+yyy2ZtPzIygvXr12PDhg3405/+hDzPsXTp0pLjtGLFCqxZs6Zn2x122AH77rvvpKRHdccbGRnB8PDwtNbXWuPRRx9FURS49dZbSxnbhx9+eFr7KIoCa9eunfYYN1fa7fasZzk7nQ46nQ7uvfde3HTTTe76DQ0NYb/99kOj0cCSJUuglMLBBx+MDRs2uGs1kG1f3nnV63syOiHHBM99rUiUyGcAclRf8bizSvt735Moq/qBX78ehTH46nHfnHIMn7juje5v7+iW34tKAF++6Z/RVAJvPPxrm3CmJCKqryVdaCL2eLP7OwIwkV+M8Wwddhl6Zc+6/bI9PY5upe5wIFtedJA5rWMeZxRjYRETXnrvsdunDvqIBnZ1+I6YSqp2FzEg+3eJEjO3r4WQZJLVJI3oOJPY1+H5BXXk/H027euwdJHrgjfLvrYlfoS4kA4Vyczl4fUJz7GfUzu1ozt99MX2ZF9P27F1TZ01s2QRvnookoSrtk4ke/uxJJhxKxKQgurf2jllZzsW5621cVnfKrabosWedY3HwA9ZI9KIjQhILgCAaoEKG2FuRgIjsUQraqAZxRiJm07xEuUhEdwwuoTfh0Qim16hLPGE601LV56iyAAc9beK3HqFrXGh6+YJpML+ceT4lSm5fXNr5b7XTTbhi6ShWmiqFmKZoKlawMQqoDMGtDvA2EaM3b4WG1aOI5+gYy/eZxTNHZoQjQiiEQHNBGJ4ERFTcLPrIsdQNIIljV2d8hUmRyzHkOkU7aztGK61MRjPOq4nGGdmPQFBCJuWiKVVvpDQAGF9lkHYD1EKoBEJT39vDJpKVF7yEsTMJqFE+EInKvIieMn3Pt8Cyu6PawoYzx/i+oUWMBWF5KL2+erobqqsXLkS73rXu7DnnnvizDPPxFFHHQWA6lbPPvtsnHfeeT3bvOAFL8Dpp58+Z7W5oYyPj+NTn/oUWq0WAO/wLjT53e9+h1e96lWQtlThwAMPxFlnnYX99tsPADA8PIwPfehDmJiY2Oygx0C2rPArp5qJCQlfqDTIIIZAZqFh3Um4vGbyGtOhNW7FwxXpu2NNjWYpczuQkoQ2RSgUZC5cQLlKNFOtx+MWIcyhMZAtLy7QH3igHr5JNrHWFJxge5sYyw0QEHLW7Zft6ljSdq1YYHEiLEKjvE0VZME6zKrOJX4Ny2g+U/saABqqtXDtawDMyJ4WbTCDsyN6C+znag18VY8BOFZk972ComS7d6HY19N3bMMnXRukxjgnF5qY2tg5pTpc4eAQlO72BcrVAvk68e1+qpMmPfSx1H4fOqi5NQbS+J5brv5U0EMqOaIU7Fcb7fD+QmiXWXc4f8teBmmPz98ZEgSU2RbhFY3FBJTmITshffbWnnLdBP8OeFy9hqmJKvkWRG5clWiNKYx7SFQzQjwSQwxHEE3ls7WAr9+x28cicaRQABXPh3UOPEnmunBU6qyA1XqOqnDiPcTeSwmgj+HF2Yk6pk76W1CgxT4XLIki4nVuEVUqeK+SJATb64CJTUhB/4ywl8mUPheaZFmG+++/H3meY2JiAsYYrF69GuvXr8ddd92Fu+66q2ebhx9+eNaIllqtFnbZZRd0u12sXr26h3lXa41Vq1bNyrHms7Tbbdxzzz3ue6vVKhE6SSmx++67b9YxiqLAww8/jDVr1gzqa7dRKQjgNOU7+bPP+MaM91ttHRL+zQbxNJJDA9kE4WzV/eP/5VqFcCmQW6diY1Tradm2+Jt9etuCDWTbEbZ5VdkcB1DuJkHfy1na0OlwiQRZ79SFUm0FJCVDo4W1qcv2dZWctc6+ZvjtgrWv+XOaRG1Vp7ZOl3uX9yIlgYVhX0/bsd1liHDoXAeLDjAR9B2i/rE0UHZ22xldJEc8FcCPQ6KoKsV5GCWIFV2Y2MKomir2eHkYxDJHYQwa2jvWANUqkHPrFbcZJQG0QNrojnZRIiUiKE3sbUpGSIuOY3IjiyBHqSkzUO6LZ3tpZTqlonb7d6nlTw2hA4vPbkpwH7k64gd27hOjkagGIqkgLGR4KBoh/D+PKVJAM8Ho/kuQjCQoLPvXosN3RrTHCORuo8DoMLBkESlZ1gE2rvXbx00kQyPIdIrUdDzTIrRlmivQyVNXV1vF88eOVc6eky56ojqy5iXNvdp8pDKsC0CtcAST6wIKq5DM0lZo7RSu/JI3PcsSJWj7omyNCSkctDxUvIWYsa3KxMQEPve5z+Gyyy7D/fffP+fHe+pTn4pPfOITuPXWW/GBD3xgi0KHB1KWRx99FB/96Efx+9//vuRED2TLCBskPFeGy+okmyyqPAMJoYxlSLR3aMkQFrNXazuQkoSQS9dHPij9qhJFhRnayTJWA9l6EkKRfblBPWEb2y3s1LJNzRLW2Pr1vX3ta+i901xt3xPqMZcCcreT0L4OZWBfT9++TotOqR1oddxVdAVQLimokkfxJ3Pc8D1cKPb1tB3bhgpII4woZ3Ct1C2rG0vYMylcNtlEDMAVyAMEE9DGIBfWkZJ8MxkGZR3YgPEsdGoZu8+p/8JSbYfwCQiiF1eIfH5yMsy6VTxWOKbvdhCDSVgK/fUqEzlwjSqfA2/DkF4ArrBewJJXae1eBIztl7sMoQnAWMpqtdsw5C4jpHAjLWrzYwvyS/3+4OsY+NwKnUOb3FKJ+6bP0yGdmCn1d3lb9GXBZuFJgLD9ACyqQEkB5V7e9RTmVal7ngELnbCP3UJ0aKMowg477OAyczvuuCPiOIbWGqtXr8aKFSs2mWHXGIMNGzaUMorDw8NoNptotVrYeeedXcZ33333xRFHHIGiKBDHcb9dLnhJkgQjIyOurpnrautkfHwc3W4XrVYLQ0NDffeZ5zk2bNjg+t6uWrUKt9xyC/74xz/O/gkMZFoS1tfKKZxI2Z9aYhbGAfzLE74+dwcYSElCJlhjNA7a4X0961yz8qNlOKOdu5+79PNbcqgDmYH0s4enQj5MFrOqZzKnjFoVHVkaR+DUOic76KHr4b1Bpha+1nVgX/e3r0vj68Pq3FNDOwk8mbdhma7NvT3Z1zOusY2lgDQGw7F0aWnAn3DDMhDHSqCp6Ds1mfYF2pzBZfgwRw3CiZkiCl6ZGFZMxxLWsdVowkeJ+IHkdTxTHEWX2KmNREC1DWnZ2SiKw1EfYdnbpGEl9KRKJRESkNIprocCdUoRJertqh1kl8boH25unhxOPFU4kRu/lJZOXREbsmoikU2KfCnC7WNoFIibEADMkkVIWk0qdOeijJ13IMx/YwRotIDIUpBHSal3b1p0MN59GJlJsTFb53qC5brAeNpBynU8huAbiYp6YBJ+/BINJUvLM+0h5Vx/rY0JGP0MurmPKAG+Ftt/Ijie/9tB5QPhxtFh4ToXw5dpyT3+X0gBneuSglUVbiE5t4997GPx1a9+1fWObTQaOPjggzE0NIR3vetdOOWUU/DVr361luV3KhkbG8OnP/1p3HjjjQAIJvumN70Jf/d3f4cXvehFOOKII5xju9tuu03qfA2E5KijjsL73vc+d61GRkawxx579KyXZRm+9rWv4bLLLsPrXvc6vPSlL+27z7/+9a/45Cc/6QjCut0ubrvttrk5gYHUiiOAkf47EbuUDVBG3NogPwAAvbBJREFUO1WN09kaQ3Vf/QzkgcyNdPM2ukUbhc6R6fqe0WmR9xjDg361246UkA62rjbUYc9GXNZjwJM4FRLgGtvM9g9lO4ZrJz2k1NvXWnintkwg5BEXixNiB66zr7kONdeFrUcl+9oRjg7s61r7WgiJQudoZ+uQ6RQdW2ub6o49F8oqt/MuOnnmfJl+pG+hcJJpodrXM+LO9w899cuKlS8mDyfZZsSF5cJBgmkl43rc8uuXlVdXJtzwb74oIXaf/q5mHWSP4nEfKt7OsQbDQ3hkzbK+Uo20WGXMKormIBK2oN1PJgVyQ61ywuhUNZpa/8AG9QxSOoiEss2vHZOakKRIQgJJCyJKgN2iMqxjaAkpXGOE+mo5mEcHqe64I+ZW4XKdop113fhLnzZrazmZSfkCFrfSHXJGT0iphkCRvNLpQLFCmLm/ZvV/AzYaVMBFjvpFh/z6VBcwWe3ZVMo13ebR811GR0fxzGc+s/a3xz/+8TjkkENwySWXYGhoCFmWIc9zRFGEOI6RJPXtKYwxrrXN9ddfjyuvvBIAoJTC8573PADA/vvvj/33339uTmqeiBACSZI4IqhQ+FqzKKWQJAn23ntvHH/88ZP2G+b+vn/84x/xi1/8AsceeywmJib6rv/QQw/hqquuwgMPPLB5JzSQTZZyLatwRnHVIK7PuADn3E7supkGxlONTlFu+fOpo/9rRuORAnj7EZNnaq9Y8UFHLtNUMVpxA5EgiN8ew6fN+BosRDHmCmcEt7Mxh6Laf/Hb+m5z/N7/sQVHOJBNEdbfUEKn1tvDorxNYDOTX0X2uUtGWTs903CGUh05VF2ml98biYxscqg874TJIxZRXWdgX/fY13xNQied//m2mYVzcJm7hhN64TkB3pENz7f8fWHZ19N2bLmVDtfDxlKUJlaOCrdiytg2lMCihJzaVtSgfQiBXBdoZ11KX8ceglwtVub1OVvLFOJVSSpRHg89li5T21QxEhUhkU3qQyXJuOYML/ea5QdXoKxcruhdELbcDzRyD2OqOyh0jm7RRqZTTOQbkeui5kUgIcPmyvCQCMb80zF9PQALnwezPDfVEBpRC8PRKBYlO1KELOuQgvF1GRol+ETU9MuFBFpLgKSFju5gIl1DsA4mfoJ3+DOT2nPKMJ51nNJxxKsKRa6r1wnPocraxpFErr/mehBXK1L46BEHRQBLhCLqoe5KChSF8UXqvFwIJEoihYYy/lnqB5souP6oRqGEFFCJcn24FopTOx1RSuEf//EfcfTRR+P888/HBRdcgBNOOAGvfOUrsf/++9c6t6tXr8YZZ5yB2267DcuXL98Ko54fsvPOO+Md73iHYzRmKYoC55xzDi699FK37JhjjsFpp52GpUuXTspC3W638dWvfhV/+MMfcN1118EYg/PPPx9//vOf+26zZs2aQU3zNiCcxQkztfzdoai43Y8ocx6wKFEgi4R9n9I7T04zmRfO1dPJAlO/deq/3oxixDYTkqi5Z0nfXmRjPuaM4VTTZ27SqTccyDYr5c4fZbRFtV6dEZCc7AlFG4NmBKjCOrkWDamFbfdV0et2pktZXMC/U2IlsGMjcYGocmkfvT/YAWTHN5YxYpk4G3rB2NcqoeWNEfqtMQJESa19XWKLrmSd6bNwiMhOkbnMMrfT5POqk4F9TTKjjK2UAjr36efwWA0l0LQOLWdth6IIkZABDFggLQSU6Np2L4IULwrT4PTpoRII2Nekn3g5c1uD8+e/pZBIZIRmFFPhuoxcBIaPAQCRDKDJlRoAwDOuMSwiZDILi9dznbrC9nbWRW60hW/0voBCYShvFRrETiJvGwUGQVMNOYhEIpuQuS28L3Iao7TQDpPAte8BCA4hJNAYQao7aOdjDt5R5+gzvCkt8lJrHzduVCNf5drcfhK2diqMf6ZCJj9WxvJ2/m9mW6uLNPYzsiizwRT6PtpUVHZSV5dgjHF1ikIIyEguyBrbyURrDWMMnvjEJ+KJT3wili9fjosuuggHHXQQXv7yl/et7dy4cSN+/vOf46abbgIAt55Sqm/PW2MMjDGuzhOA7TvdX9d4fNu6CCHcv1BGR0dx0kkn4cgjj3TLtNbI8xy///3v8Ytf/MKd47Jly/CSl7zE1R9XWaOFEJBSIk1TXH311fjpT3/qruVNN93k7sV8lX7Pwnx5BqaSKnzR1z+x8eshYOzUMkcFG6gaBpFUiKUBYBAXAu87cur62M/+4Y1uXqvWqE0m7NQmKqI5WUTYa+QNm3YBtgPRt38KYvFOELv/87S3GYlfSA1NB7LdSS3aouTUsp57vhlfG2oAaIemjLUhP1H6biHarsvmTqcoZ31DU0YKCkQ1VflhC1GTHopM7xbWaXbeJGTJvmbZ7uxrgBzboVFAJSgkkNXY10pESFSzh7OmnK2lJFGnyNApMp9pNtUkUZnsKpSFbl9P27FlFsXJWLNCR1cK9Dx07IS2YooeZQUpI/fVYuHsb8M6x3VwB34gmek4chEk5ZxaAGgoigYznCCWCRqK+loaoz2FdyAMl3COsGsObUVRfUBuYQW5TjGerUOhc3SKiUrvOA1AlhQoNCp4zLkukEhVgvByNpqd+tFkCM0oRisaxVA0glgmiGSCRtQCum1Li5cCeUAjzi+M5gggI+g4Qa5TbOw+jFR30C3aLvrLY+QXUywT+0IpHMSDe9wR62Ivy7ESxl1/Zp+rMrZxdIgx/yFjH597PwKEKnu2U96Q9U9zr2VfxF7Y49YpVGlbXk/7yB7XAcig6XaobBxNWugObrfbxTnnnFMiENpxxx3xxS9+EU94whNq4bMsO+20E9797ndj9erVpeVCiL6w55tvvhnnnHMO7rrrLmzYsAF77LEHTjvtNOy6666162ut8aMf/Qi//OUvZ35yW1ie8IQn4NRTT0Wj0SgtHx0dxV577eW+Z1mG8847DzfccAN22mknfPGLX8TPf/5zXHLJJfjNb36D9773vX2v+w477IB/+qd/wu67747Xv/71OO644/CDH/wA11133Zye25aQHXbYAaeddhr22Wef0nKtNS688EL86le/2kojm33hmrx+NbUNRf0mfZBZ1sylVGYSTzNVW2Y4nn47n2aUoKFo3kpUk3pCLmARozsQemogC158ba1HXEghXGcQaQNWDZsoioTqcepIlzObpAhrKMN17PH66Cw70QDQzrtIixyR5FaZEhGURUD6IFUsYzRUC4lqYjga9ceymUqD3vcKO7NhsokGsA3b10YTpjbs9WwTRZAETU51BxvTMYem0EZTV5GiS8m9AIpsjHbnNJZOlM/DJuY6RYbM2vPz2b525FLaE0zxeGbbvp6+Y+sM/V5vu4r5509Whmom1U+KBloLJjR22zJ0iiEOIRsyjSGMstDNZ4c2lnEpWpSoJtGL20hSqHgh5DZkKnPRlapDy8eHds5grlOkRQcT+ThyrdHJ0xq8u89m1mUxwwdVAsgtJRi/uDjj3YobiGUTw/EohtQIlKRzkgakdDoH8pTOhT85shQ1oZXEeLbOjZdfGgQp1i5jG8ncXW9tHd6wnpauAcE7Ml09V+OgMtXlrCiAbfGkqaarqmTV51dWoOqO3t5Gn0rKFSqdQUnZihqbrQqTqO7DjSGymXwbQRJS2Gho7z4XqmRZhosvvhgXXHCBW/bJT34Sb3tb/9ovltHRUbz85S+f0fHuuOMOfO1rX3MMzPvvvz9e/epX47GPfWzt+lpr3HffffPCsT3wwAPxlre8Ba3W5IZ/nue49NJL8YMf/ABf/OIX8ba3vQ1jY2O45JJLcMstt+CWW27pu+3ee++Nk046Cfvuuy9OPvlkdLtd/OlPf9ouHNvR0VG87GUvw1FHHVVarrXGvffeu904tsoZQWWnNiSQit0caR1blLM9IQJHinryIZav/pEyi7Esv5OlNYa/vfzNaCg6ZlMliKR0EL+RuIlW3ECimmioFrXPUP3rvnP9c/e3m9MNIOSJM79QW1nMfV+EKXIIzvbICEhaQHOUjOKBTCq7nvF85N0cRVqgSAuMf/KKrT2kORVPBFeujY+ldI6Yc8y4vADC2Z65LoAodw5RVtQ7sWViIBPY7/THRJ5BiRyJiqw9GhPpk7XJm1GMRDZLgaqReAntzzq1bTPWY9NR9pLPtQJN3lbta6N9HS23JWJdjpuAihwfzUQxjol8nLYX0mWZQ/s6UQ1o23O6U2QYSyeQa42RuOH8pkgq6Lzrrt98t68BW2+bG6SFKdnTYYZ2c+3raTu2nFWVwoDIo+wgg89qbWzVGeVoCU/AhQG0IFRNmQ3ZZ2g5IlPtj8rHybWGRBG0AaKsrBDSObaJbDoociQTIG0DQkJy360i9Y6tkFCgbC3dKQ1H0w0aLyuaZzALnMMgIqSNQW5fAvTd980Ks8wAQ7T8dwmfjU5UA0pEaKoWRZBsZMw1i846QN6hKJI9N1Y0iiRFSEWOLE/JoS0oEqZtg+tERYikH7fLkEMCIkKi7IvAtlgiBmQgBW1fzeJLYSCDAveqTEZHz7/pgHGNo0Zc311icNOmpHDhMqBSrE5YHBQIfmdGwcJYRrfeMXHT7X6Ro0HGliRJErzkJS/BIYcc4pY94xnP2IojWjiitcbPf/5zjI2NOaftiCOOwHOe85y+8O/Fixdjzz33RLfbxYUXXojbbrtt0K5nHoqqzMWFAaShebrMciqdMeeRTcLVoEWTICpYHAOr4Ros4+ZsruMdjhKLzEoQCTZ+I4wkw2iqFoaiEQypEd/Dst95abi5l9vyQcyoemrbESEhmN8ibpIx3Gh5o3ggkwrPsYyeWggihYDWQN3rO2xfGYkKJFn5rF4kCyiRI1NlewqwNY7w4D4XJAvqeIeiuGSLNlWMSCq0ogRDUdMFqThp1FStkn0tZYJENp3+srML2MSSg+jasW3L9rWQHnbM5X1c2hclpfHmOnX2tTHkVHOfX2YzpnV8j9qmiqGVz0R38gy5KdAtNLLALp2v9nVVCKLsv8+mfT3jdj9lBzaASChWtDKLMVAuaNbGOAcpNjmYiIr257HuVaKouj5OkVA2ykwOcCQjBzVmRzaRAdzJaCDtUINlIQETLNfa4y9Y0/m7IppugkekrjaVWNhS5CZ1dPpVHH/IXBZeg0RFDiJYZnumSJyAxFA0AiUi98kQ4UQ1KYqUpxZ6nFrlS+ncEs/GNoEUhWkjy6hWoZ2NWafW2HtBNRBVtjohCCqhIJHYF2skJLRlZQshDRwdYiEozeQPITcT772/qH0Bc+G7NkAahIZChePlDvogYK2v4MDSlArbmYI8/IT0isiGX6hcJUdXlx3fhezcJkmCU089dWsPY0GKMQaXXHJJqcXSUUcdhX/7t3/ry0TNsm7dOnz3u9/dpPZMA9m2xBmI1iD2fBjcnsNDCsP2bFzHVUfQGEojsgFuQ+98JULIs7RZHMrUtqKG+0xU5Bza4XgUiYkoENsdA/qBErrjjlFU2jYZGhr1YZptXGTkSWfYsbUtQDKTY3INHQhgeQcWiFMbBqQKG6Ricdk84XUZ8IkkbQwiIZGKApGhYJY2xKwbtn8h24bfE95RYfIoRkxGUlmHVjrHdigih3YoGinZp7GIgO4ab1/LCI2o5WpkBTSMIHRgoXMYIR1MeZu3r1VC/wBfD6yoBRCTW3GGmf7lZDsLOl5DJTYLTX5MWvh6WoDKNLQt98uNRqdI0c71dmNfu30a01N3O9v29Yzb/VSZsljpGP/fVMSMzNAFGrU956BYWxuDREYO/hpKSMltz7b0G30aaGkcDXbLRkP4AR2KRugBzXNg41pf+M3OX1B3Cpe5tQexmVtwxDhKHMQgs4rn+2hl1NtVF+Wx9SEnyV1UyUN/+SXFkAhmihyKKKo9Ei+BLALHmx+8kF48aZGScQQ4aUEriYnuWiKAMqmLmJWvtUFadN13jvRxU2qAIk4U4ZeQQoPbLCU6AmzWVov6gnCWInCEy8urMHdY9m3P3gagBHlmJalTkHK9bPn4FHnqramtfoa1A3wfJytiZ6XU+TSpRAcyK7LffvvhNa95Dbpden732msvLF68eCuPanbkrrvuwre//W0sXboUJ554Yg+rcbfbxeWXX4677roLf/3rX/vuZzIirfHxcVx++eW45557cO+9987a2LdFKYoCV111Ff7yl7/gT3/609YezqxI2MuShTOpdeIheaKUuQXg5iQpJK5Z+VFnSJZJA7UlfQSkEdD2OJzdYSM4Cdr5EMsoZUKGbe1aYiJgYp03GPs5tmnbniiV01S5MOaTiD3/BQBgVn+b5moLRRbR30zbqf3rui/CQDvjl7M9T97tX+du4NuYPPrBn23tIcyJcH0ty2R67Laxuuw6gFh7moJV2tVg5pIcKFlQBpefm3Kf0nIrMC5ZSILafN/Xlezr0LF1jMHZGH0yRFdZG1cRioPb87DdCFCGlp3Ybdq+ZmdW+H9aSZiA2Zj9BHbWKRvr05J+bGX7kv72ZFDSkvo1OYO7ndjXTC5Ff/Plndxh3RT7ekbtfgALD4IvKiYh55bb/QzHsYvWhjW2acFp3zLLWjUb285TtPNuD268pxmwztFUGbSiSE6i4CERsgm0x4D2OmBiHUyWUgPlNAPaHSBSwEgLaDYgRnamyZMLwhnGKyNAA6nuYH26psTKNpFT1pMouD32nyPeIXswn1sYGY+kQqfIXMSNjYBIKgxHo0hU0ymeXP8wTfJR4LjGTa94UQLIVul7R3fQTdsYS9ci16m9S+VCc7on5SbVzG4XS+lo2ZWMUFgCgfCRSWRkCcEoEphpEdwr47L2YbSo+vxmVsm09oqpDdApDLpFWYl4W9czy52Kd0Yng2FUpae+VpcjVNr4GoDwXyhCCpjgoAs5Y7ul5cgjj8Thhx/uvgshEEXz1/gN5Q9/+AP++Mc/4lnPehae+tSn9ji24+Pj+OpXv4rLLrus1Lt2JrJu3Tp87nOfw3XXXbfJ+5gvkmUZvvOd7+C8887rYYeerxJXkMOhMRyiisM5ODTyGK0D+P6IzLXAjm0nz5ArMiyZYyHVuZubaRyVTG3cQCQkFiXeoU1Uk1pmpB2g/TDNy3kHZmwcop7rDeiMeZ4I4bMj81qGRp1jmwk9o0xtYTxxo/vXp+3H9ibbOwS5qssAw/zrz9k7tQKJTTq4mlsdOHc2y8mlBvx3LqTjSanqMpMW+YytRMs5tMOIZeIIlpqqBUyMUWazM+55XlhP2a5WEVTUhFJNaKMhDDm51HWjjSIfmz/2tYUea2h087aDIGc6RTdvO0Qk0Gtf995jXdJnlkio7c6+rpPQqZ1N+3ras0TTwpq0BIUPal6o2mZvPebfKx9Qrrml7wSHyt3N1WCociIjp3i8b1l6kMsQZu5T6+p2sg49rN1xmA3jwHgbGBsH8oKc20gB4xNAyzqx3IcK8FYBR2VcpMhTdIcTP5Mr0Tb+WlTZysKXDWeuOdLGVOPSOuZMeCUhLflT4vH8XKsjZJkgygqPESBHH9JOigaILCFWYYiprtp3Nozi8z7C/YUSFuUrYQDpgxD06V+YYY2AL06vOJY10Sa/r3IR+2TCNQBh5MlFk4JtlRTTUj6grHShctWxty1UyfMcN9xwA1auXOmWHXzwwXjc4x435bbtdhvXXXcd1q1bV1ouhMDhhx+O/fffv2cbIYRrZTOZaK1x00034Z577sGdd9459YlsA2KMQZZlyLJ6Mp8kSfCUpzwFURThxhtvxP333z/tfW/YsAG/+93vcM8992D16tV9j7E9yVTXcz6KdPOfX+bevxqAZHRUOUOgBc+1dnvLpUAEVDkOXPKevse8+O53037s3BxmgCMpceLep086ZjNxLs3JnXEKMI+NQ//qnUAnBZIYGB2mubk1BJHEtgwIQJFDNJ6/aRdqW5IoAWKqOczzjivzmY5UszxP3PUjczHCgWwlYUbk6QjrtBSWMCqwNSNXLmZtO+n3K1E4uzPXGpBsW/tsIbXvKXchSVSERDXQtPWnzqntjpOdzfa2zmHy1NeTy4ia52qbKJLEgGyMhpJNQKLUDmc+2NdUJ0xZWUZCcsaWEZF15HyAh0qHJZX9ZHu2r7nkj2W27etpO7YjsQQTRWSaWNbYy+esamZx3RQJ9qN2jq6biGkybMUNCOtk5Zqx5UxUJB1kIiywZsmNZ2aLhEIraqEVj5LiySYwsQoYXwOz5hFg1Rroh8aQ3bkOdgCAEhBNBTmSIDq0Sw6uJKiB2AU2qhoUi4Mznjk6eYZ2niLV9HcoHDXjcfPLgSnK3XIlSMlk5KJh/OIYiZeQQ1rkgEltBjnxCscKCFayHGk+5hQslKFoBMZoTBTjFqZCRfHcDLphJ1ZttKuz5UL/THdc9J77a5UeHhsp1IZekBH8C7dTmNLzAaBUJ1AqXK88/LEE2jn32bLKFkScWKosf8zWlmpt0SRVxTY9SsnKVVfcLgUVwgNwjaL7CUeUF7Jz2+l0cMYZZ+DHP/4xAHI8P/KRj+B973vflNs+/PDD+MhHPtJDXhRFEU4//XS88Y1v3ORxZVmGs88+G+eee66DLc93WbRoEd7//vdjw4YNeMtb3oIf/vCH0952xYoVeO9734u//vWvmJiYmMNRDmQuJeS94BYhgA8wS3AU39g5VPtAsWQSQOJSaEpCBNQFMEMZiZu2t6JGHrQbkUL29LuslbFVMOvHgLXrgU4KM94GMg29IYWIJeRObXJsR4dhmg2IXSNA25rU7aEzUGMEnYKyPN2ijdYM+tFWjfmFJtyZYHuUapsflsLAlsT5Ej52WnNTABqIZNgiJiwvYJstpuynJPvalRdIjbQQpefKw5ppH3yMphpCKx7FaLwjGlGLkBedtZSt7YzB5CkFqvKc9DpSwMgEECmI5oi3WY1GnLTIWdMgUqZoBGnamVf2tZLknHvItHVs7fszEgmUjHrs61R3MJ52gnZFZbuzjJ7cfu3rKhJhtu3r6bMiK0BrYSETduK0F00aX+tD9TaUiXWMxqbslIavJ2YvloKIjKCBRHklhoodJIElrAfyEIPE9Z2iXlMpKVueA1pTRCCz45ACyEATKkAKCQDNBpAE2dqIalVzPe4e3o5VOIZIVF8Kkz2ogGcWjixLG7dgCBvWO6ULztlh+xmW5a6ldAh+De0ME1YIrqutmxBFcCekgMtOW3Iz2raSzQ3PyddMSxcxpOMWoAbNtB0XkLMU1thyxCZSlJSvJ7LUJ+pTx9JWFRU+bNpGiexE4ZaBI0jlaBMATIVaNKY3yrSty1VXXTUn+52YmMADDzzg2u8AwF/+8pfa4+2www44+OCD0el0sHz5ctx111146KGHStsCgJQSt956K6666irsu+++2Hfffac9njzPcdttt2HVqlW49957e/Y932VoaAhSShx++OF4+OGH3fL77rsP99xzDx588EFcffXVPfDsu+++G4888gg2bty4pYe81UQphYMPPhjPeMYzcPfdd+OBBx7Y2kPabPnwUWdv8WMet9enNmt7sc+7HA2O/tHrYNoZTKeAbmcQsYQYTiGSCEhzQEqYPIXc+x2bPe5tRTgjxRmqVe3vIC062GfRP0+57WE7fWALjHDblO09aNxQ5bpDFg5SQTtTxWcf4e2xHNoRqQLo+aTtLG+M8vYh1+VylpNRGL4rCduq3r529bQTY0DaJju706V/jIjU2n/GNtkS8NwoFYG88ua8tK+hKdHFWVpfO8y2be6gvBoaEpLaB5nIEfY54lt4ezo8p+3Ovoa3q5UhJ0MKATOJXm+qfT1tx7bFbIiSHNxOwYXndPEbimpsG5Y0wkeXKEIE+L622jYZbpoYUpCDFQbjmtGQjV7RQ8hF5NXMrac0lxhNdqSmyiIijH9nnKDHndRDiy3zlelSujnv5lDtGMXO6yEXdyAes4vN5hL0QA+NYEO6FhvzMUzk4xhPN2Jdt+0iSdpoD5Ggq98T+QqdcBlcg6aK0YxiNFWMkXjERndani49DzKvrGhRGRLBx2SSp0IT1h8ghQybY7NCGqNhoG1AwfcHdLuz58A9xMJr7dv9WIfX1L9A6b4YvtwU6bHPZVaJDFV7aPl9ENO2MgIpdImJrVS0rk2Jrc3TjJcL1QEg5dnBKp+SAlCs2BKFMUhUVYkVskKjSIt56cTWycte9rI52a8xpgdK/P3vf7+WbfeYY47B17/+ddx///1461vfirvvvhuPPvpoz3paa3z729/G97//fbzrXe/Ce9/73mmPZ+PGjfj0pz+NK664AuvXr5/x+cwHaTQaePvb3443vOENbtmXv/xlnH766bj88stx/fXX9xBI5Xlee623Z0mSBG9729vw2te+Fh//+MfxjW98Y2sPacFL8fBG6PVdmKyA6RQQttBQNCMoMjR80Hk7EWZMNdCOSXWqLPlAtv8ynx2b9Ox3CmLAZWIfhpxyDW6UUD/oUNi+ZoeIS/xGkqbreCGFt1ObMq61rzt5hrXdcURCYTQZClpoVuzrrANseBhmjQ2mak12Nmds84JQF1oDSQwTRRCJpu20dqRwevGu89K+lpDE7AxdCVTlLmPMNcIsw/EQGtK3RSp0jk4xUbKnO8B2bV+HoiwaciiWSKWYdft6xkwMnNlSuryM2wCFNbUh5p0WwN4QckhzrSFF7vHmpewgYfEjmUCBaLiN0Yikz0j6dYPT4KgLO7ORAiIF2YohWzHRRmcapqC2AaKhfDQwiSlra9v7hNTdRENOUI7cMrSF+HjHQmcL3MsPoqcdJ+g0s8xF1OPPwoNdxjm1NON8jo6lOS/X//LnJPAkJoySU3Q65t/5uQwfbo4S+XOiJ1dCAFwXUvMsOhY242ESVVx/3TPsithF/e91ESZuFt27vHdZiO9XQkApAUAjLXohEgA9r+HEWu2rNd8c3VWrVm2xY42Pj9dmSu+77z7ccsstWLlyJR544AGsXr267z42bNiADRs2TDvjmmUZVqxYgVWrVmHFihV46KGHNnn8W1s2btyIW2+9FWNjY9hnn31qa4oXL15cYoMeHh4GQBn0AdSYxBiDDRs2YO3atYNrsq0Io6jsJGGY/YRbrZ3wla08wNmXVnwyWjGweuJ7peV3rf+K473QRuOgHaYu31hosj07t+ykOORYH5NuUvu64Cyf3iT7GgBaRQPMWePrRGvsa4CMurCon408rUFkPHDGn9EaQmu4Xl1Szlv7WkNT2yLraIdlfFUpXXNIaAEoRNBCl+zphWBfe9iz/Y0dYIFZt6+n7dhmfRStocipjW1zdoIg00Cod1aBdk51bYmM3MPne8969gTuy8UwCSGppxRt66NUYcsaYyj7WJgcE/k4OqINCYmR5ijQfJSiMM0GRBIj5l4FAFAYmE4OKAG5pAW0mhC77Qa0ltC/qInxbA025mPYmI2jnXfRzlJXzA7APXiw33hZCOUo9dUSAq2ogVaUoBnFjjJ9cbKz67srCw1svI8UTwXF7AApXiqp/tcSUIQRX35ZhUomIKGEtAoiXcsEIgzxje+1sK2SQH3FSPEYV1DukUYvHX+fwohhrgtk2pQij+HzwzCJqoSsbO6KVupNeD0XQapAJUpwjBAOUSOJEi7iRJlaFRTBG6R254kSKARQJKqnqN0IA2Pq2ZIHMrncfPPNeM1rXoM8z0sw2tmQNWvW4P3vfz9uvPHGLerEz4X86U9/wmmnnYbDDz8cX/nKV7D33ntv7SHNS0nT1NV/z/bzNpBNE1Noj72MJWVsuefIdi4hdBGwfeMhAQOarwdSEoJsbr+yLdjXQ5HGaLIDAI/km9K+5k4jAMM5yeZ29OyBLlsOGzRGAJXMa/uaS/yqekzrCTjn1GaVuUfuQrevJzJN21ngLTvBMpJQsX9WN9e+nnHGli4E19SaktIpUc6kspTgw/C9bAEgCiqeKcoChz2vvvhpewmFwLl1hBkaQA5hJAw/rFFAOZjEEE1Lrm8VUAwV9HerSf+SFv2LmtBKIu3aSJLr5VemUS9fl6knYwnhMP/MypbIJsEjAFt/0CGlK3IfSeIxM426zimKJOD6ZU2ZkRWyBDt2f9uIU91kKuAVLzxPbfgFwwpMUlfHW5jyJyvdTGjDgV6GtX74/6C3dOnvnv0F96v6dwEDJWl7jjh1pC5Rk7uoUjFwajdF2u32pAzFQgjsuOOOaLU8Y8x0e9RmWYb77rtv3jAgTyYTExO488470Ww2ce+99yKKIuy8887TYoNeyJLnOR566CGsWLECABGb3XnnnfjLX/6ylUc2EBahJIQkQ08UZEDQshqLazuT3VuvAQDct+HrzoDljM5AeuX+N16wtYewRWRr2tfKOlNAf/s6EtaGZvs6Z94aG5SKIoIjR5F3ZKUklmTX2zbZ7uzrcJy+RtbqdZ+xL0T7ut+6jJqdLft6+uRRFlPNkYVY5iiMZ3GrG3wkFVJdoFtoFAZQQvddFwBaUQPNKHZ04yNxVi68FoSTB1BSwlConlQDqgkRJzBISfmaDWDJIr9iEgOjI8TaFtl2P6O7Ao0RbMzHkHY7GM/WYX13HO08RaegGoROEdadBv0BIUrLCKLAERh/YxIZoamGEFlYRFO1qKcf9//KUyrI1xqC4RLV/n0FFeHLoVH3sIuK41qt22GSrurvXINL50AZXH6p8TZpkbrz4Chhtf+WK3KHhhQGsRTIQJB1uve+FkBXlBGAg7LzMn7eaLlEYYjFLbXPUj9qcnZI+bcqrEJJUfv8VSNSvC8FWn8il9CRhM51bQRpKla3gcxMGo0G3vGOd+DZz362W7bnnntuxRFtXbn77rvx1re+Ffvttx/+4z/+Y1otlBayrF69Gh/84AcdLLsoCtx9991beVQDCUXu2IRoWCRMpoFYQi4mdFVprl4AIq2RLRYw6/FClvlgXwtIDEejUIUGirZlO+4Q+U9e+GCUNvR3a4js69YiYhpuLQGS1nZjX3t4NEpQYYaLk02s3PYD+5qQkKGtzZnd2bavp+3Y8mClEJAQaCiJTGtwk2CWEOPvT6p8sTNHde1PmrZNCV4gBCILo2gWXSItsj23GBrB+2dobS0NfqiYXEPL0mxADC+iB5ojSVHTkSZRw+Ws1JheG+3OmYRYn32BdxhdCesZykqpZOReJJFMgMw2ts46oD5gVIBvJJNp+OwqACC2jG6695z7sSBXI05V+ATBkcu1AhISphIx6td3K2RwU8L2ShQC1eKAOqUD4JjbWPmU3TYM3m9qB0pX8B48p0xJPlXPLsfmJtATVQLQQ8yzPWVvG40GhoaGepYXRYHx8XFX7D+bIoTA8PAwRkdHccghh+CpT33qrB8D8OeWpina7facHGM2pd1u46abbsKjjz6KVatWYffdd8fw8HCJ8XhiYgLdbne7aWm0OZKmKf785z9v7WEMxIp58CyYsUepn/x4G2h3iP24sAVisYSIFaGqmOtiAQizId+74SwAwH6j/7I1hzOQrSSbYl+H2bktZV8rEQHZmB10BOjI29X8yY5tEluOG9sjViVT2tdlGO22b18LyDLa2mZpe8fly/7cugvUvg6d4bmyr2dQY8vKQXTgTZWgFXmlSwum6C7QKTJXxK2NRqW0Fd2cGd/Kiql1gXY04Ups2nEX7bzrmr83VYydhrQrBFciQiNuOXY3V0Na5MDGlfSg5oWHRrSGLLBcQsRNiiAxbNkWiStBypcWHXTyzEIk6GHMjUamYVmdbbG6KEe2clMQm5mNMLXihm0QzVGyEYzES4g+XSSIjSSWtsJGktIMWDdGdQuWEdLsuiM54kNDFF2ylOmQEt2sTcXroB5bmW0cHTq2UkhkOi0pHdcGcBRKm7SU5dXGR5aYDZmWG9uPWHnYitFA7nuJUf2DBqARS2oL5Z+f+oL1rOBaAVN6VqrrKimQ2PATKYhwSjyRFz3wCCUFFGhd18LHGNvGp7xzxwwnBaB7s7hhy4Gw2F1GcrtyaFme+9zn4rTTToOU5aDIbbfdhv/4j//AmjVrZv2Y3J/1SU96Eh7/+MfP+v5ZTj75ZPzjP/4jLrvsMvznf/4n8nx+MJM+/PDD+PCHP4y9994b73//+3HEEUcAALTW+O53v4sLL7xwu4BgD2Q7EyEhmg0YrQn212wAeQ6R5r6MLlK2JCgGRraHprXTl0gmW3sIA9mKMl37OtU5YKcqqjHVaEXk5DKT8lzY185WNNrCkBPAtAAZQUQJ0Ki2z4moP6yMgAatN5V9HUmFJsjO7hb5vLGvaeyJvdY5BHRPt5FC5+jCB9AH9vXc2tfTdmxDDLcUcFh2ltxGN0r9sKwGxdIrHu+r9wIbdAp/HNqUYAnc0kfHBqO6AyMSd9MlpFNEeiDH/YNpLFNbXlCNbRIH2VkbReK+Vay0QbsbZjwLhcfsa+M9I1sJFmEL/ZmhLZLSvkASJLLp+oIhtZj/PIXpdEnhOil9jltF4Em+2YBjbdNUI5DptFTIXkdKQRE+GjsrJW8T1n9nJq+tJeilGlfB376Qv8yeLBFSzLPwSzWMKHGPrQopZq2C0j744mPSFXm9wnilC6VcU1C/j1CRmcCiys5Yp4zbg+y777444YQTEMdxKTO400471WZyZ0OSJMGRRx6J4447rqeOtCiKSR1QIQTiOIYQAkmSoNHon/V53OMeh+c973l4+OGHexz3bVkmJibw61//GjvttBNe9apX4eCDD0YcxzDG4JZbbsFPf/rTrT3ELSpSytp6Y2MMsiybE1TBfJeL7343cl3ghcvO2HIHtXOsPPijW+6Y80j2HH7d1h7CQLaiTNu+Nr7lJScq2DEi+29u7GtUTRtmR+b2KEICJir/FjetE9z0dqvxhEx19jW17TGl7/S57drXPE4B6YhY6+zoTKcLyr4G+kOa/e/+79m0r2dMHuU2lMpFekLmtZCVjddrRd7AJKVMKfNpTyqzkQFpMd8APV+FATpFRjdV8w0mmAFj3jOTQmuCZigV2YeW+lSZKpTAtvFB0vIOLju1UgJRQg+l8GxxudEWKkFF4GEULcyAeofXnre9Nq2YWNqGIlK2kXgJhqIRKNhIUmecnPAQ+sBRa4Z2jI4AzQRo7UjRL8vm1ina6BY+ohTSjrPCqYCq3dXS2nNW8BAT11w6gEvw+uG9DYkJYLcv9bh1SqRL+sAYf0BYZ9q/eJUSKPJeSEVhjFNE/u4Y2rRvQO2UR/t1+slU0ONwvbSC51BSoAiUyxW6W2a37c2x/cUvfoG1a9fiGc94Bl7zmtdsEcKiDRs24IwzzsAFF1yA1772tSUo8sUXX4wLLrig77Z77bUX3vrWt2KHHXbA+9//fjzyyCN91z388MN7YC7zScbHx3HGGWfgwgsvxGmnnYajjjpqaw9pq8gTn/hEvP71r+8JYjzyyCM488wzcc8992ydgW3DEs7PW0zY0B3IQAYypUxmX5d1l9r6QABNFc+Zfc0ZXNrYJoYAoDsOM/YIJY2iprevGQkpI6A5Ai2Abt5GkbeR6o5t3anQjBLH+hsSSMVSzkv7mkm4qrKQ7GslBBIl3bF5OQBMaO2+z6V9vcmOLV1sGy0RComMkMrc4dzD9ZqRN4hzrdAsCM1dxwDIAROOBpBSGkhB+HtqPe2JkAqdA9JCAISEZCx9teZWynIkKWREYxEShU5ti5zI1TG4JtAQLormoAOunsG4+gig2ig6QUO1kChiaHNKl7bdWE2ee+21vXeRxJQabiYQSZOUrjnqXhrdbG0pouROFT6KVIIzhKfq1in/ZqwSV7epGkLlWgKJSEhw2X/1WKxwABBLQ23awoiSKffUqlW6INvPSleNBoVKN5kDG0aJVE2yTgnhlLgqdcolLLSiWh8w3+WWW27BLbfcAmMMXvnKVyKKomk7g3XrTSd71u128Ytf/ALDw8M44YQTSo7tzTffjO9+97tEAV/ZlxACj3/84/HqV78au+22G57//OdPeuz57NQC/joNDQ3huOOOw5Of/OQFmZ1cunQpTj31VIyMjJSW33vvvTjvvPMGjm2NPGffz275g3I93gzEpD9Bpqjf5cZ8DLsMvXKOBjeQbUUe//+91P1daOCW15y/FUez9WS69rU2BpG1YRIVzZl9HcM6suywGg1ITQ7j2DjMSAtixNrVUeLt6yhBZnLkRYqJYtzBebVthZNIBW00ciPc+dD5Mzvz/LKvy3XA9TW627t9DdTY1fZhpN61c29fz6jG1hUD66LUWylRdLAQOlFlMQMoCpXbbSPJUASDjvD15gDTmgMNFaGpYorsqBgjcQONqOWgxwKSPu3DZIymaIvF9ou4CTRzYFTTsuYIRZWGRulAhaX1trUBDDVg4Qco1wXVNlTEwzW8w8ufzDxHL6YEw/EohtQIhpilbWIMaK8lhUszqvsdafU2jRbStiBKgJGdkZoUme6gyHNszMeQ6Y4bK8MhCmgLi7BZbCsC0kEplIycc+vvmW03EMCttdElGAy/YMqsbV7RysrqX6T8Xqg+l6xcYfBGOkX1EArG5SvR/8EuNYYOsDM+CmW/1xW7V36r/k7M7AYZJokcFdtf1hYA/vCHP+DDH/4wDj30UJx66qlTri+lxN///d+XnNJf//rXuOiii6Z0voaHh/GKV7wCBx98MJ7whCeUfjvxxBMxNDSEa6+9Fj/60Y+I8ALA/vvvj1e+8pXYb7/9sPPOO/fsM89z/PCHP8QNN9zglj3rWc/CSSedNOW5bOuSZRnOO+883HDDDfj1r3+9tYczkIHUCxu8M5BMSbTzMWQ6xUQ+PkcDG8i2JGEWZ7roqu1BZmpfAwj6vCqLMowmta9ZYgnEUtj2P9G07GuBgBXYJYgksGhXiH0Ycpw4+zrsAdu1Otwt2ihMjkx3kBY5sSHnmWVETkvESSEB7Xy0r5mAq2QPLxD7GtKUkkfOMdam5NDOpX09bcdWa4qexJIuSFrkFF3h3sbGIBKqFGVg2ARDnyKhoKUiciktaR8wAHJk2gSOLW1HytZEM+LPJhLZtLjzxOH/S4XaTsGCCBNADm/SglYS49laSEg0VAtKRZCZj6BU2YIpmkRsyDw2Oj/7aRtGc4PoRFrFkwSViGWMSCZlpeuOk9KtsuQ7jjQjgEhLSWOW0i3fWIxjIh9HbqNeqX1BsEhBkTcpCOsPETmFZCXj6JNwdbdlaAX1Ti5fA67pCAvc+bOsdL1K4fH61FBaWjY2D3/o2cTBZRA0IwdsoboRVgkNiup2NhoE9E6KdREimkRE6bsvcK/flxQCmntsMVRiO62xZVm+fDmWL1+Ok046CS9+8YunXF8phWc/+9l44xvf6JY1m01cfPHFKIrqXSvL0NAQ/uEf/gEnnHBCz2//5//8H/yf//N/8PWvfx0//vGPnWO79957481vfjN222232n3meY6f/OQn+O53v1sa43Oe85wpz2VblzzPcfHFF+Piiy/e2kMZyED6CxM0zkDGs3XOGO4W2z5z+UA2X8pZoa08mC0om2pf09/CZS8ns68BuqYNJaktTpTYjOfU9nVPa0126KIdgeEdHZ8N29fs1BqjkRnKenaKNrTJ0cmpd20766JTZGjnKbpF3sMADcxf+7oKR15Q9rUWSAtd6o3Lv6XW451r+3pG5FFKuHZzxIBs8d9VmAAXoycqcg8mYHHhMEhkFBRDM8TXQhBsdIajSa0oQaIiNJQtBgdKmUYNInwyRkILDRVV6ni0trAJIoeSiBwuvjA5iiKHVBKFzrExHUOqO9iYrUM762Jd2rYvGO0yynwTyBHXRJ0uFSJdLvKmTDPV6rqsMmP8+ZNDLvzPYvtdbQIX3zdGaHJP17n6BF8vKwIF4OtcIJIKxpJgGQsvCYUU0IsrfhfaOQymolS5KexDw+fJRezS3fPIKISSadtvTPv98LMUPlt+HOXbF9KRA3D4/UIYFEYTG1sp8kNRoWo0SFkntm8RewVmwf22APRMtFVIBPfd2p5gyHVy11134Stf+QpWr16NsbGxnt/jOMZzn/tcHHTQQY6tl+XII4/Eu9/97p6M7apVq3DRRRdh/fr1Mx7PgQceiJNOOgkHHXSQ61c6Xfnd736Hz3/+87j++uundLYHMpCFLD/467+gqRI0oxh/s89nZrStWXdu+fvY/7iMjxh+Ue02azv/g1wTS3+qO8QoGvS3HMj2K3W1fQtBNse+ZulnXwNAJI3LAiYycoRLbGcnKip1F2G4LROMimBZKFwzqkQEmBzGAGnRcejH0MHNdYpca8eEnNrssq8X9fYX2dsD+3o+29c9UOYAFTnX9vWMil4KA0hDVM6F0VCWlYvptr0jS87pSEAWQRAJVjIJaQQiQQ8MF0ZztGYkbqIVJS4qw0xnSoZQZ4JG8MORIQcMEEcJVGPE19gWObGiCelYj5m+nCfPTtFGrlOMZ+uQFjlWblyHdt61vbX8DQhZ5hg6IoVBbHI0FdURSyGRSIVWnLhxs/Kh0H5cQpb76spA4fgzaQEqwkQ+jlR30CnaSItO6Z7wNSPGM3bA+YWmqRG1zU6X8P/w14LbJPH15H621GNLO8VmyATRkUtXBxIZCW3o/vdGlbzylhUswGTAJ07pRQL3mxYCOoRHKIHCCKSwyhtoZVFYJaxAIUJlTQseS1XpTEkBuVE1/xayvrHisaItFMf29ttvx8c//nEA9fWyjUYDr3rVq/CiF72op4b1Gc94Bp7+9Kf3bPOHP/wBV1999SY5toceeig+8YlPYNGiRTOumb3yyivxy1/+EsD0an8HMpCFKuzU8hw3IylSOJJG5rlQyaSw5HY+5lhTibzFlDInA9l+Jaztq8tQbc+y+fY16UjVvqbfPSqRE0dNFSMJ4LyxTKBk5GxrAGWW3yL3mVrAwY1znSJRTUdGysEodhJJlw06eWZ/L9x4O0VWsq/ZMRvY1/PXvg7ra0Obmtv7bAn7etqOrarYjeXiZB/NYHpqYi0rRxc6RQZuMhxGCarF0E0V24iSKhWyA3DRH2Nx7nxMgKJKXCPrUv8qAlN308E0EtWkonhN+yOHtovxjKAH/I8jR1kNjFVrAJKcceUefvuw1DRZ1kZDMaafJ3iA+uty8bpKSOn4M0qo2N72mHVsasywZnLkWrtIXHA05C5oZTPLOoWSkYuwcQSOI0kAvbwyexyqhcic0lEbJ3tcUJAgkhzds3Bz23uMRUK4HsZZ4YvcC2McHX0dVCKsAQifk7DvFj+P4XNZbQjNClYliwojTiETXHXdUMLJtp+SbW/kUXUylRMopezrZNYt32WXXfDSl74Uq1evBkB9bPfYY49Jj3HQQQfh1a9+NY444gg0Go1NJoIyxuCAAw7A0UcfjQceeABXXXUVsmxT25QPZGvIPffcg+9973tYunQpjjvuODSbA+bd2ZIrVnwQGsY5tYmKcNPqT6EVNxDLJkbiJWiqFkaiUQh5Yv1OtAZcW4pg/pO9pseq9ndK2R5taB7Ota7luBjI9if3vv5/AQB7nf33W3kkW1bm0r4GgFx6B4oJqShxRNlBZkJm+HHIwSKDpFDoOLIdrqGRFh0oGbkkETu83J6IM5K55i4jBXJTINOm1r4uX5uBfT2f7GvaV5i57R1DVWbbvp62YxtXaJvpk4qcw9qZSEoXBZLCR38oBtBx6zDkuAe7D7gIEoASvt8YjdxYSJKm32JBMAQlIkgQDIKhxkIQVEHa5tC0XQ5pJKSKIBXRma/a+AjGM5+h3ZB10C2oqTH3AAt7P0lBNzyGgFK8nKEeGtoE0YfgwXZ1RqECNhOI4SUEi2BohKVL32gj1zzZhxh+AO4FUcXi0zVWbrkUEjKRKIrcQSwU6OVVrVE28ErHEbbcKjZHlCJpXF8zjh5G9gWWu5cCNZJuWEIDaWsAAA+50QHsiCVUKGl8DUBh+H54yHCiZFnRDBW1p4UGN+jlCJMNO1KBvGKHtjdTS8eqVx5WOm3faqxorgbAbJqDtZBln332wb//+7+Xlk3VVuiYY47B0UcfDSllqb/upsjTn/50nHnmmfjFL36B66+/fuDYzjO54YYbcPPNN+O4447Dk570pIFjO4sykjTBBCaJNYJL2R0LXUSRA73TOAk7pJwxYeIZ1au3XZsxMbBwRV04Y32QsV1YwnPtQpG5tK+lEIGdaFwLISaOimXsOoEIIaFkhEQktvA3B5hQVdisrZDOg2EHlmtSC+3tVa4TTnXudDj8PpFn2JCaHvs6lkAjousRcz5qYF/PG/u69BwH36vkUVWZTft6+o6tvTeysnOe7EKGtTCSxBh9gCAVrFgA+jq23EuLRaCmeB1waX1pQNh1AwA5HdPi3gudQ0aJK26HJGYyYzQynbqokmch02A6bJZMc01t0AdMCAo8Cy7eFx4Lbx1tN/nLyDaLboObRUNIoNWEaLQ8K1uUONhWYXIHlXaNoeEjSgzvcDAGRypAA3QF6TCAoShZ2NBZCyKQEhQfssvsdQ3oyDWM6+PLNQC5rXcoNczmfThYib+ehfFKB/h6Eu228YiHUmPpIOKkBP2njAAUO6TaZt2NW6eqyM6BDSNIxkMpmA0O8A4vdFBAb1Aqgmepg0oMZOYihECSzIwtVUo5o22UUjjyyCPx6KOP9vz2xCc+EUNDQ9hrr73wnOc8B/fffz9uuOEGdDqdmj0NZFsTrTXSNMXKlSvxs5/9DEuWLAEArF69GuvWrduqY5vvQn0xyZjkeT2SyvW4DMV0LiImUp3T/BZCAqsiJGV58ovRLdqO9Zj7RZYNSp7fBnXwC0lW/vOFW3sIW1Tm0r5OCt+i0ulyQO4KoNe+FoGXwlJxsnXgBBrrFLKd6nW3+o+duAJKCDQjyjbKwHyinqzCJpA8+ezAvp5/9nUoRE61ZezraTu2jbqGnwBaUcPVw4ZRXcJyU6TH2Fs7khDBC0eZ6pxVwDuy1ckzFIYLcPG21rpUG8D7poe26fZX2EmUGy53i7Z7SFkyTcrGD1GnMBhPDVox0FCscESZ3lCRpx63/5pRglY86vH/IrFMbeuor1aeAiqCGN2VokhDo+Cm1xoauY18OViHjSb58WUu+sVKlwYwhZ5eZ6D6hrIDbqEXEuDHwNhif20VlZROo52nztBgibR2DHW8nGEmvCzVObqFdoGBqkgpUBS+vsI+6/a+EUTFZ8gFGkG0KbOF6oWAq5tlynCglwW5qjgh5bhSwkEo0sKgEAYAF9DbCJZ1gHOtXUQJ6FXAgWx7Escx3vjGN+K0007r+S1JEkRRhCc+8Yn4xje+gd/+9rd4zWtegwcffHArjHQgmyq33XYb3vKWtzhYutYa7faASXdzpBW3oO3cw5C6SPpsrZu/OUPCWViRlxBSvsbWZmpVFMDx0pKByU4tZ3UcjFHXWEoDGch2InNqXydwCAhHRGUdxljGDuHI4mxNLuMDvD4DgJTOEXROoM1Esg473UUZiszLc00ETCOxRqZ0YPf5w8SSgmvMihzZ+tqBfT0/7OuQYCpxmGa5RezraTu2TVXOkHgGNlVSujC6EjKFMeZ8ug4t19U63L+9yQKS0vm6XEsbSrh/JokSgaPLRe1cG0D4do91L0wZHgGQkknhe4A1IsK3h04tnTs99LGFa8WCitwpmpT7OgUZUUPoiGjIaSxt96IoRZR07rD7QLmvbvii8ArnazLC+8UF6axYUmgIU1kPDIdQiDQpJr8EwwAAR9GlDlnj+LcaJavUSUjhMf2sBGGmfKY+YgihqBMuTmeWt2pNy3TqAFgYGjFwZGdPut0u/vKXv2Djxo0AKCu7bNky7LTTTlNuOzY2hr/+9a8ORpwkCQ488ECMjIy4dVqt1qT7iKIIo6OjGBkZgZT9A2oD2TYlz/Napu6BbLpISEdwEvax5E+XsVGRm9PE6Cm1+zKPfs87wPDGc1jXdsDid9Rue8WKDyLXBS688x0WtqfBpI7VOrKmEhhNhvDcpZ+fhSswkIFsGZkr+7rc91TU2ma8HtueEtKhHkOdLdWvWj1kMZXvHAzTtq623JfVlOpklSU60qa3ptOxAQs5sK/dbwP7eiqZtmO789AiAD4FzjdhJGm6qIrvWUu7lRXFc+16rKJ087aHDQuJpmpS/6yKYjZVCyPxEnpgGWbQSNzDyJlXJo4Kt810itQE9OMWU8+QJyanoIgSLcsKJoyi/cRSoNkgR7YVSzQUsChulmoVRuKGi6bFMkYrHsVQNEIQizyliFLe8cqXtIBFu2IiH8f4xP0u4uVhEBqZ7oDZ0sLPTpH5Bt426kOKJBxzHsNVOEJHdRf+weftE2UQSX/dOCpvjEaUqFL0zb2gKFYXRLV64WK+35qF2UTCQiZEj1YxGx5QLmCvwhu48CBU0MJ4hrUqvXiJkpzFBzFLMIoeanJjepRZSQEd2Xpvu1xIAZ3rARx5M+Whhx7Ce9/7Xtxyyy0AqO/tF77wBZx88slTbrt8+XK86U1vwpo11LfuMY95DM4+++yelkMDGchANk/CViBsHGY6hYoiSD1JfTPXt7GhbOCCy5zx6SedIqP2J5UuBaEoQXMNs70OZCDzSebKvg6zkaFDxPtz7MdWD9OiAyM1RGFJpCKq4+1Y+zo2CRQiZ6uGestwZD5OJCV0QcRvYY086zLQW2/JMFopAhi2VBhNhgb29cC+7j1eH5m2Y+tT79LVlWpDTaNZSaQQPSzG/aTEQBZEglk5WQS4R5amh5YZjo2FQglpsd95KTpCkSeCaWTWoc0CyBMXs9exLSr7sEhTxqfH9g/FD3Jw3hxJ4/NQtrAfWdvXHAlJOH8hgaSFiXwcnaKNiWLcRczYWWcCjZCRzUM5POYfQGkdbQwgvMJVG177bfz6YdNve4ddHVRks9KQvA1F4fy2YX2yrwmoY65joVpl42oOqjIZQx7/rgNF6ycl2vGwBqFmu5myuM3nrO3jHve4Ga0/NjaGVatWzWlbnDzP8dBDD+H+++8HQBnWiYmJaW2rlMLw8DDWrVuHBx54AFJKpOmm9b0cGhrCsmXLEMcxVq5cucn7mUyEENhjjz2waNEit2zNmjV45JFHZv1YC00ajQb23HNPAMDKlSsHtdKbIWxiAXBdCDhLKw1cOU9hqMOArGE6diIj9y90ZjkwHfZ07BlHMLfwu79OlO312Q8RNpCBbOsibW1rv2dY27rNycr0gN4eqXX7YS9Ew9eDhhlNgEiQ3NjAbW7KWU7+m98XVRbhkm0K75RNqcuBbR1mq+fKvvblD8xS7Mc7sK97ZSb2dWn/W8C+njGlqCtMl4mDRLDQzSbFCBWPHd1Ml41EjvbwRBnLBA1FkMFwv0pEvoaHl2uNsLi9aSLAeOhEJqmfFjRQwPfE8w2iC3TyzEZMfGF4JBUWN4KbG6Tz3fmEBe1Bg2zn6EL6YvaxhymSlLSA1hKgOYoiijCWrsX6iTWYyDdizcSGkqJwVCh0XonZjl4aHAErvzw0pFCl9cP745t7B7UBHAnSvD4cMYgUEhGolqIVFy5ilWsNFF7Z+VpW/8514XD8/j4ygxoHCQzCBtHUWslv44m6YJ8f4++H/Zt7YCm7AX1XJeUqjAEkNYVOA62qRpPcOCVQVLhKqoXz/XprzQdH94c//OGM1v/xj3+Mj3/843Pi5M2GHHroofjWt76F5cuX453vfOdmOeAHHXQQvvGNb+D222/HO97xDtx1112zOFKSoaEhvPe978WJJ/oWKWeddRa+9rWvzfqxFprsu+++OOOMMxBFEd71rnfhz3/+89Ye0rwVbcK6PJrbjfBGmhKUuXH8FbKJoX47a45AC2JRTXNiP+ZsL0MC+4+D5pPMRf3LEDueQ9j4TWoYlwcykG1ZOjnNrVWHNtcabZP6+k4buElUhGbUtMumsK8DOK2GgTRsF+bO7tQiR2Hr5oUh0tVIJmiqFlDkZF8DSAWV72U6hYFFRDpW4byUeWRGc58x9g5jVZdZWJelEIiEKhFmse8xF/Y1ANfuk+9DWPc6sK+xyfY1EECVC7NF7OtpzwC64tjRZ2/UiPtJlSJGAuXicx7kpFFaT1jhRMhymADBfvuEAVwtj2Nq87ADps+uRrT4odXGIIYtzLbhj6miHbWkV1pT76ykhSKKMJ6tw0Qxjol8I8azDtrupRYWn3tsPdUq1EduwuO67VHeD/8erhtGhao9z/i6KxnBaF1W4JLill+cYYQpjMb1exarTaRDBayOqRRk0PVwNMAyrNU177JSiizVOLXVdfy6vcvmgxNbJ4cddtiM1r/tttvwmMc8BuvXr8e6devmNHPLYozBo48+ilWrVmF0dHTSGtlWq4XHPe5x0Fpjzz33RJqmU7Imj4+PY8OGDWi1Wli8eLFbPjQ0hAMPPBBa61lrHaOUwg477ODaGA0PD+OAAw4o3YdddtllVo61PYiUEkuWLEGj0QBAz8LY2FgtGVSz2cSSJUscadTee++Ngw8+GEKI7b71zzUrPwoAPe/mSMjKu58+H7/zh2a0/5B5k7M7HLg2RjrYWaZTKBEhR//Al5AnQgHo6otKZUGcudXG4OY1n0Y7T/G03T/eMw4Wfg8XxuD1h/YGgn5yz3sghcBNqz+FxY3F2G/0X2Z0zpsiF9/9bkRS4Tn7fnbOjzWQhSNcrxnWc2oYqnzXRB4lICe1r+syqG5f1m6jOlZCRzLyUUrr4JocSkoyioxHaISwXoYxh+8L38LG25ksIcw1XBZCW0v2bGAXh7X+/kRmbl8DntnYMx2TX+DraMN7MbCvgZnZ16XtgvPaEvb1tB3bngc0LqfjpfBQXG48TOvXKxVQdpClEEB3DSbycVcIn6gmhtSIhyyBiKAAlJtHo+zAAhQZ9rBjijIxMxzX0naKrIRr54eH6dA5UtTOu5jIM3QLoJsbtKVGIrsl6nU+x1Y0ikgm6BRtxFGCZKd9gDxFR2pM5OPYsPF+rO+uQ6fI0M5Sl33lLLA/F+nOiaNIjLHnyA1j/T0VvOzJJE8FyyrBPYKewPwJCSSyCSlStPOuiyxJoVxErsx6xy+33mgc4KNKXNyuBAAp3HpEe1/eqKp0HBUqRY2CCGAtnl9TrUBa0ap+1OTldcrHAOopyIUUDkKxPckxxxyDc845B9deey3+7d/+DePj43N+zG63izPOOAP/8z//g7e+9a148YtfPOU2++67L77yla9Aa40DDjhg0nUvvPBCnH322Xje856H97znPZvdD3cy2X333fGpT30Ky5YtA0CO7oEHHjhnx5vvMjo6in/913/Fk570JAAEU//yl7+MCy+8sGfdpz3tafjQhz6EoSHKFQ4PD2P33XfHQw89tCWHvFWkXy1p2A4EQKmVxExkPCUYN83PxgVbI0kvTGVonuDgqxIRFk3RhWuiGHdZ2kynyHSH5uI8Q26Kng4FAJAbXcomTCY8F1It3szaiG2q1I15IAOZidShDOqdHcrcdZBhLJ1AJBVaUf1zztsx6264PxlkbqXgBIp2CIxUR475XInI2aJ5Xm6Rw3Y2MwkT8VKBkPm37OxqZ8/R+fjxZgVlckcSieHI29+RkI69uRG1oES02fa1NgZrO+NIdU42MwGxAQARypnZgX3tM7j+73KgIrSvlRSOBVlBoNAWBdnHzp4L+3rGGVvfa0lDSlFJz0sHeeBt+IbUCcMqpDB2+06JTArwDmyoTLRtmT05M+TwGhflCDO12mds4TOepWLtoIYn4ci3hT9ICMfcxg8AO8JSUKcqPh43rc91SmNRgFAS7WwdKV46hrF0gl5OJagGGwhlo4TPJRwjX1vPkCccBXwkyg5/lS2tdP2DSFEYKAivq2sAbmRpO/c8BA2s+wUwJhOmJGcqciUALYRTnPDZDhWqqCzvWVZxaqvL/bbl5dWC+NBRnkq2R6cWAHbddVfsuuuu2LhxI3bYYQdorTExMVGbud24cSM2bNjgvjcajUmzp9yWZXx8HDpo6aG1xu2334477rhjWk4tQJlbdoamktWrV+Pmm2/G4YcfXjoui5QSrVYLIyMjmJiYQFHFztRIFEXOwQpll112wZOe9KRShnZiYsJdJ2MMut3utMa9ECSKIixbtgxPeMITAJBju/POO9euu2TJEhx++OEYHh52y7Isw4YNG2rv6/YkkxlV4TuaEUrXrPwocq1x3F6fmtb+n7zbv/Ysu3nNpx20DiAG1Vyn2H/x26a1z37tfRhip43BFSs+iHZO/eVTXW7FAUyOmvLZFDFlHeKmyndufTNiCbzicWcBAF647Iw5Oc5AFo700+VqDWc1Kxo5R0i4RJPb1trXDA/m4JTLANtML2XwQjvcwHL4IC06UCLqsa8za9/26rH2NmGPzVqtvZ38epQytfbfptrXdI507jymTpGhUxjEUpf65YZ2+MC+DuzrmoQRLQ/WNQbK+Uv2+ySv4bmyr6ff7ieKyRnMi8rD6SO57uG2EeJOnrl1/Pq6B9vujqFiNKMYkSCHckV3FR6eGHMT20jcxD6LdkYkfdQjlkkZrmylCgn2DjERP2lDdQpeCTVysNNO0S2KQHkntxXR8qYSLlvaVDE1U7YsZhP5OJSM3PhkRmPYkK1FO+tiLJ3AeNahWl+dl6I/ZZhxPYEAK1kkubeXV0ZAImcIRVA3HEaj6Gfv/LOyc120gq/ZCFnvhJAUtRLKOdo8fg/pJuUrYfVZgZwDyedpP7Vx62lDPYO5v1aoaEpwU2fA0s8BQWPnUEFSrXscVpZQ4QCPbA+V0e9PoNAFqi4NR456FG37tqPx+Mc/HmeddRaWL1+Oz372sz1kR51OB2eeeSb+3//7fwCIJOnlL385XvrSl/bd5z333IPPfvazuOuuu3DvvffO6fhDef7zn4/99tsP++67b2229jGPeQxOP/103Hvvvfjc5z6H2267bcp9Pv3pT8eb3/zmHkd+eHgY++yzj/vO1+k3v/mNW3brrbduxtlsXzI2NobTTz8d3/rWtwCQ4//HP/6xdt3rrrsOr3/963vuYbvdnpP66G1J+hGXAGXikfDdXHUSZyqdIgsC0pyNmH7GckO61hrC2pE3MnoqzE6EfWyJQbNshNUycqKcrZ6s1GlzRE8jczyQgcxEJtNlwNdruk/rNObQGEuJZJGdrqp9zTrFtrV3YEMIrHa2nBQSzQiIJJDqTq19nekOOnnqbH3WZ+KACTOLPjjFiaN+mcY4AkakQENFzpH0509BNIZAp9qiSaawr2lbi3y038czYkPuFCbQZYOWzcryNaE2QwP7mvfLEiaL6uzrQhtM5LqH8dgdR829fT1txzYSElqY8k3k41lHjKMhuSlKjMNVR9hRaXN2FT4LmevCOm4KazobsHytz2TsMVxg16FR+7uPToUZXu8MBgxk4afFv4cTc7g+j4PWEZDGn68UAk3lJ8+QRMo5xyaF1hoF6EHmh3c87aCdd9HOUwuBLpBpjVhK14g5vCa8/1DKNVPSBQDK25ah2ex0s+QoSoRXYQ1AtRdZVSKpguyyKe2H91V90EOF8+uEtVK9RF3aWIrxAP6ghMFQYLRMhvUPi9ZZuZxiBcoailNsN3BQIT7qo3GseCEtOTB/626nI7vtthue//znY5dddsFXv/rVHsc2z3Ncd911pWVPfOITJ93n+vXrcfnll+Oee+7pmxUtigJZlkEpNWs9ZpctW4alS5dCSlnapzEGRVGg0WjgmGOOwYMPPoj//u//xp133lk7Lq01pJRQSmHp0qU4+eSTJ63tzPMcExMT+O1vf1sLrR0IkKYpfv3rX09r3ZUrV2LlypVzPKJtUybLFtDyMtKHsyg/v+/9yHWxSb1etTGWFbSANJMfv04eu+Rd7u9rH/yYK6thMkSGL4btQHhOmIrfAvDX5KAd3jeT06qVc25/syNa0W6+qq/tHchA5lJK/CoBY6/PxgpARZPa15FWkNJnbMn2Kzu5DFPWJrJOblprX7tWmTZDy44kH5/fPeHY+7Eg+64jIKdWRpWEjyeZLXQOI6QrMZzKvgassxXYmIB275NyXa8oQcIH9vWm29fVkj9o+s3Z2HNsX0/bsW3FDTcAbUyJoILZvHKTeVKmgB2NtylBEgJntlvk7oHXKoaGQWIMDli8G56y285oqBZGkx2RyCYwMUYrNkfQ0R38dd3NGEsnXPaSs5nV2ttOntmosC9qr9bGVB3JjVlWilRwfy3oAtJiyKuRpU6eQoqcFMQA7Yxw82PphItKc7ZXCmo8TfuoFstLd72cM86KHihSCPcOr7GLprti+F7FDYUU0L8oHNTbwNVaVJ+WXBdIioheJnmGSMhSZKlw2XxAGgOtvYFAl48JsuAMCK9owkeOrIyn1tgJIBGhcrr7JAFoUXoJkCIjqB8I1gVKTm0/aESoVHV/G222CLHS9iR77703PvnJT+Kuu+7C17/+daxYsaL0u9Ya559/PpYvX47nP//50+prOx35+c9/jgsuuABHH300XvnKV0IpeqnfddddOPvss7Fu3ToABIt94QtfiFe+8pWl7Y0xuOCCC3DppZfi+OOPx0tf+lIceOCBjiCqTsbGxvBf//VfuOWWW3DjjTfOynkMZOHKeOaDvlznyn8D8P0ZA3hg1XGcqXC9Gou07/xNG3/H2QmdInVzF7N9hs5sVh2uqn/Phpma2RAlqku2z3KTgWxd8ehGzzoefs9NkK2t2HyuJG6a9jWRRVlH1ZR1mT4tOy8AbYhPo2pf8/sj14Wr4Q27dlR1mfZFn1nFYJOS7D1tEJxLBC3se0qSHR3JHLkkSHRk6+e1I63SgWMurJPox8AS6jO/x4bj2NXlVxN3A/t6ftrX03ZsY+kNtiqbGAAXdWVoQlUJq8pGn4zXJ+bhOGhkLCGwy9Du2D1NgHVrYR74M20dKaDZgNhpVzRHdkY7T7FmYgNacQOJjNCKEzRV3HPcECpR7lHlLxT3EONlncKgm/sHOVZAUwnCqYcPeDDZ0cTvXxDtPEVa5PSpcw/joiOV+nPxeYfiXnRhsXpwLcNrz7AP7zgLQAEwvt6ilOnuU9fBvYWlZdwjx5qK3MPtWnGXDButkcsC2ghII50xJY0GR8doR8bBCbi4nV98ddF4p3wA0sJgose66S08r9tPv3rb8DhViHJ1P1M1iB44tZsmO++8M0455RTcddddOP/883scW2MMrr32Wlx77bXYfffd8YIXvMAx4G6O3HTTTfjGN76BLMvw8pe/3Dm2Dz30EM455xyXBXzMYx6D73//+3jGM57RM667774bl156KQ4//HC89rWvdfvoJxMTE7j44ovxq1/9arPHP5CBcIuQqvDcwEHmEJJc1yZiJhKS0PDRpBC46oGPQBsz7fpdAPibfT5T+v6dW99MezRk/IYGVRa8e99+xNf77nOq4z+w8ZtU46tzdIoJHLLj+yddP6xNG8hA5kqq6EYpdOl7qdaSYciBLithIEXe4+ACvfY1Z0SBcpJE8t/G93Tt5JQMqrOv2fbjddjpaufll0umjcssAh4u621evxzaQAqGMnsHOxcy8DskRhLp+mrnwc59Uqjs7NNvVcePljVV7Ij46uzrsIvKwL6eH/b1jKlAQ3YxoAyd5d+lET2BTX7YQoUM2dFi6WFNudZIRYHxbB30ksdDDo1CqIh6Ve2wFwpojKVrMVGsQyfPXJSEH8AOArZj43H+VebF0AHlcbEUNgLCzGKkIMLBCnzml+m6gzpZqwDaGLTzroOGMLSBo0nVKFO5JzD/Jikq5YyV3G2bInfnB3gHt8w2XTM+hpQbjci+5CKpXC2FNhpCaIRmelizLEHNpWMZQytDtcpBREsbDWlfNom0Sljk0Axdc9fVoKmIlEsb4a41vYRZEZjRTSMt7LIK7n8ypaMeXPwwaiihXCSKf68TVkQlLTFDzTuqLpK0PUORt7ZceeWVyHMf/DrssMPwkpe8ZMrWPizGGPz0pz/FNddcg9/85jelF+Vtt92GH/zgB7jzzjsxNjY25b6EEPjbv/1bjI6OIk1TfPSjH8WRRx6Jv//7v98khuUTTjgBJ5xwwoy3YymKAj/96U9x7bXXbvI+BjK/pFNkk/6eFnmPEdy1U1w1azJdyY0GjM9SAHAkmzOBJNdJO/PBZobNsTHq7YTNOoTrn1uY3M3L/cTNAfZUC9PbumMgA5kN8fDh0BETJdsuTBZVUQ1aCAwBmI59XbV1fXa47MzxGCLZ377OnQMJcK9pTgaxZBWbyL96yAnMCiCDQTMSiGW9Q5jbd442BjDa2bme08cH8aQQSARBmrl+n4X6pYYZ3LKDH9rXWhIyVdtxhiWIPdfMEnGlRQ7tmJMNEjGwr+tkru3rTXJsy5EQzwjs1/F1rBxCCJWGi59ZARqRcJOHUxYtsL47jtUT92M4GsXITkuRKuD2tdehnadoZ103abuHzBI45dr3gA1b+0zkGTJNE6gSQCvWkKKXUIjG4c+nDEcu4+cZOsHOakjNHWaJ2YFl6nAeX/XaTiZ1zrqnB6f7kGmqm4gkvQDc70q4gneukwpJQML+YMa2V+LnlZcrEblaZQHt4CCR7FLRO2ib3JSddM+STRGmQnIUTyBWwhkxrmdwKYBgnxctXK2Euy8VhauytPH6fM+GIq901XXragYKbVztra4xBLkGwJjJo00DmR255pprcM0117jvL37xi3HyySfPyLG97LLL8KUvfannt7/+9a/44he/iPXr1097PMcddxyOO+44fOlLX8J73vMenHrqqXjBC16wSY7tMcccgw9+8IMz3o6lKAqsXr164NguIHHGMHNAVKLJqc6Rad9eI9MGWeEdx02REOnkuCVM7xy/KdINsrT964Y3z7PMdYpukbrsy2RSNmD1lPPzQAayqdKbsRWlrixcMxrWSjKqQRuDRuSTIVPZ15wNZalmN0PdC6G1dfa1ew/AO9t8fL//yc7cO1GxAVTFqS2hQrW3Z9MiRySlq/NlxCJLJBUSqSzzcVbaV8ggzckj3n9oX9PKfhxhgog/OVvM1yB0rmkMGNjX2PL29SY4tnxBy7Wq7GBShFUT6ZLJIIXyGVKbyY2lgDQGiHx/pcIARWEspMKzu03k49SPLhlFUbTtwxKhjW7pJRA+cFUlZYXoFkAnNxjPaJLiSJIUXvEBwvyzNJVw31uRQNPWKACw7MplWHPI5hjWyHJtQlRpj8THL39Wl3O2W3vlA9VOdAsglgaxNBXH3JIMBA+EFBKRLkrQ59LxwogSPGNb7XMA34erCv2OStdEu3oONrTCZ1gKIFYC3dyPP4zKc9Q+VmXWtkIbpxxlZfTbOiVDf6VwVOR6cqWWQvTsh+ETC82p3X333fHa177W1aFOJk95ylOmtc/FixfjFa94BZ761KfiJz/5SQ8keSayYcMGXHLJJVi1alVpuTEGN9xwQ2nZ8uXLceaZZ+K2227b7JY7t956K84880xXZ8tkW4sWLQJA7Yhe8pKX4Mgjj+zZ9mlPe9pmHVtKieOOO66WXOuOO+7Az372M2TZ5Bm+gcwvmcwxq8vqZIU1eExvFmW6Utd2ogp93FTpFOH8BXz4qLM3a391kumsNE5ugZTqvAca/Q+P/Wrp+w////bePdySorwb/VX1Wmtf2HOBmWGAcZxhYBzkMiI3EUVRvxOBz0P8UIPnC4fEAQXBYBQv8SEaIQcTSUxQURNFTETF6GcIxgiKEgxGkZs6BkRgyDjcBgYG5rb32qu7qs4f1W/VW9Xda699nb1n+vc8+9lr9epLdXdd3svvfd+HL+5Zub3tsUvd5/i5uGQ+Iglkl4ZMcOIBH+35XmrsOeDyYhkKHlrtx3CqAZUaACr/s167sjyLMvdAdhvDAQ03s8pyf4Oout3l61QR9bX8Pric3ZQ2vI9A8jUPzyuTr30MbRjfz73MpLS2kgbmtwbYPrbMDyl2lPGYs6erqMQ6kq/j3zwr0pYL0rljqaOEoygnomHL0EnU8jWmT74et2Kb50xz3ljb2XzMrXXBJ+hohQbRHYIHaYDE/m9Ke/wwe+gpgKZU0LKBjsqwK7WKrWothjIZWklf0Kni2FTuPbXe5BQdnWFUaaTKYFQZbBs1AIx7wVJaxbYpvZIrBTDYFFaxzb26/UkTg80+Rx0GfF1frbSzaDnFFsbFM9gBW16+Jx5AbqHLJyH+7IhKrY2llQ2n2k0Qtp20r08N7gZxXuoIgEuwRdfipZG4Nam0D+T7NmUL0kgMNGxsQFwXmOAMG0pgJPPCtTJEkTFIhZ2gg8TEhr4LaGHQSgSUAEYy47K2JVJAZX6AcI86BbTbaxlGfyipVwv7u0Ix85y7b9a4sgG3tyi4K1aswIc//OGe9u01HnbRokV473vfiy1btuDBBx+clGL7/PPP45Of/GQhQzOAQpzGnXfeibvuustaBSfpcbr33nuDpFDHH388XvGKVzjFdt68ebjwwgtLj51s3LAQAm984xvxu7/7u4XfbrjhBtx22221YruHYVTpSgGSC8Dk1bFe29xzO+EY21CQDPNVTE6xjSmM04HhdLSUetmLwtpg3p2xQN4z/kziahK8DXE8YI29C6NRcGI8rsvGM41h8pAO5+OnP7GU3j4p8vhGK0eFIWnFftmNfWGTR8kx5et2/lcGSmhE7aGcNeOVr4E8g7As5rTwXlh7r/2yicFGn/vdyec8GathVVCc0yqcD7optcF+oDA/u08n1wMaWucyd/4fEqhIyVHL15OXr3tWbJ0b3Win3AJwipbLzsUyrgHhZO7SWWvkLnWroPUlGVLNPYjWitJWKbZ3RqDNM7n1o4Pn29vRVqmrlRV7N6EyF1tEVGAbcwD3R3Cf8zdM6bGa0naIslp5AVWEb48WLUoQ5Qo7R7G1/FxkIAgC6oXtbHY/H7weD6q4HZ5iEFq/s9xTawWTDMiAhrTtoJplUnhKJ9ElKMU6YL1CWgAJs1QIIdFK+pGIBnyx7jBpCSTQ0DZmgSMRVDAauWHB3wsXvqj2WQwbL+GztBV/F6CU4gnT1KtqIKrcy8HTmXdUbpXKRzANLs1MfOMpHL2nYKrK7sTnHE9Jn9/+9rf4xje+USiv88wzz2DLli3WMjoGYoV28eLFOPnkk905+/v78Ytf/AKbNm0qHHv00Ufj8MMPrzyXUqqgLE/HcyMIIUoV5BUrVuCss87C8PAwAJud+T/+4z+wY8eOaWtLjelHmXIasHYqlFptAK0NPnrHO1zcFdEVBxsCTSnc976EVT+IsvLHa5kyBl/9zYXQBvh/D/vsuO/noyd+fgJPYXw4bulHJnwsPYfv/PclQbwd/a9K/AigYKAmGYcr2VIAd2z+KBpCOq9VQ1rPTUO2cPD8d0247TVmN8YyNJUZqex2L8dy9iM0IBWAxARluVzyt0DBKcqkrj5qrvyQjD+WfK1N+b2QrAdMTr7m4yVj7EP6n+XeUK5ccvk6TsZavD4ZpIpydtFLG2ew9rRsyZ6rNjn/0Yi8LSKP8W+H16jl6ymTr3tWbB1NVYSFzzk9APA1XsljSftIIdCSCYAEOqEAdul+63OdwB6TGe2KLVs85c4V3ACzokohMBxd18bXmlLqlWYTgjTGZTwebErvzSV92VD9MOur90pn0ZJDsbQAMNho2QUqX6xsXCwAUOfMjy2hh1DB7Q7RvREmDwDCxBZ8toqTB9j4DIOGSJBpgY6wyirRNPobNuG0bYuGMBqp7sBABwNQClv3U+TB7gkkWg0/8Kh4dlsNQ5vMlj/S2vY0xpyjQSGFp6RI6ZOaKFOkpsWpx5M8swidK87I1kpkpXWIg+gWtv6W/cwHHLce6UwXLEcyoRjvyXksaowP9957Ly666KKCMmeMmTCt+NBDD8Vf/dVf4aCDDgIAbN68GevWrcPPfvazYD8hBC6//PJAsZ2tOOaYY3D11Vc7Jfv+++/HW9/61lqxneNod/FwUpIQL2z6z7EwrA0gtV3b2ypPkiQBSIFRpdFkAhNPQhjnpPDn3zM9jzHjigvfFPoTb6ffYnDlFpDuszaATFiOEA1AZhBm+gxiNXY/uiVzs3KRV2j9WPPfAS7rmTzbbv5bA+6LFDbcL0bZWKbPgA97GEu+5rG9wT0IoNmanHwNINchck+uIQ+tjaeVomnjaRW1XRfka+886jaWeZZlir+tLo/Gx3DxHHm4ovBGBRsHncLAllLi8be1fD018vW4qcik1FJsLbn2XWfXrMxOYCWp7qwSIi/6Dve7NmGG4tgKRHSGjPHpKUsaX3QprpaoG34AkmJYbQ2gQZc4ijVZbXIrTAkFi9pBCjdXau32BJAIOP08c2WgKOeDmIrY86LTJEB4rzMAaQLPN4c2nsosWfC5DcJP0DKNoOMQHVkbDQPupc/rbwkJKVrQRqMpWzbwPU9FrkyWZ3aLrYHaCVIc8ZxOXoUYwUBzD7z0dv0xUUB8jDiGwGfCtKZKnmTBaFNaKJpnb6sxOTSbTRx33HEAgPvuu68QJ8uxePFiHHXUUdi2bRvWr1+PTqe8/EkvWLJkCY488ki85CUvwcKFCzEwYA0+fX19SNMUIyMjwf5CCEftXbFiBX7nd36n4CF+0Yte5M6zOyGlDLzaixYtwsknn4xVq1b1fI7HH38c999/f13SahahKyXOUMKoEoGYza9EIdOel2bnaG0zlYIoafl6y+dKWpPJss/pkrMFtz76ITRkglct+/+m/NycYcW/TxWlmMsaxmg8vO0qV/NSQOKF8y6YkuvU2P3omswtGsPxMb0kguPHETuAo2ws23OTZ82H2PHtVfI17TMV8rXfn7yhwuWqieVrqX0McCEUgJ0vHqfVY3lykxk9a22My5xM+pBP/ArAAMpkAKwCKyCdIquElafJY5vqDjpqNNKvavmao2fFlpQek3sad6ZtX581V7ysR7A8DkWKYhZguz3sTLGnURsbR7qtwzul5+Y38/hYKRUSIfLgda/wjSqDNllwNFGyjDuPMsadQxnnWXe8f+tpbgQljiwVQIeDJh9wg80+NITEUKvflffhsaxSSLTQwHA2Wqg3SNnbYusQvx/+bikZCMUuKOXvEcjpB7lL1084qaMkUBxCZjQaQqIvaYWxtvADhk+EpMiKvBYXKbqCjYK2GobWvli3p7iEViNSuPm9jrIkJzxuGMjTi/P+rXPLkTboQBesSoS4KHQcGE81vRJjcloFWaMklDDQ0gTB7DrTji6hI6tTjYlj/vz5uPTSS7Ft2zZcfPHFuOGGGyr3fdnLXoarr74av/zlL3Huuediy5YtE77uMcccg8997nNYtGgRhoaGxnXs6aefjlNOOaWg9DUaDRdfO5uwfPly/M3f/A2UqrZCx7j++utxySWXTMp4UGNq0R7j9fE4PMArtVTf0E9XOV3RCTwCbWWQaCAl+mDihRLyBNE8To7M1HlKZs88SJlKpwKS1dIEdCDn8GyotG8xTMh7u/k5yzy8GUIDNB2vRRasszX2DIwqL5PGSBF6aYFQ+dSR3KFdP8uPz8vpuNqtkmRbuP0c9Tg/lstoALBV2Yy7/PrU7li+5piMfG33E+x/3u8FMNRslcrXDSGRsXEWK7e9wCuM9E5EyVj2iVZ5O8vOxSuXEJ071An8OFfCKq9SSHRUO2dMZj5Jr8tMbWN1W0mjlq9L0LtiazLnhaXaUfTArfKiLd1VysJkbC0xZZ2hbFIvWn9T7VObWyVW5NmTralDC6AJkXssfTyRsyLlL5oP4MDlnp+zG3iGNp45Lrb0uP3h42qrqEkSwhW19r/pIL6BK+JkCeeUkzSnkMncG87Tw2jiyAsEyq5NnOUHv/XkahdXK/LC0dCZM2hoY2NthbQTRZJT0sO60Dpvn48F4GnYM+PT1dO1eewz9ySUYSzrUBl4+nFuieIDkQ/WXq/hLEvGlFqXakwMQgjMmzcPzWYThx12GI499lj325NPPoknnnjCfW+1Wthvv/2wbNkyvPSlL8Vjjz2GDRs2TIiGvGvXLmzatAmdTgerVq2qjIUVQuCFL3whlixZggMPPBCAjcON43xnM5IkwcKFC8d1zIoVK3DMMcc4L/WuXbuwYcOGWZOQat68eVi1apUrtTQ6OopHHnnExRXvifBGzXLEOSVI8Cyz6vNjqO6h/U47+pwPUsLF+wFW3KS1ieb0T/7iAmgDvOelfzfR25sSOE9JD7j7qcvzNcoEsg7FExbPnacQja7Xa+bkrm0GnIeH2F1WXjKwteklHnr+b1z8XSJsv+/oNpTO0NFtJwBTffuOyvDa5X8xqbbVmF50G5dlBqNu3louJya5MUoK4dh9VjYUIcuChR0Ec4cJnSv+3KF8HcMlr5qgfB0adzzlN5avQ0W0vMxo0Uvr6cIc1IZeE8X1AvJEE3NVG4VGkD3KMx0Bmrut7OwZm9opuJnRyIwIEkq1szRygs0O+Xoi15isfN2zYvv86C73WRuD7Z0RtLMOdmUdR0ewA0h7j2AeJN6fiMATS20bbAifUAp+EaV6e6S4jbJMa6OGlDiJRBg/WGHQhHBK7agyThl2imGkKNoMzLbWE8+IPBZsGaI8oVJueaKYWuLTt5IG+hstyLw2lTIZDDQ4xdqdz9XPokXV3gM9U1LSCTSZ0GRBNDGyokspWEpvexxZzXRuQVvQ5599R2VoZ2meMdJbnCmmiK7d0W3YzNT9+b1YRbghW5Aip0roDLuy7RhOh7G9M4KnR7a79OwdnaGd2czUccxXbO2TwluTnGUxp8WFdbJM5SAq1NSKBlScupxg3yegrHYPJQBlRGBZUh37HrklqVZqpw59fX14z3veg3e84x1u26c+9anSGrRHHHEErrnmGtx///244IILsHHjxnFf75577sE555yD448/Hp/5zGewdOnS0v0ajQYuvPBCnHXWWeNWDucyXvOa12Dt2rXOK/3zn/8cF154YVeq+EziiCOOwNVXX41FixYBAB577DFcdNFFWL9+/W5u2fQh1aEhkyMR3hhM0Gzti0GbRzO7fvBs+vZ8ocLG52XSHMkLwAWr3Y12lpZWIyhDQyaW9imMy4PBoZnSG5Y9LCaxjJXeMm+tP28sfHuqot0mHcWSKJjkRSLvjhQkf1hnQztL8/XW/u+obMy6vTV2H8Yqv1VGQ449tfw3Oqd1egg2T5ho7DJPLim9rD0xUzCW24ghyfcJKcY+Md1E5OumzPu9TCAhcg+sLMjXw9kw2lnHZiCWEtoI5ynNNCwFOErw6r5TeCVzONn7KSaSKssqHZyzQGnOlVnmzMvysZwJ7+2lxFf2c8edSxtbnogYnc6pqLM8NNE4XYHeD83zs0m+BuCyIs+EfN2zYhsUIs6tCG2VOiXLurit0mS1d2tt4YMv9jymEqBI70Dx1fRSqy1FWhskefFhq7z5QsR0TKpDylWZtXq8uggpoG1l3MDVwqAhrWXYF0u2C6CAdgnFQi68CfarKgXA78dTS2xnlvlzpp7prDPKPg8OmzCAJq448Ye9Jx/cbjuctxRzakduWdJWkdXQ0FpDQiI1HWS6g1E1jOGsg+Gsg11pmlPGJVKtMar4u/GTczxx2zZT+0LrIQ2oMiTSD6iyQtHjQSKBxBTrawkpnEWpLCZgT8fo6Cg2b96MLF98Go0Gli5dOqVeSyEElixZgiVLlrhtq1atwiGHHOK+H3DAAZBSoq+vD8uXL8fzzz/vPHa9Yt68eViyZAmGh4fx2GOPYfHixdiwYQN27rSJHZ599lksWrTIXbfZbGLVqlVYsWLFFNzl3MHQ0FBA0X7uuedwyCGHoNlsYvPmzTPuuZ0/fz4WL17sEocdcsghWLlypVNshRBotVrdTjHnUSXYAnaaj4XSWPC48pVfKD32o3e8w8bW8nWSsYK494eMpXSdmC55xV3nOwVbG+CKk6ozH1/8o/PQlAKfOLm8XRPBGav+puvvv9hyxbg8rHwNd9tgnHBMymxZ1uOq85V5hkIZgZUioaQ7hqiNliJKFQ7ISM6VWfo/kqX4h19fiOHUymvDmcGHjpv6WsFTgYP+7o2QQuCx82/Y3U2ZEYwVJ8tl2PiYWFnkcpPdzyuvysApu3w/mTP5wgSkxevGyhJvH7ED/fmKbRsL3smVX0/5ZFe20ogNm6DcMA0JmNwIlBmvo4x9Hdb2KGM5PYKyzMm9MjIoNJHuyTM8FRu7PpGVNgaQoYeaSh05L22e0ygzGqMqsw683PnFw1KIqbo3y9fjoCL7pEXaGOxI29g26r1v3osIZgHKF8IoLMtaYWgg+AYHliZjs3bZF8cXTR87yr2sFDdEbRlONUZVuJjHHmOlDVRitzXhrRd9CdCXl+mhzkn1szQMhjON59p+EDUlMK+V5RYQG8PakBL9SdOW+4EAp2FT3E+QwtxotGQDGgbKpO75EBIB9yx4UWMALvEHt55xK5oUQKpy+rakzHS2XrANvk+Q5eWVeA0wKiDPSxtYD28bSli6kzaZu6/tnRHs7LTRVimGsw6eG03x5C6dv3ObAZpblsL+VT74yCqojMFIqpmVCAVU0Rx4evFuyQx89jZ+/ZzOoaNnLgVkQ0Klaq9SagHgwQcfxPvf/3489ZTNVL5o0SJceeWVOOaYY6b1um95y1tw8sknO6/hwoULJ61Mv/a1r8Wll16Kn/zkJ/jTP/1TPPDAA3j729/ulKKFCxfiwgsvxOrVqwEAUkq84AUvmNyN7AFYs2YNPv/5z+PBBx/E+973PmzYsGFGr3/qqafiAx/4AJLEzk3z5s3DggULZrQNuxtl9SK5UBlv5+gmSNt6mLHHlpg8PHTHuBJBAROKaMnaM6Zi4akMaW50nUnYNS8Pl2KZUylmtqO9cOkUzdjzY3zyTCtQhcqtR1SaMAJPzkPXib1FJEs4ZlVm/9MaTYZyyn0ynI1iONMYzawim2qDHR0vX81WTJbOPdfQrYazlKKrESsM0QP6cgF8ODOl2Zb52OUKqJVlozHMjFSx90+b0HHE95MCgLRKKMnsvcrXFOrWVgY7O3YemtdCbsSxMjaV+vH1dcOYVWo7JUzlYzpMuFQ2h+bb8lCA2GsbxtKLYFtwbRauaP+H2l+hZBg8W9JfS+eeWo226mBU6UAvGs7suxiN5Op4DZgp+boVWTJIliaFeKbk63Eotv4l2XhaTxHWhtGeSlZWnnFNCk/j19GgsDcK50q3/4uWZoBc6b7Yc9m9Vw26MmsEV255ljYKPg9r93ELlgEgnFKf5udqZ6kbRLzOFg9M5wOsCrGFroqfThNffL/ud8M+SKKGh4PVUiGMXyQpJiCyKhujoZAh052gptbOThvbOyPo6AzDmcbOjsHODim2ArH3PGh/8Dz9d5o8KU141aCrgh9Mtth0L/v3AmdR2ssWYAAYHh7G/fffj0cffRSA9ZySh3Oi0Fpj27ZtzgtcBimlK8MDWLoyf/6NRgOLFi3Ctm3ber7uypUrcfTRR2Pr1q1YunQptm/fHiShyrIMK1aswNFHHz2+G9rDMTg4iMMPPxxJksxIfPHQ0FCQYXrp0qU46KCDAg/9c8895z4///zzzhsP2FidHTt2TLgM1GzEWLUvOcY1Z5bM0RRfS2FGlCkZOW0ZsHP1pcdP3AM4E/bB//PwxehPmpBCeMMzE4p5fC0xmWg7UK7UBt/zGpbxPrEHtwwxcyuWEXw9YeP0f+8VCuUzyn8yqqxS285ltVEXCmRlrHf++3loZxpf+r+uHcdTnH7sLZ5aQtfxyQZG1X7KAE0Rit46d/LEYg8fu/wSTelj6+02E/xO54ya5K4fynAi2I/L14A30rjzMyOOYyjmfVQKwZxmIjfKpJA5HTdWcHnb+fjtTan1k6oUidvWa7wtV3rL2sD34aEG9EwA2PHN9qc4ea7UtilUk41lblzkycHsuez/qZavx0IywTDlycrXPSu2lN12Z9pGphW2jWpnESKLEQ8ST6IBBsANJE0dX3sLMGCtD22W2ZcyeLFDXXHn/txj29fIrVOpV5pc7SbpleRUAzs7ComwWb4SKdCXhEWLSVkmbyUFp7ezFJn2ybOI2sFjiYazMG4h1cNoSoH5rSZasuEGHuAHcVzehxJJEV2avONEK7DPNc8GXcbx0J4KTkIPxdpShx/M4x1GM0vxUCZFH0uDRvFINgOjpVjLvLB0pskq1YEwEu0sRVul2N4ZwXA6ih1pBzs63mu+bdRmsyalktezigdPIuAUT24ZonpXHaXR6TLiwuxrJrAUWe4NSzXOBhtdK4GAyinYQbytERhoiNLry4Z0/3mq8hrjx1NPPYWPfvSjeOihh3o+5tWvfjU+8IEPOIVn+fLluOqqq8aVMIiUo2OPPRbXXnttQbFutVpYs2ZNz+erMfVIkgTnnnsuzjjjDLeNYqKrMjsvXLgQ69atc4aQ0dFRfOITn8APf/jDGWnzTGBn6uej0Lsafy/OS90SeAxH3iOyVdvz+hAc+g7I0oyo48XOjoJqTG/G351pxmLvNBqMpQT4UCtam11oUWDY5sJvMVGm388E5+TxswCQUUBjIHyHYUoZy8nBmV/8mvw/TxZlPV4aO1LDPLa5l0cbjGTa/a+xexGPOS7e9TKWrRxjv1P/KZbfCc8dj2VlRKD4SAEsaEkkwnsGqS0qNSyszParXR2FRAr0N6i0p/UAtzMrr/bnuZJSDSBLnQPJt5fV3c7P3ZcwRqayBjYpkcvbBqns2JhN3XAMQ54nxobYUQytDxO0/8v7fVVoAP/dj2fnMQqU/bJQwzL2Rbfrk6eZaMfDqWddkMeWHIv0v5MLvrGsOh3ydSuR7re4rI/blx2fSGCoZTvBSGqvl4jpka/HFWOrjcZIlubpoovWozKlNt6HLDc6H4y8MxBnnDx7qbPYAIAABTz7P+EUU0okxa9PfH+ABUFTYivhM7ZVIbTkVk/+ylgvNL/X4dQqjk2ZuqesWUpzvoDJ/DnwbfH5yThASi2PmXD3IAUkeZBhxnwPqbKKsDZ2MZR5MHBD2EHYyOvtNqL6w1Yw8AHsXKmlgaeN9eiP5DUgcqaJG3jkNXdGESns+8gzXiv23jpKB95qGjBjZVezdblgX44OlVo+6NxnaZAYe0w36rI2JogDALBXKrVCCPT392NwcLAyi3CvGBkZwZ133olf/OIXPR8zf/587Nixw1GTpZRYu3btuK7baDQghMDixYvxqle9alzH1pgZCCGwcuVKnHjiiW7b+vXrcdtttxUMERRzvWLFChx++OGOHj8yMoLrrrtuRts93egweok32tHcyNfh8WmcAetH+4yXWvqcEva/NR53y4o6Hnz11C9N7gSw2Zhj8MQ10s3/BkAHLdNwgiSVDiFhuEwgpTU6lgu6e2LLEsoAiHy73lPshWFOTaYYw+CcZMwnSmfugCCnQ1sh8NimGk6IHEkVlAFGsqkphzSdWHXNmRhuZ9j8rm/v7qZMC7gCSnJxuUhRPcgoJI0YkUTzDFl8Blr4UEA+lqUxTLay+zdz50+qDWxiteiaTBHtKIPE5LK4FNbopXMHk86dWSBnExx1k+fXSbVxnlrAO56ov1tWqD3WtlHk96DscDJgdP1wLFV5UAll9HfOoOiWVKpwHLuWD3Fgcfmmes6gMU7GNdKD6I/Gc8BszT2uXFG1z3b65GsgdBx1k5v5+kSyvzu25NlNVr7uWbEdzkbdhEl87v4EUNIrp5wSTIqTvSnP/5fCeg2lEO6l7ExpEjYuLpY6f0dpJELkAwwYbEj0N8pvUpmQykwvXxn7QAd8qmBn5Uh1TsGQtjautZBoAB1oo10231Rr1yatrSWpilYLWKVOCoGdHYNRlWJ+y4AT9siyxGkINACk0GhKg+EUyIn+UMxoQN7oUs58wz5XNRp2sBTeigcYjEr+rjSaUiPLY249RcJnTub1wGRm20xpyNsqxXDq4605VZueT0dp56lV2qATlU+wRobqzqtMaBHiXH0SvHqhPShdTY+w1zdeIQYQpL/PL8jrbe3NpX4OOOAAXHLJJVi9ejUOO+ywGb/+PffcgwsuuADNZnPC53jNa16D8847b9xJp2rMHJRSuO666/DTn/7UbXv44YdLvbXLly/He9/7XqxatQoHH3zwTDZzxjGS03KSPGauleRGuXwbn47Gk8ylkBUzF1ahQgFJimKd3N0NWnc5bFozb+ilOMK+hkFTaubBskkOAS+Yxjk67DafG4QM5DzBEwmmAdWSPRtd8jttj6mScZJHQtnaD3hPF4WJkZdnVBm0MyvE7uwoq9hmlp00Mh5Oe41pAX8FpGxyRdB5Sk35GKa8M4BnL/rcNKHhyTtU4OrWWu9tyUkZxiNfA8CosmPN0qGFc2q59uaMSCoJGegOLnFpKPMB+XhWeeb33Nucag0pwrEceww5ysaOT45H3lgU5HN/fOj9rSrpyVmexeuHibJikJJPz3k4M65SCtWibWdhfKxTbGdIvqbr8SRS8X6kzJaFAvJ9p1K+7p2KrDIo413gAL3MMOMa/deayv+IqLPlyaNkaO0hmozjiiv/wuwDkbmCG3LHgeJA94PPfveeXNbRtYECoKXIkyj4gWcHlh0o0NQ5i/V0XdFpUYx3IgtIW9nPgw0FLcPHTXG3lJJcQgDCcvt9UWfrVZVsQutLrKLPLVtEi7ATh8g9sWGbihNHPuloQBtR6jFuaO1iF9yCG9CyvCWJnjvvB+5ZM6WWBqB/f5QZrdhxg47PlE0eOwsACgYtyPJBFc0cSgN5zhnv4SArElGTaTAyC2Y82OKBtrcotkIIJEmCefPm4fWvfz2OPPLIno81xpQqJFWU0m547LHH8Nhjj437OI7BwUGcc8457jvdW43ekSRJYBhQSjkv+lTAGIN7770X9957r9tW9Z723XdfvP71r3dZrMmj2y12e66CrPItqn1ol0mLWFfpweJ9/q3nRfW92ZydbyOPzJf/x5cm1/hpwgeODWN8/+Lu891nytutWI3eJk92KYGm7K7keeUgDD1ie8DF5jEFtsxjVH5+LyTGBmK/fttyiPFxgGfSUblDntxzJNPOW9vRGiOZgtJzw2P7yHn/vLubMK1wTqBgnPJ+VT5+vext3D5EEdZR3ylToKwjJf8tkhm1k4nCY3qVr6ndcVs841Lm3lXh7pUqolQpe8F4EDkdGV7h94wMAZ7FvfzefXt42+LkrHbfUM6220IPbHju0DBW9vzpmDjBF32l50Dvkyu1nHqs2H8ayzMhX/MyP0FCqBL5ult+G6LRT6V83bNiS4pLX0OgD0CqAIot9SV/QloBAMe1J4qsFsC2PKEQHceV2lSHyk9HWRN0R2kksulibAF7/dHMdmaq9Wo9qn5gkIJMVuYYPMa3PwEGm9J910Yjg1VyeVkjgLn4yRIeyVhJNCgUs8SGWc+KL4u29TcEEkUTiXEGAapJa+s7C//cdTmFgGKC47gNGripApBQHeAw9ldLg+HMP296LoCPCW67iZSC/otKLg20jtZ20Gg/KAAEAyNGK6nOxgb4wUl9hd837cc9EIn08Shc6eWDuRgvADSaCZTSrsaWkCIYhDrTe4Vyu2LFClx22WVoNBpBMqdecM899+ArX/kKOp0wVfr27dsnraROBHfccQfe+973Oir1IYccgvPOO2+vy7A7USxduhQf+tCHsHXrVgBAu93Gl7/8Zfzyl7+c1uuefPLJeMtb3lKgwLfbbfzd3/1dIUmUUgp33XXXtLZppkFT10hGngpL4yG6GSFkoHSx2utiDgRi2ri1M5xiZz3KnZFe6LbG91wO0IDOu1OVZ4xgu53fIUzUEq4B3hBc7okN9mVGYTL6c9A6S/fFhWCAKbaZL+mzK/XUY/LUdpQOvDw1di9cf8jHF9H+vSxKihX1zWLnHE69bBp7at02NpbJONPObJ+Y35dgQZ90eVkSYRXNNsyMytd87BELNK6ioYw1VJEsnGqr4Cba54ehpWGUHHGVjL6w3eFYDieQ0FhQPY75vvH7cL9rP57LDFg+IRSckYpYpqnycbEdpR37gmRYO29XNi3AVMrXQBjDC13cl76Td5f0k6mUr3tWbKluK3WkROQKEXJrgvI04lT7BBY6t5xQZ9UA2rnxnGc+ppcYK7Vu0lUGnZZGIpLQQ6xNzu32nmLqSK5jaQNIICnpwCENiUoI2W3WI6lcpwwpEsxKRPzx4PThAAXgaltZaq+n+FaByhnZQe2fPRWttu2QkCrDqBJOufbKt+8EMTWDe5x5/TL7PrT7rIz3dMQLM1FdRrMi/Zj3P05zcMpj/L1EmbQB6sJZ2P12u58XtnKFHiaos8WfQaBIa+SJokJwCxVd38XkSoHEAORYLKuzpTM9pZ6q2YqlS5cGXs7x4KGHHsLnP/95jIyMTHGrJoYHHngADzzwgPt+0kkn4ayzzqoV2x6xcOFCvPWtb3Xfd+zYgdtvv33aFdsjjjgCF1xwQYFCvn79erzpTW/Cww8/PK3Xnw0gj621yAOAdkos0ZHtZpPPjV7BTaTA+beeVzgX99Ly7zShf/P//sfpv7EpBC+T4tcnLwwDcHU97TLChHZw+SBaLzTyMBVah0uuXeKZJYZTGeL109f/De9Bm2KpHq5w0O9EVbSJWryn1sXYZr68x4ovnIlO7gY22sx4LOuBn/1diFyuaSVij/fQxuCeMZ8bpDzWlryKcY4apUygQHHFiq5B8g/gwxU6SmNbO0MrEehPEleOE4CLrd0d8jWAQNbnz8IzJ+wY9I4068XVAnnSU2YUMGVyOmxuFcbMKx/L3Q1RZeBD1Dqeitvj5LC0jTuGKO+Q1ZO8UkueWqsrmUB+Jb0pdiAF7ZsG+do6jYw7hnSS2AMcY6rl654V250dA8A4a46fQMP6qtThSQGj8jmlN5NTELgClwiRK77GZi9mx/aXZEykgUBKMocU1dZlO9CqkgPZ/6N5Z0kVZWj2hZCJwtSUnkbBB4Sv2+UVRksvtgmpOjoL6lZRUXW+8PnMxj4+ORG2TAHRmO3xAqlOg0ktyY0KZR2ajAl88iAjRZwmHICLuSXjgztHvvDSHyX/AsjAYRgNOaQ3kLWYwC05bpsxUEa42lixBcl7IXxblUKonBoTKfTlXm2OIL7A/Q/355Yk92fMXuGxnQjuvPNO3HzzzVi/fj3SNB37gBp7LQYHB/HmN78Zy5Ytw4033oj7779/dzdpViK2klPyFhceFMXEIhdAAaBAVQbyRCIkGOWKLim5UhQFwjmAMo9tqnLBlzxXTBjmQh5PPslpjfZ/+cOwArBmn6sVjeKxcPvH3hzvdQsVAB3JCrRGU0kfUl4DT23+n9bijrI06bK4tpkCXVPL8B3sLaA+kQivKKrcmeTCAAoaF/XJ8rAz7qW11zBeCRUiUEaGWsmsla95/y+MHR2OTTtVCTemy56XH9O5/Jw/G2684nRkHcmk/BxjjWU6psw7G49pgnvmisY2yz6tWJIo9p87h4gRGVOEefvp83jka9tnQgU1lq+dnEx9rEyhngH5umfFdkfqOw9PEkUZuoK6s9o460yZokSgAPlE+BpXqQZSRoVo5Zp0kmdgjFEW20nnToSvK2u17fA3rjASeKcjTjt5lCllPimYttyQP5YrspBMuc0TPY0qmxSqLNCcLDJ0Txx9iUBT+iLUrYTKB3nldkSmuTUntzpJS/+OLV38PtP8B5kLQ6myFA5eSogry3ERcZ48QBvj4qrp/Co/lixK/treWmyfWzgAwozJprDQJfn3FtG/y5RiblXKLU1lAzBeLOKg+eC3ksEXB7fXim05fvazn+Hyyy+fUCxtjb0L++yzD/7gD/4AJ5xwAh566KFasa0Aj4ly29g8mwhrBW8l1pvCPa+BsMLox8Fn8vAAzoM010DGdg7KPyFJSKUlWwqXWIoLyQBVZyCBOX/kLJZMO4NCURCm61flaOLrDBeA7W+e0ebWWibz8GvQmk6yi/XmlHhqo0QzcdIWvRvK//B1My2zuuzh8AqBlUlJXqKQAu7FLSKUo7w3kys4kXwVydJDrWTWyte83xeQK75+vObjgcnisUHOy8P5+Nc+54+MzsPBny0ff2VwCrDm9xw+S17/2+3DnEcxo5Wch5zNSqF9cZmfwJFUIceOV76mPhPTnEm+DqDz/aPwyJmSr3uPsSXrAcJgbF4QmHtfm7mlmDq5lF4xdS9W2U48zDu48hMyLcyJAJIkzOpFcbaUUTnuDGSxpHO1EunOSZMH76RxgLnt4D62gPbz+xjrHcy/0z32Jz6jGmAXQJXX5iUFlxbPeJBwugIAlyirL6+BS8XkWzLJsxX7eFhtyBPrnyNto2tRogD7Pu2gsz1ARFZr3wYekK/cOcLFmwasiu4nsFoxIUmxARrz++Mat4EwRttyuk5H8cB41maJgDKRuPabQInmVssqKPbuARQ5/2b3WbnnAu68807cfffduP322/cKmnaNqUOr1cLrX/96LF68GLfffjvuu+8+HHfccTj++OPx6le/etIlpvYkFHMCECUMsNHsfu2zX42njcF7ZsuU2pv+11dm7kamGGXTMqdxSrbeyZL9Kf7LnsvAh+zYz5JtszAFBYOv70HbCt4Uf51YAC7z4tD98fPzTLj0Hjld0Xlqc2WHPLVAMXnLTEJn2pX42BtL53EU5B8A0MYl8IH05XpihY4fx8MJ4vN1WEb1uSBfAyEt2UEbyEi55dco7O8PC86pmZHKzQfu+HAs8+OrmH8x7ZiPaW4sAPyYDj253ljF6b5xeZ4wfwx/5+Xtm6h8neTlfKoQZ1CGNI5x0A3TJV+Po9xPxQsMOp73vhKXnhS+RNgyPwBYZxYuedSuPAU95463EolWIiwlmU12UtjESjR5c8+hKxqtwgmdTAix9ZrTca2CKAK6NadgkLLGLTuj+RuxSa1sySC/EPoFiFKU9yeAZsocJeHinY1buuw5m2glDfQnTbiSAkKgnaXIjEamlbtnSsQVL6Se1mz/j/ILNpjVWoSJR/gx3vvrf6cJlsdGkIWJ11mMqcgdZZAqjYTFGNNkHNf9K/PxUXZOXnTaQQun3MYp3/kkQLEVY1I2tBcCAATUCApo351CwWzGd7/7XVxxxRXQWkPHklyNGl3QarWwbt06nH322XjPe96D++67D6eddho+8pGPQEpZK7Y5SpOEsBqRLUh0YOdLyqAMabPFexqaAVeGuoVqzCWUCbUWYYyiFHB1QPlxXHEgGcEqtHQMXKytNrRWek+LPVeuhJbE2AGhYM+XD26kjj208RrPFV/ujeUKbZVSW5WFdCZBii0AyBJK7N6CMkM7T3bZURqJsUpoMxFBX+KKXCz/8f1GUoWRbO7I11JYuTqGJmWWKbd0Lfu7Kexv788r3nxsq4KRCqCxHI8/d86ykA6mzBJ4HiE6nz3eFN5XlbGKnrdXbhkFucQ7G8e/Tkq+NsJ5cLnDiEJgeHkhZYzz+laFr0y3fN2zYsvPVxW3CfjB1YRwSm1/YjsTdU5yf1MChETkVAvlX4SdnP1gIUXZWT3YANNs8BEVOi46XAaiPMiILkEgOgU9cFJey+5bGeTUX8GZYQVwqq493gRKYXx9Dh+jaztmZhQ6Ksvr7PqMcvHCGVtoyqgZ/vfQa2sHfHhAcQKxAzRclKM2cMsSo8aUCR5lhbJjUNyX73jl8RxV7597cXtBIgU0a2w8yGpLczmUUntkqZUa5Wg0GjjppJN6qgu8efNm3HnnnYUM2aOjo/jRj37kMi0rpfDII48AQKG0UIwFCxbgtNNOw8MPP4w77rgDzz333CTuZs+AMqaQ2IXAy5tB59RHWSyRNtdRVfID6J1h7b1CpMjypDNkJA29wJyFVSbw8nPHXiG+lnMvTtl3vi307ETCboVyTZhp5Xa/j5/qv+jd04bZjqoaoMwOA6AY0hWy0+J+Nbfk66rzl52zF3A52BmrSq7LCC75cbnyOcY4ip1VNJa7KbXF8e9Zl0GcdMk1p9oQWSZfKx3pAblRL6a60/6Esby2wNTL1+Mq9wOEEy2B31SS0ySa0iu1Q02JZgLMy3stWSKHM+XqsfGsZB1tU9G3cv+30jKPMyWFyQQWHSpEHsSNMGsF7+xKGxcL4Hj8iXBxpcrYsjdS2NJG/N26c7BnQJ5sbm0KF66oM6gwoyENgETYdtDzoRgBXjC+YxTIvkIe247OMJxpDKc+a5rWvsB3WdB/qLTmdGnjv4/qyINcKGWUD3hm3eb3RJMmH4ydyK1AHTmNtpcptVUZ6Xj2T+t9YP0opkbAK7NcGOk1JTq1je9Og4/SktfKbY29HQMDA7j44ot7ShB266234m1ve5tTYAnbt2/HlVdeGdSpjcv3VGH58uX4+Mc/jo0bN+Lss8/eoxVbZ5wrTQTF9mPzdzAfOm+KcAot2Hq8p3ht/X3a/1zg7hUk53nlNj+XgVPINGx+Cu5N5bXmy2QnDmVKaMhOoQiF4LiGKKedcuZbmUeHFN/ZoEDG8bx76/pJimtVaJTLCTKG5pbkpW6AoifOUXm1mXPydTcQI3S84DIvkJfLDLxSokAHLouBt/daPDdXYqti5LvRnN21dfTsdTFJFBD2ncDAIcOQuziUsBKRfI08nIUrqj55FVwb/P42Tjdcc6pf1FTK1z0rtkBkVax6iGBUXG2gWENS7YtBc2sEP48rYcCOS/L43CbrwERn5h0kULDpQea037IHymkSQeIndg6qwxt3ZLpm1XOi8/Y6AOL4AAAYVYA2Gg2ZuczEHERD5sc1JaCFN8/RvZVdX7L3BNj1uYxyEVsGKaNkIjyloUwQKnqOc6s2iwWgxbWqw1YNwIBKQYNJGxcfUJr9WPsMcK7NKKdv8KQqdI2qtsw1KvJtt902qePnz5+PI444An19fRM+x7777ovDDz8czWZzzH0feughPP744xO+1niwbds2/PSnP8WKFStw5JFHYnBwcEauu3HjRmzcuHFS5zj00EPxghe8YGoaNAn09fX11DcOOuggnHzyyXjsscdw3333od1uu9/4ZyEEVq9ejWXLlmHlypVdzymlxMDAAPbbbz+ccMIJmD9//pjtePLJJ/Hggw/OuRjw75/51Sk5z/m3nleUgrFnKLefOPkLAIAP/PjtEzo+9Oz47dLJAVY+SARw/lGfm0RLQ1x+5/mOBaVMURCuksMCL5GuTtRCqFqvFl15WhDf1o2uvP3PfjCBO6y+vpEG+338VAgh8OwHbprwuecSnFgSyUGl1OQ8yzl5WZtdhH0b71h0PlXJ11obpBAYzryHtmA84YrKDMnXRBMer92DjwfuoZVOPoxicYk9GYXfAaFS6xXW/H/F9TWToauU2lihjeNOJ4Kx5u6elVtUy9dx7K+9BwNeTopnSQ7OyY81oXwd6wLTSkXmGjk1rIxOmgjjBlqqAcky+nE+OlkjPX3WWpF2dpTj/ifC8v8HGhIL+mSglJHXlw86SkaUJOHAraJyAHCWI4qNJUtuU0qkWtuET4qU8fDadHzZc/LtRJDprJkUrUt+QIVWlR0djUQAbZWn/9B+oZXM+6iMyZV+4zI+tksUZSCkWJDC6+gnJYPO3p9X9vyxBmhJlwiLx9ry65JFp+o7dVbZkBCyt8FWllVaK1ugW+ZKfTBxi1DZ5dZRsmLHdb8oqUI86HSmoVIVDDTVUdBKI2tnc0KxPeussyZ1/LHHHotrrrkGBx100ITPcdRRR+Hv//7vsd9++3XdTymFD3/4w/jiF7844WuNBw8++CAuvPBCrFmzBtdeey1e9KIXzch1v/GNb+ATn/jEhI9PkgSXXXYZ3v72iQnwuwNr167FNddcg5///Oc499xz8eijj5buJ6XEunXr8La3va1nQ8OSJUvwsY99rCfP8Ve/+lV88IMf3GvLUEkBVw6olUg7H9KPe2hYfCwo8zW5kH01VjZMvv5BgMqN6HLxYsIYZQk1uQBMTeN1h6lN9D3woARe2urrkUckAGU2jfaJk01NBhRDx+tW7o3sp31aiaOcBk6aEjm2v2GTs/YlNvZ0qCWhjcG2UeOcRwCgmWLBlYxEoFS+1gbY0dHQmZdvOROPPHH2OBHIUdMtX6ca0MI4VmMMboAKFNVoH7r/MPkpJZJj2ZRZ7LwyxjFLSamlWOO4UkjsQCJvstV1ih5arsBXyetVutZYRsfA2ECZ8SLvLSGm/YZtKJevA2WWnUO5skoCimRuej8us3LI1owVV5oHJipfj8tjq03Rrd1tXx9fQoquz6hLSpB7udorGIn0MUG0nayURF0gxRjwg8JO4l5x5FYlArd00UCjgtQyoqomwmeB1iJa/IrzTunnsuDwWLOlpBVhbK5BqkVuCbLPLSgoT/cpw0zKMe0qngfK5oUqpZbfJ7XJQrh26+hZaXeLAkBvnZAXYS5bzKq2xwMKAHRUg0sbYzl72kDlwkgYr+CPDbyyGgWBpsxyxOtrzRWP7dNPPz2p47du3VpatkdrjUcffRTbtm0DABhjIKXE2rVrC/u++MUvxgEHHICFCxd2vZbWGqtXr8batWvx1FNP4amnnppU28dCmqZ45plnMDQ0VPAiVmHJkiU48MADJ3XdXbt2Teq9JEmCkZGRSbVhptFqtbB48WIsW7YMRx55JPbZZx9s3LjRPXMpJZYvX45Fixbh4IMPxv777++OffbZZ7t68ZvNJlauXIl99913zHasXLkSa9euxbPPPotNmzbtdUnOaB3MCzrim//zH8d9jnf++3loZ9oZmDl1biTT+OGbp8a7PFFc+cov9LzvR+94R/CdktPwz0RfLCabmRqQchortXGm2zJW1ETAFVb+uRcMffi1EFJgx2U/7Gn/+Zf9D3f+Xo9ZdOVpyEaz4tpLf8Zg5C9/1HObZyt8WR84mq9TlmRIAyVYCrGVt4hmT58pXp6PSwAYaCSg3DaeJszor4Hi55UrbzgRxDjOKc2+jdMlX7trxPaXip2dDB79HI8ZyZTiYFznyq3msuQYKGsbMSGrPLT8syrZRghz1IzZlOo25jpc7LWNab/xb4CVr2VeTaRM/gaq2ZfKOJZ6gbFZJjs75XYC8vW4y/00E4FmQ6CdwVvz2CRr4z9IqQm9k8TfJ4vMjlRjVAE7O6pQONzSLeygSUYEnmzKAu1CG2tRogxtKldeKHU5j/cFQs4/JbZqSputuZmEVGcALhtbGliCjOP+E32DrhFPOnF2ZKIx8BJJ7na0waiGW0BJoQUsJZkriRRk35Q2SRfn/NN1m7mirKMU5jw4XxsgTX0d4jjhU9yH/LFkmMgnUCkgpcgtfXnMsMyteiJ8LrbuVkg7iLn0HPx7kk+gVHdPdbxyxQeTkCFXfzTPuNhJTIE2w6kQ/Hq6JL05r/MX/3fZ22a/XjttGB4exsc//nHccsstbts555yDb33rW4V9BwcHe6KJSilx7rnn4k1vehOuvvpqfPKTn5zSNlfh8ccfxx//8R+j1WqNue+6devwwQ9+sM7SO0Eccsgh+NznPocNGzbgoosuwgMPPADAUpovueQSnH766Vi8eHFwzE033YQrrriiMjHZsmXL8OlPfxpHHXXUmNd/3eteh7Vr1+KWW27B+9//fuzcuXPyNzWH0JdQrFtvRuuxQPGdI5kCr7E4V1AmeEo+sWtL10xhS/dNtbcWQEAF5V68mDlXaDtTfIuhQaE3l1C27rr1tMRrW4bxKMIUVzuuY6Jau1zI1UrPCYNyN0xWvk5yGVQa+5vO/1P/Gck0to5k2Daa4YB9WjhgqBVQkLeNFseoNsUs29QPO9DoKGBBXwODTVJUp1++JsYjdc/RjHlCc+8p6QkxO5Lk21j55DltKCSQvLeTla+pVm9gnIo8tPF845x3wVj21+7mNCpLIGavYRwrhy5S5bmN54M4Dt7k7MpY0ZQNif48o7mjLkfzlWLPvkxZJTkaABp9DWTIJiRfj4OKHCoEZFmiB1YIIjeUJdh/94qdT4oQP9w4gyNZiVLtrUC0nzbh4lPGSef0hyTq8DQALLXDD5ayBEZS+lgBu4//H1+Drlv+HPk3OzkRjTcR3iLM6cvxwimFYEkr/KRH1+2Fm+8HlX+OdkCHvwOeauLaaIh6bOxEqr1FeyzEdbSAagtP2WIVW4liK1PVcQCgpQniBOz999TswoI6G0okTBQrVqxwn7XWeOaZZzAyMoJFixZhaGhozOMPOOCAysy0WuuA0rlw4UIceuihhf3a7TaeeOIJNBoNLF68uGum28WLF2Px4sU4+OCDg7bv2rULzz777LTERqZpik2bNvW075YtW3raT2uNLVu2lHqBycs9URhjsHXrVvz2t7/FggULxvSEzyb09fW593rwwQc7z/PAwAAOOeQQHHLIIYVjjDHodDrYvn17aR9I07QnbztgY8bnz5+PRx55BCtWrNjrFFvrMbHCUhWlkHDO997myoM0JXD1KdcAAD73mmvc7wD3KNr/J339rUiEwO1nXT9NdzF1CGUK+mKfixTAR0/8/LS34VOvvsZ9ftst6wpCYjfPrGevVQm/cCHVsRBb5a3txYs79OHXAgB2/vmtpb/P+7PXTWrd7ObdMdqg9d5XQkiB0b++fdznni1w8mOJfM0Ry9dA7hTRxo3l4HyR7M6VWq7vVKFgXHEyISnYPvvx7pCvSXHk3+k5uW26qiyQ/WtKCr/Lldlc0ebnGa98TecuY0OWGdDi7+NhYHg9TDg6sPttHPkSypgbMWsyHoOONmzCPhxn1/c6RLlSXXYtCkuQDTkNMbbaABKuPlE8ubYS6SgNBMrSO5xZpZeox8Opdp8B4vzbuNqBRuLqIxH1wg3syFsb8M21tyh1FByduSkFhppWmfVlh7x1pq8hsF9fPxrM29JWKWwqfwPq2MSxbyYCfca/ILJOkdXKtYcp3TTgaTvn2pNFK/g9tzylFS+R4h5ISSeQ1Y5TSsiA4N4JG8zKGIwqn8qdCmzT8+aJvCi2Is2/S2E9yakzaJiAWk41t4Jnkv8eT9JlVOOyhSvTqlSp7Obl5efVmUYbPk6gDMH+hlmFyWpkwnPLhnTbuAd5NuOb3/ym+7xz50585CMfwc9+9jNcdNFFeMMb3jDm8UNDQ1i0aFFh++DgIN73vvfh3HPPBWCT/ixbtqz0HOvXr8ell16KAw88EH/5l3/ZU7zuW97yFrziFa9wz/vWW2/FZZddNmcouM8//zz+7M/+DPfcc0/htyeeeGJS59Za40tf+hL+7d/+DevWrcM73/nOSZ1vd+CAAw7AlVde6d5nkiQ4+OCDS/c99dRT8eIXvxg/+MEPcPnll09JHzj++OPx5S9/uZRmvydjsGGTxUgjnMW9CjzxTNkUSnUtuZeHvreS4v6zEe2SG9OifL2YCYykuiCU0tpalq8jSCilPW3ReW9yA4Y2ofBYJqyWfS773gti6vBkj68yNs9FcDmO3mGZIhJnHdYG2NYxTvaDFACN5cTKmvP7EigDDDQlOqqFgYZ0iiYXu7iixWunOkOJZuy2XBvuKIMdHY3+hkR/YuXtBS3hvLO7S74GDFBC5pHGO+C027+830yVfE0sRkLsNOIJS8N7DJ+5+2yMzYivrQKbCMoH4w2TreAcpbfXM3i8e6zs8v+qozDSUZANiUZcSiW4L7jjSv+MgVFeue6b1zfu8T2+rMhsUAElViDWuQBvrQisFrroaeXno6y1Xqmlc1bX4iu0Ufq2eouPVWiclSr/358I9DeaaIi8rA4MMq3RMRmzLHnqLFmkmrllxFunfLIham8ZuNWGrG6UVtzdQxRXExvR/fM1weC2FibhnjMftHw/3w6WhjwfOJDw8c3UJmado3eujc9yrQV5ncMFld9PN/CBEy+mVdvHQpknl7ZrJrv1UjO3TJkOYpLE3Ep0cfzxx7vP27dvx/Lly7FhwwYcdthhwW/jhZSy1DtbhpGREWzcuHFcdW733Xdf9Pf3O6Hovvvumzb6b5IkGBoacp5krTV27tw5qQRDaZrigQcewN133z1VzQywadMmbNq0CSeffDKeffZZ9PX19eSBny3o6+vDkUce2dO+8+fPx6pVq7B06VKIHsZwL1i4cCGOOeYYZFmGHTt2zPpY29+/2XtHv376PwS//e63z3HGxYFGbjRuJhhqJZAipwdKYLApbSiJ8Nb28289z4X2UOkY8tLyrPJl03BZ7VTCXGEkx4JuL3UYpxP0bs/813OC7bGxn7b5hFH5tuhdxJ6UycTXloE8t/z8nH5M8/d4rhN4a7sotUYbJO96uV3nP3vHpO5jJhHLzjFIuUmSPD6SjcNUWdpsrPwBodLX35CgRJpl5wci+bSH92PlbC+/JsLSi6dTvuZybwxqvzQiDB9wEIX9SRYunmtq5Os4xK8yjCAOHSjZL94WJgXrzSsb32uv4QWxHF32nz7791k+d8bsiyoWBgDnqZ02xZajv+GpOVUPlA9WUi6T3CJjLR9Wqeso+8LsAizdsXYhlUGcJk9yBPiJvKNsHIFNHiXceVJtMJwBfW7gCQw2RT7ommglDQw1+yGFQENIN/AAIDPWjDScpa4z2OxuBomQATWC7pNeaKr5tnDwkIWlCU/pdfdjigtr3BG5cumtPfmPubeXP6PwXIYd67n8zjKnDFReWsgNmIQlXIJBC9JNjvm85tslrZUqtNpXU6MobpYEpo4qT/vNF1zJvApd44NKEO/LldxuFGNusYq3c6/tXMPg4CDe//73Y926dTj88MNn7LpHHXUUvvCFL6C/vx9Llizp6ZhvfetbuO6669z3p556qme66Xhx0EEH4SMf+Qhe+MIXAvDxw3fcMfuFpRtuuAH33XcfTj/9dLzrXe8K6sHuKbjlllvw2c9+Fk888UTPNW57xQMPPICPfexjePbZZ/G9731vSs89ldjZCefp+Dc7/xLrJrF5LNKc5giZG3n9ekVrAvcOeOaNRgsSI9pUegsBYNuocsqtbdv46HSzATs6+TMT5J02BePy7oDL3M8NyAWqH1tvtfF5S9gaTJ70eK3j8W1GGxe7WvXHjx2LwszjYCdCR1YdhWw0K7SxIFArg91sh5gQdqXVWa7td8qMKy0b0QhWUSTPt1KSBIrLnpSLpgXp6bZxCAeLyeVyISGea1qJwD5NWwd3sGFla8qCPB3y9XBmCl5SoChfaxPWwCUqcwq+jT+rcF9/zqmRr3lm4zFrFkfP28U1q9BoRfM7n2PD/uK30zrA5etu1P4ydBt3gJeF+VygI7+DVizTcYmxK76OOy7TaG9rTwMV2YSdjCZ6FxCuy5VbKeCy/vokTv5YPrB4djX7PaQjUzu4UuvbF6W5zxdnLUUen2vQNF4Zb8gEraSBVtJAQ0o0RIKGtGnTG1Ii0wINJNBGB3x/ajdRKMosEs76FStR7CtfKGm7q4kVBblzK5CFCRR9PhDpWZRZkOI20qBz26KDyEMbv3t+DqJAkCWMAts9jaJcoeXPjdPbEmM7f68K61ie0rKBMNbg4AO3wPXPvbOFts3F1RRAo9HAS1/60tLfsiwr9VBKKdFqtSZ1z/vttx9OOeWUnvZN0xRZluE3v/kNvv/970/4mr2A7m3RokV45StficMOOwwAsGPHDnzlK19Bf38/0jSd1XRVqom7bNky7Nq1C/39/T0lwZpN6HQ6XZ/xhg0bcMstt1R6+7XWGB0ddRRlIQSazWag5Ff176effhq33XYbnnzyyUnexfSCCyuv+z+/X2DMkHAzVkbiS3/yjtL4L059U4at72S0BfCWf/sDJ3TtTFUggHFP592//09Tdt8TwcU/Og/a+JjgbvCKu3GhV7vbawsA33mjNer9zj//funv3EPr3oMuUhHLMprGyupYCq3bL+oTXECdyizFcfbk5h+/AkYbZJ/6yZRdY3ciTmIJFBlwASVY+FqsXHml76WMCVJ+jO/XXOTjShhnbBDKPL02Vlc4xZo+T4d8rY1xJUJ5u2P5l+4xeCbCG6fK5OXw+KmXr+lZ8gROld75WK8J5uFyanEhBluH7zu+XtW4B1DKkoy3l3lXq5iX8X5AZEQrYXDEMrjRxpb76U2vHW+MrY91TTXyuFkbrB7zyAGfaIg+9ye+g0gD9DuFKUE7Y15DN7gsV1zBD8RWIgNL0kiq3HWpNhfPBEYZ5GjAUb+yA0pCMmqCzK1Eg40+NESCzChoY5AZDSDzvPnMoJ3LXGUTiOv0UScmT6zMKQ19id+/F08tDWJuyWqypBZ+IHuDASnJYxk6yDoP2Dhq7qGF8tRwu692cdHaGSzCSZgC2Hn8QBBUTh3cGKhUI1XCWhFLMhyWKZn8O3lwu1mgqpTVMqpy2bX4+eLBO5Hg9rmA73//+7j++usLCsbq1avx7ne/e8watFMBrTWuv/563HzzzfjVr3417ddbtWoV3v3ud2PlypVB3G9/fz/+6I/+CGeccQauvfZa/OhHUye0TRduv/12nH/++XjZy16GCy64AP39/bu7ST1hx44d+PSnP43/+q//qtznoYce6qr4bt26FVdccYUr99PX14e3v/3tOOmkk9w+3/3ud/GNb3yjQDl+5pln8Pzzz0/uJmYAI1ns5akWbroh1b6kXpgkxgSCmctoSeFB+Zo/kinLmCKvEx3fY7m3mUKVIBljJFU+Vs0xyGbPvSgNRD6AAu2Ye3fC/bzCQO+nar3t5qUtHGPKzzGd2JPW2ngsE2LvXZKzGql/NqVwOVqIHssTgpKzhxusEnYdOg9lP6Z4bq7QOsWIbWsJYlNa2X865etYaefPheJpY2WTEtQStPRyc1XZnpmQrxMW1+7KHlV4cLlCOhYt2Wchrj4H1Y2tog+XfabvJON2CxmkkINe5GuS2XWmAY2A0RHH+9PnpJUUMjRXYdwxtsoYFGt8hoOHEHt4yWPrLTN2gk21bYkyPvbDxRPQObUJXh7F/lj6sXEKLVdqY8tWHMcQe1vpe0tajbNhrIWpLVP0JyofPCKvaxUOuKosyARt4DI7KwMkiadw07axYmqbbHDG+3hPafE4bjkqj6+ISgmUSAA2eRRZnJBnVaSBKoM058FxObUlkQKJKQ5EvmhqVHtY4zigMvQSj9uLt5bONd54oz1FsTXGWuLvv/9+fO1rXysI/ieccALWrVvXNfOuEGLSXmxjDLIsw1133YXrr5+ZbKr7778/3vjGN+IFL3hBsL3ZbOJVr3oV2u02brvttjmh2G7YsAGPPPII0jTFeeedt7ub0xW8j+3atQs/+MEP8O///u8TPt+uXbtw8803u+8DAwN43etehxNPPNFtW79+Pb72ta/N2TACXkYntuL/7H9/vefzjFXj9Xf++fcLzB1OVSZhmCvCgF1X1p/zzYqzzgwuuf3tzsPT69RMITmJADrQuZHWYqys0TONbt6bKu8fNyyXJY0CUFk7Mvhswt/aV/7H5G5mHEiv+s8Zu9ZMIKYgl/3unAQylGdJ9uLUY/udKbg6NFKBlacsM2ZVJq8KGJYkayNoz3TI166KCrs+faf9SHYuoxeTzlImXxNmQr4m2TqxYrOdW/TY2ehjI9V4wjv4u+8WDjCW7Bort3RMmeJahTL5upthLb6OHCO5IaFnxdZ1YrLEKtqe1xblL08bDDQlmpJ+8xmSgVzJU77+1POjysYElVksNFypGWiDVlM62ksiRWnGRafkMoqrFD4A3X6XGGy0LGVCNoJBKIVESwJZbl3pbzShjc7jAxRSrQvc/5h+zDMfAzbTYljPL3xBfN+4b5AlzBe+FoVjUnfd8oLuZYgtPvHEVAhUp1hbGpD5O+lAQ2nfJh5f65KJaOOUXE6DimNmCGU0COLvl1l0OOi3WDntdh2+bzc6BbWjzHK0pyi23/nOd3Drrbfi7rvvLk2gs2nTJvz5n/855s2bV3p8kiR405vehJe//OUTbkOaprj++utxzz334Pbbd3/5hna7ja985StYv3497rzzzt3dnJ7wspe9DG9+85uxZs0a9PX17e7mVOLRRx/FP/zDP2Dr1q0AbDzzww8/PKXXSNMUX/3qV4OM1HfeeeecVWoBTpn1NOFeEr5M6Fo69DbQ9cP5nrxO4xO8phNOsB9jLeSgZFm0vgXl4Xp1+04zCvRi9v59WFaxrTxxVNl6R/TiMqWWEMfE1Zg84goSQGSMyD2kyhhsa2cF+ToRNu+NMoDMM/E2c0XuuXbmWAg2D4pw/RrKjw3y2NK1y2ivVLGEvMYzJV/HsjFXXMlDGxr6fDI8V5aIhVBwRXKm5Wv6XrVvIV624hquWokEVM6qpBJR8Tl4hQ9ClfxMiB1I5I2dSvmay/W0zRgzafm6Z8WWXgTFbQCe5pAIRn2hDiUF9mnaY12nyJVPS3uwx6ca2NbOsG1U+TI/FFOrfRY43hFoQKlgQZVBxkYaxGSBiWNkbNmfJhoyQUOGyVVsLICANBLaaLRkA1mibNC7BJpS5wOVKaORxY1K6NBzsoH7fKJilhuUL7zkiW4G9xINCFO00PFBx6nA/t6L8QX0zCyNOLQclsXa0kShYONiExHGiAQLLBtsMdXYFV4uW0BZ22RkCIgzLY6FXpTn2DMcX4/+SxQHWJk1ay7CGIMf//jHuOqqqyr32bx5M774xS9W/t5sNrF69epJK7bf/e538U//tHtj8widTgff/va38a//+q+7uyk946ijjsLFF1+MZrO5u5vSFU8//TSuvfZabNy4cdqukWUZbr755sCLO9fhcyL471UxWJPB98/sHqM7m0HrG9XZ7fWYQr4JFa7XuwOnfPN/d4315eu9X4fZ74bdgxSVuSw4unlk9gQj7mxBLKfFhgkqh6m0QceYonwtBQalTUiqHaPSytcjqcK2UYWhVoKBhg8njPsLj+O026KxAGBASu80mkH5mj+jMttSHA9M2yCFK+QSeDyVj53tS2ZOvuboJW4/ficxyKjJjZvkXebnqEKVcltGO66S06vO06t8zT2xVfrAeOXr8Zf7oc95hyeqDpArpXnCJ09TsHGu2hgkeZ4OUvqogwy1kuClk/KcsNI/dD6KqeV1UkkZtvptqFi5urvGgNKGx8h0GKtl03xrZEbnMQDKb9PKKXjhoKNj6Z6NyzRp70kHz89mKywez5EIQMGgmST5iWxZBt9OP3D486Tr0bO057L/W5BQKLcKcY971UAiK7Yvzu0nCX5NZSgjo09k0RmnxBVTWcssQ90GErcExfvzgHUhBQSKFAtgbHrzWFavvRFKKdx8883OAzcRdDod/PrXv57CVpVj7dq1OPXUU11SoRUrVmD+/Pnu9507d+KGG27Aww8/jIceemhS19pnn31w9tln47jjjsN3vvMd/OY3v+n52KVLl+LMM8+spH8bY/CDH/xg2koJ1Zh9oLi82ZDYaDZjvE5WpQFF66wOBdLd7bAtU4AK+1QssyT8cgP0WEot/e9GQR7rPDXGhlfKcg9cyTucrHxNFUZsPLwVPolx2WrKglMiSYCRrEiT5bTl6ZCvrdxMinYxCStQrI4Sy9eurdqgA++5je8jEQKjCq7cGQ+p60W+DnLRAO55xJnjOR3YJ8LtPpbLFXi4Y6oU3ljRBbrLyr16cueSfD2+5FHgVmFToOpQHdqBZhJkC0u1QYpQ+QP8i5zfl2CfVgKdK6w7Owo7lS3dA3iLEClLXAGz1IqorYZq7wl0oN3gJesSQVJtrXxQAYDOa2ppY2kR9j8NQI1Ua1e/VTLLCA0CGgC25E3Y1oAqwZJ5xh3e1fKlmARF2Z3DsgPc2+ueafCe2CTlJhzNYpXDZ+baqT2lLIliMQCE5X/cOYw7VmlveKD4K3pvnMbgjmSDgSuzZdYZTlGIBwAtuNy7WkgCZUKKlaNDRNk4+Lmr6Bb0udeA9r0FWmv8y7/8C2688cZJnWcm6G7HHnssLr/8cpc1ODambN++HZ///Ofxn//5n5Nuz9DQEM477zzs2LEDGzduHJdie+CBB+KSSy7BqlWrSn9XSmF4eLhWbPcieMXWfucJ/mpYJEIEJT56gZUf/No3XfTu8SJohwy3E4utk1YnkIkRr2lurVS9eWnKzlFjYgiM/srLgvF4ngr5WmU2N02LlVokmrMyNkmcMsLJ16H8OAPytQtTDJVaW8bHfifqcZV8DTBFljzYkZzt7iWnX7cSiWYQ0kj7lMvX/hxsO0sCpkz8bMPnEzNuyhBcp4uY6b3Z4fOK0UsMbJWMPpfk654V260jVhPrRDF3LSl9CmuJ3AtpLTRVAdE8GxgdyhVm2oesLIkUefyAV8g6SkMJYCSDj/v1l3Z0iYGGBFj24VTbsj+ZVtjeGXEpyAFvbaI6W22VItMKHZ0h0wqjSqOtDFJFMcMG7cy48wIRTUGz2lNMkeRUbg7n+UQUXE6035IFqkidKN+HtneUpQ6XLdZEUWpBOotdfF7rmTXBdmpDrNS6+Nr8/rUxYe0qncfYcstSpNxyVCm1VXDn77L4VsXTdrMgxQqOix0QYs7HHgkhcMIJJ+Dcc8/Fr371q0nFk86VZ9Et0dU+++yDN7zhDVizZk3l8SeeeOK4EmVNNKlWt3by7UcffTSOPfZYvPKVr4SUvSVbqDH3wA2NbtscGXPThT/5z7c743JcZWAiKHuep91wNgDgpv/1lQmf97Qbzi7UpVXa4PazxpckLxa0EwlAC3RMVN8yYmgRYiG0sNYxo3OMsZTeGr2jk8dKVslzzkPIs+ruofJ1Ow9VpCzP/DnQd0cblnBZo0hudc9OlydlqjJUKWOgsvC3XuTrscC9tTHGm4wuvj/7v+K7KY51/r/st7G2xb/PVvm6Z8V20/Y2AP/QBpqW8z/QCAPKAYNcBw48kUobZ2EeaFhleKiVFILEATqXcHEF/Q2JwQZlSCbLk1WwtrYz8LgiPnjti22glUikmjyeVskbVRrPtHdACgEJYQPaE/s4dE6RGM5GMaq0Sx1O9IdUA6PKKrXDWRhLS4uq81jmBdJj8DgGQiLh6B2JEBjI6b52AYyy1jFrkH1mxXdGiipglWaaoFRWsh/7bAUlUfDg8naHbffPm5R5KgFBZZlIqXUcelM+GKo49HyBja1BVaV5tE/f3BVC2gFjVHGwCVNsT1UMAAAITExpmU144xvfiDPOOAN/+7d/W5lAam/BggULcMkll3SdUKWUs6qO8amnnorLLrsMSZIEdVtr7FlQJOxKu47OFs/i7gSF/1D+DqD3bMgECoPioU1TjYkaIBzbqoebipPIxNRG7p0BUMhZEQuZY4UC1Zg4bP4RoEXVMqLnurOjkMjcS6rsnL6nytejyjillsYyfxza5DJrImxpSuE9zSS3ktzJ8/RUpkPO0Un1uORr/kxjkLPPydwl+3VLIMX36WSRkarEMcbzK5RRlHuhIleFG8xF+bpnxXagkQ+m/MUPuHpaPMY1HGgEeuhUZ7aViOClOtoF7S+ARCauY1EyI6dAaoOdHa848YRW7ppsMBKo3I7WQCqAgXw7USYoFiDTChp2cA6nxilmRI9ItXHpx322tPwaUXzpSKZKKQThguPb7ujHlHVOAEpUW554OYIq608cP8vhMk4jpF4A8B5Xl4W69PTufsoSRpFVuheLkBtgyOkO+XWrrMX0nw+8Xkr+jNWOXrePtxzQXAEpRGvWrMEZZ5yBTZs24Re/+MWMKLitVgvHHXcclixZMua+jz/+OH7+8593rWc6FWg0uk+TGzZswH333Vep/A4NDeH4449HX18f7rrrLjz++ON4/PHHg33WrFmDNWvWVCrIq1atwj777NNTezds2ICbbroJK1euxNq1a2eV0s2xZcsW3H333fj1r3+N4eHhab2WlBJHH300li9fPq3XmWkIGQpttFau+MKZbj5/5Lx/3o0tnHnEgjAAnPeDc52wyymMgF/nKEnWeL2mEwHVeafPAHqq+1slY/nfq4/h36tqeVah2zq3p5Xe2d0oo/6SfK1YLpO4XM90ytfWQwsksHxjqmHL2zl18jVjPjJnEdDdSMXHhFX0c+ZoRS6COLdPN8Q0YndNESq3cbxst5j8Ko9yvE/Z914NY2Uy/1iycex0mm75uir2djKJWHtWbPcbsLuSomIzrMnAwtFRutB5SNFJhMCCvkYQ+E4gWgPn6NM90fl4LbqO0tgynGIk1dg2mrk2AFYBJwXM0WelTXvezmkGFCBui0gnjiJB1AgaTNtGNdoKAa9fGV9Tq60MRhUcv18ZuLJFRMuNFVvXNu0X1Dibm5tEZCunehufxpstyMrA1Ze1G+gaIqAfc0o0PRc3AF2Quwgy5fF2uRgeRDFcLlEXXN+g+AvXVlYU2v2ZcspTzLsfq2MXPLd524zx2dfKlOey85ZZrcoU16q4pD0x1ui0007Da17zGnz961/HxRdfjNHR0Wm/5rx58/DBD34Qp5xyypj73njjjXjnO9+JXbt2TXu7uuGmm27Chz/84UrFf9WqVbjuuuuw//7742Mf+xh+/OMfY2RkJNjnzDPPxJ/8yZ9UXkNK2bNie+ONN+J73/se/vAP/xB//dd/PWuzIv/qV7/ChRdeiC1btky7YttqtfDOd74Tv/d7vzet15lJ0NyjjYFWBk0qUQM4ZXd3ZvHdHYiTNgKcxmm/x97LONHKTINkgricUhn42m3LHRaFdr6NYvuAUKEdixro1jchoKNKBvE+NaYOTlaMmAL03jt57plECJvheAbkawD23EJgoCkdOzMR1qvZTKx8TUrqZOVrrX3N2pQtqbQtfF5hDhkyDo1kGltHskKSWUIrETh4YT9akCznTChfE13bPn84L264T67c8uctfUkt3j6XNCpy+nV1SMX3GzE9e42nJwRju0xJjcIF6f90yddxu/i2pDVxttm4siIDkfub0xJKPIEAfM1ZIZwHsltGP8AWSuY1pVJtaRr+uuFLL1uoOHigPVmEEuGD2MMaW36Rs3W5fKkbKaynloOsv2EsLaMERLGxdB98P7cQ8Q6hKZZVo6VtLEGZ15UGDZ/MrFDDPk8hyt5Z3A88HcL+XqX0jcfqMxaMNhBjSHFVXt5er1/ldd4TlVrAKgOtVgsvfOELcdJJJ+Gpp57Cb37zmynxkC5cuBAvetGLCkrXwoULsWzZsiAzcRWWL1+Ol7/85QUlcTxYsGAB7rjjjkIs6uDgIF784hdjYGAg2G6MwYYNG7B582a37cEHH8S2bdsqPbZbtmzBvffei3333RdPPvkkduzYUdinv7+/6z3v3LkT9957b+W9GmPw5JNPArAZpTudDv77v/8bP/nJT7B06VKsXr161tGSsyzDjh07ptUw0Wg0sGbNGuy///6FjNd7GkhIiuf8VdeciUQKPLTuWzPeplXXnImhVuJojwMNaxAfaiUYaErMa0l86tW9l+IZC1XnOud7b3OfEynwz//zH6fsmmU47YazvUDL5B2Ky51IfC55kk/+p//HbQsM2CUUREI3pZYjnsNma2xt849f4WL8qsoRcejP3jFTTZtyUBLPwnZy3AgxJfI1OWZGUuWcE2UJiEjhI1YhXct6NW15yiaTxajfuQRSuRxO8jVyeillJraffcifPb9VIGOdiWq3UnJScjBRCGCZfE3yvEu+R5mdI/laGYNE+mzRccgeKbvxs3ZhfyWPP9RTir9PNcrYGVVKaTdMtXwdJKDKY6XHciqNBz0rtmT1oE5iPZF+tPFJ1Xr27PYkEbmFCS5Yvb+RW3Ayf5xSxvHZhxJgQZ9EUwoMNgR2phpPDdtsxJ5W6zsfAKS5VTHpS/L4X0+VIAtSqg2Qx5eSx7UfCg1prUodlSGDtThpYzDYRJAlbWcnpxxr486xrZ0FijZXcN1zCZRwBG3vKIOUuXQlo5Jsa2c2o5rOLUVRrIM9n7FWNBnFU2g/IVTRnePv/B6C/ZiXGYBLR88TG3APdNmEGnfS8dSgpcLM3RRk4vHH23uxFPH/fMCVIY4v4l7oPRWvfvWr8ZKXvAQ//OEPcdFFF2H79u2TPufatWvxmc98Bvvtt1+wXUpZ2FaFE088Edddd92kKNLf/va3cc455yBN02D7oYceimuuuQarV68OtmdZhs9+9rNBfd2dO3d2ff+bN2/G+973Pkgp8dxzz02onRs3bsS73vUubNq0qfR3Y0zhvfzwhz/E3XffjdNPPx1XXXUVhoaGJnTtuYx58+bh0ksvxSmnnFJZKmmuguaihEm9XJBJ4MNaYi/OTIF7PyzLK4kExJlpl6t7r8uF9Sm/XkTTpG1Tcm5ZPG/RkxUanIGiITnONsozmpYxqGaDQktIWglURwX1LcsM5XOxrnwSyVvhb2GpH+pnloY8Ofl6R0fh4a0jecZjKz8v6PcCMGdADjStgQrw7AiStRcPhLVrh7Mi00sbK1uTkgl4RTYVAiqz3tqndqVBzOviwSaaMlIQpcDWkRRbhtPQydRFvlZGYPPODlqJzA1vRfmaGwl52R4OKj9a8BxHRgc6lnvYKRaa3weX22Pw5FBV8bXxvoQyxbLbeI7H0lTL17Jh85LQ2CUDFSm6cWz/eMfxuD22QP5gNXytN/TO+S5QlXXoiveDxCqYzQSQGfNG9nAdT9UpCdA2xhawLlnopZCQrCh0IgA9hvWrTHHsBXzRqZqE3aRkyJLktwNhR6e2lCULGFeberiPrmnHx6FjVHV6jtmyMPW6oM+WhX8qMTAwgIGBASxatGjKsuz29fXhwAMPxKJFiyZ8jv7+fhxwwAGTaker1cKTTz6JTqcTbJ8/f35B2QWs8Pf888/jiSee6PkaSils2bJlUu1M0xRPP/30uK47PDyM4eHhSdUTnuuQUmLRokU48MADd3dTdjvWfvktUBq47w+/OeXn3v+qN6DR37BemC5zNgnffJ35i7vPx5p9+9EQVhjWRqOt0kBQ9LU57frN4/LayuBDx/39lN/TXEO3tVebItVvLqL13lcGYUpx/N+euP5yBLG3eXKzFjNsTVa+JucEwCjyXaj68ViXQuRydB4mwRKLeqWP7S+Rh9nx4/0OHcUdQ0XZQwpPUSYHi8/zMjn5Or7H0pj2SP4vowZzZZcU0CSpzonTC+L3Wp7Hp7htLo6RicxZwuzJrqYaNWrUqFGjRo0aNWrUqLHHoy5yWKNGjRo1atSoUaNGjRo15jRqxbZGjRo1atSoUaNGjRo1asxp1IptjRo1atSoUaNGjRo1atSY06gV2xo1atSoUaNGjRo1atSoMadRK7Y1atSoUaNGjRo1atSoUWNOo1Zsa9SoUaNGjRo1atSoUaPGnEat2NaoUaNGjRo1atSoUaNGjTmNWrGtUaNGjRo1atSoUaNGjRpzGrViW6NGjRo1atSoUaNGjRo15jT+f7zD4qXtPFs8AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "visualize_rst(best_img, best_mask, best_recov*best_mask_cp, best_img * (1-best_mask) + best_recov*best_mask, '')" ] }, { "cell_type": "code", "execution_count": null, "id": "c32a4b1f-9e2d-46cd-b117-9857dc840c7c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.16" } }, "nbformat": 4, "nbformat_minor": 5 }