{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "6603a8fc-d9da-4037-b845-d9c38bae4ce4",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import torch\n",
"import torch.nn as nn\n",
"import torch.nn.functional as F\n",
"import torch.optim as optim\n",
"from torch.utils.data import DataLoader, Dataset, random_split\n",
"from PIL import Image\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import cv2\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c28cc123-71be-47ff-b78f-3a4d5592df39",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Maximum pixel value in the dataset: 107.49169921875\n"
]
}
],
"source": [
"max_pixel_value = 107.49169921875\n",
"\n",
"print(f\"Maximum pixel value in the dataset: {max_pixel_value}\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "dbfe80ce-4394-449c-a9a4-22ed15b2b8f2",
"metadata": {},
"outputs": [],
"source": [
"class NO2Dataset(Dataset):\n",
" \n",
" def __init__(self, image_dir, mask_dir):\n",
" \n",
" self.image_dir = image_dir\n",
" self.mask_dir = mask_dir\n",
" self.image_filenames = [f for f in os.listdir(image_dir) if f.endswith('.npy')] # 仅加载 .npy 文件\n",
" self.mask_filenames = [f for f in os.listdir(mask_dir) if f.endswith('.jpg')] # 仅加载 .jpg 文件\n",
" \n",
" def __len__(self):\n",
" \n",
" return len(self.image_filenames)\n",
" \n",
" def __getitem__(self, idx):\n",
" \n",
" image_path = os.path.join(self.image_dir, self.image_filenames[idx])\n",
" mask_idx = np.random.choice(self.mask_filenames)\n",
" mask_path = os.path.join(self.mask_dir, mask_idx)\n",
"\n",
" # 加载图像数据 (.npy 文件)\n",
" image = np.expand_dims(np.load(image_path).astype(np.float32), axis=2) / max_pixel_value # 形状为 (96, 96, 1)\n",
"\n",
" # 加载掩码数据 (.jpg 文件)\n",
" mask = np.array(Image.open(mask_path).convert('L')).astype(np.float32)\n",
"\n",
" # 将掩码数据中非0值设为1,0值保持不变\n",
" mask = np.where(mask != 0, 1.0, 0.0)\n",
"\n",
" # 保持掩码数据形状为 (96, 96, 1)\n",
" mask = mask[:, :, np.newaxis] # 将形状调整为 (96, 96, 1)\n",
"\n",
" # 应用掩码\n",
" masked_image = image.copy()\n",
" masked_image[:, :, 0] = image[:, :, 0] * mask.squeeze() # 遮盖NO2数据\n",
"\n",
" # cGAN的输入和目标\n",
" X = masked_image[:, :, :1] # 形状为 (96, 96, 8)\n",
" y = image[:, :, 0:1] # 目标输出为NO2数据,形状为 (96, 96, 1)\n",
"\n",
" # 转换形状为 (channels, height, width)\n",
" X = np.transpose(X, (2, 0, 1)) # 转换为 (1, 96, 96)\n",
" y = np.transpose(y, (2, 0, 1)) # 转换为 (1, 96, 96)\n",
" mask = np.transpose(mask, (2, 0, 1)) # 转换为 (1, 96, 96)\n",
"\n",
" return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.float32), torch.tensor(mask, dtype=torch.float32)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "70797703-1619-4be7-b965-5506b3d1e775",
"metadata": {},
"outputs": [],
"source": [
"# 可视化特定特征的函数\n",
"def visualize_feature(input_feature,masked_feature, output_feature, title):\n",
" plt.figure(figsize=(12, 6))\n",
" plt.subplot(1, 3, 1)\n",
" plt.imshow(input_feature[0].cpu().numpy(), cmap='RdYlGn_r')\n",
" plt.title(title + \" Input\")\n",
" plt.subplot(1, 3, 2)\n",
" plt.imshow(masked_feature[0].cpu().numpy(), cmap='RdYlGn_r')\n",
" plt.title(title + \" Masked\")\n",
" plt.subplot(1, 3, 3)\n",
" plt.imshow(output_feature[0].detach().cpu().numpy(), cmap='RdYlGn_r')\n",
" plt.title(title + \" Recovery\")\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "645114e8-65a4-4867-b3fe-23395288e855",
"metadata": {},
"outputs": [],
"source": [
"class Conv(nn.Sequential):\n",
" def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False):\n",
" super(Conv, self).__init__(\n",
" nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,\n",
" dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2af52d0e-b785-4a84-838c-6fcfe2568722",
"metadata": {},
"outputs": [],
"source": [
"class ConvBNReLU(nn.Sequential):\n",
" def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d,\n",
" bias=False):\n",
" super(ConvBNReLU, self).__init__(\n",
" nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,\n",
" dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),\n",
" norm_layer(out_channels),\n",
" nn.ReLU()\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "31ecf247-e98b-4977-a145-782914a042bd",
"metadata": {},
"outputs": [],
"source": [
"class SeparableBNReLU(nn.Sequential):\n",
" def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d):\n",
" super(SeparableBNReLU, self).__init__(\n",
" nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, dilation=dilation,\n",
" padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False),\n",
" # 分离卷积,仅调整空间信息\n",
" norm_layer(in_channels), # 对输入通道进行归一化\n",
" nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), # 这里进行升维操作\n",
" nn.ReLU6()\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7827bee2-74f7-4e47-b8c6-e41d5670e8b9",
"metadata": {},
"outputs": [],
"source": [
"class ResidualBlock(nn.Module):\n",
" def __init__(self, in_channels, out_channels, stride=1, downsample=None):\n",
" super(ResidualBlock, self).__init__()\n",
" self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)\n",
" self.bn1 = nn.BatchNorm2d(out_channels)\n",
" self.relu = nn.ReLU(inplace=True)\n",
" self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)\n",
" self.bn2 = nn.BatchNorm2d(out_channels)\n",
"\n",
" # 如果输入和输出通道不一致,进行降采样操作\n",
" self.downsample = downsample\n",
" if in_channels != out_channels or stride != 1:\n",
" self.downsample = nn.Sequential(\n",
" nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),\n",
" nn.BatchNorm2d(out_channels)\n",
" )\n",
"\n",
" def forward(self, x):\n",
" identity = x\n",
" if self.downsample is not None:\n",
" identity = self.downsample(x)\n",
"\n",
" out = self.conv1(x)\n",
" out = self.bn1(out)\n",
" out = self.relu(out)\n",
"\n",
" out = self.conv2(out)\n",
" out = self.bn2(out)\n",
"\n",
" out += identity\n",
" out = self.relu(out)\n",
" return out\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "7853bf62-02f5-4917-b950-6fdfe467df4a",
"metadata": {},
"outputs": [],
"source": [
"class Mlp(nn.Module):\n",
" def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.):\n",
" super().__init__()\n",
" out_features = out_features or in_features\n",
" hidden_features = hidden_features or in_features\n",
" self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True)\n",
"\n",
" self.act = act_layer()\n",
" self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True)\n",
" self.drop = nn.Dropout(drop, inplace=True)\n",
"\n",
" def forward(self, x):\n",
" x = self.fc1(x)\n",
" x = self.act(x)\n",
" x = self.drop(x)\n",
" x = self.fc2(x)\n",
" x = self.drop(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "e2375881-a11b-47a7-8f56-2eadb25010b0",
"metadata": {},
"outputs": [],
"source": [
"class MultiHeadAttentionBlock(nn.Module):\n",
" def __init__(self, embed_dim, num_heads, dropout=0.1):\n",
" super(MultiHeadAttentionBlock, self).__init__()\n",
" self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)\n",
" self.norm = nn.LayerNorm(embed_dim)\n",
" self.dropout = nn.Dropout(dropout)\n",
"\n",
" def forward(self, x):\n",
" # (B, C, H, W) -> (HW, B, C) for MultiheadAttention compatibility\n",
" B, C, H, W = x.shape\n",
" x = x.view(B, C, H * W).permute(2, 0, 1) # (B, C, H, W) -> (HW, B, C)\n",
"\n",
" # Apply multihead attention\n",
" attn_output, _ = self.attention(x, x, x)\n",
"\n",
" # Apply normalization and dropout\n",
" attn_output = self.norm(attn_output)\n",
" attn_output = self.dropout(attn_output)\n",
"\n",
" # Reshape back to (B, C, H, W)\n",
" attn_output = attn_output.permute(1, 2, 0).view(B, C, H, W)\n",
"\n",
" return attn_output"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "82a15d3d-2f8d-42ec-9146-87c8a4abe384",
"metadata": {},
"outputs": [],
"source": [
"class SpatialAttentionBlock(nn.Module):\n",
" def __init__(self):\n",
" super(SpatialAttentionBlock, self).__init__()\n",
" self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False)\n",
"\n",
" def forward(self, x): #(B, 64, H, W)\n",
" avg_out = torch.mean(x, dim=1, keepdim=True) #(B, 1, H, W)\n",
" max_out, _ = torch.max(x, dim=1, keepdim=True)#(B, 1, H, W)\n",
" out = torch.cat([avg_out, max_out], dim=1)#(B, 2, H, W)\n",
" out = torch.sigmoid(self.conv(out))#(B, 1, H, W)\n",
" return x * out #(B, C, H, W)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "497bb9f1-1ac5-4d7f-a930-0ea222b9d1d9",
"metadata": {},
"outputs": [],
"source": [
"class DecoderAttentionBlock(nn.Module):\n",
" def __init__(self, in_channels):\n",
" super(DecoderAttentionBlock, self).__init__()\n",
" self.conv1 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1)\n",
" self.conv2 = nn.Conv2d(in_channels // 2, in_channels, kernel_size=1)\n",
" self.spatial_attention = SpatialAttentionBlock()\n",
"\n",
" def forward(self, x):\n",
" # 通道注意力\n",
" b, c, h, w = x.size()\n",
" avg_pool = F.adaptive_avg_pool2d(x, 1)\n",
" max_pool = F.adaptive_max_pool2d(x, 1)\n",
"\n",
" avg_out = self.conv1(avg_pool)\n",
" max_out = self.conv1(max_pool)\n",
"\n",
" out = avg_out + max_out\n",
" out = torch.sigmoid(self.conv2(out))\n",
"\n",
" # 添加空间注意力\n",
" out = x * out\n",
" out = self.spatial_attention(out)\n",
" return out"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "15b9d453-d8d9-43b8-aca2-904735fb3a99",
"metadata": {},
"outputs": [],
"source": [
"class SEBlock(nn.Module):\n",
" def __init__(self, in_channels, reduced_dim):\n",
" super(SEBlock, self).__init__()\n",
" self.se = nn.Sequential(\n",
" nn.AdaptiveAvgPool2d(1), # 全局平均池化\n",
" nn.Conv2d(in_channels, reduced_dim, kernel_size=1),\n",
" nn.ReLU(),\n",
" nn.Conv2d(reduced_dim, in_channels, kernel_size=1),\n",
" nn.Sigmoid() # 使用Sigmoid是因为我们要对通道进行权重归一化\n",
" )\n",
"\n",
" def forward(self, x):\n",
" return x * self.se(x)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "6379adb7-8a87-4dd8-a695-4013a7b37830",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"# 定义Masked Autoencoder模型\n",
"class MaskedAutoencoder(nn.Module):\n",
" def __init__(self):\n",
" super(MaskedAutoencoder, self).__init__()\n",
" self.encoder = nn.Sequential(\n",
" Conv(1, 32, kernel_size=3, stride=2),\n",
" \n",
" nn.ReLU(),\n",
" \n",
" SEBlock(32,32),\n",
" \n",
" ConvBNReLU(32, 64, kernel_size=3, stride=2),\n",
" \n",
" ResidualBlock(64,64),\n",
" \n",
" SeparableBNReLU(64, 128, kernel_size=3, stride=2),\n",
" \n",
" MultiHeadAttentionBlock(embed_dim=128, num_heads=4),\n",
" \n",
" SEBlock(128, 128)\n",
" )\n",
" self.mlp = Mlp(in_features=128, hidden_features=256, out_features=128, act_layer=nn.ReLU6, drop=0.1)\n",
" self.decoder = nn.Sequential(\n",
" nn.ConvTranspose2d(128, 32, kernel_size=3, stride=2, padding=1, output_padding=1),\n",
" nn.ReLU(),\n",
" \n",
" DecoderAttentionBlock(32),\n",
" nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1),\n",
" nn.ReLU(),\n",
" \n",
" DecoderAttentionBlock(16),\n",
" nn.ReLU(),\n",
" \n",
" nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1), # 修改为 output_padding=1\n",
" nn.Sigmoid()\n",
" )\n",
"\n",
" def forward(self, x):\n",
" encoded = self.encoder(x)\n",
" decoded = self.decoder(encoded)\n",
" return decoded\n",
"\n",
"# 实例化模型、损失函数和优化器\n",
"model = MaskedAutoencoder()\n",
"criterion = nn.MSELoss()\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "e9c804e0-6f5c-40a7-aba7-a03a496cf427",
"metadata": {},
"outputs": [],
"source": [
"def masked_mse_loss(preds, target, mask):\n",
" loss = (preds - target) ** 2\n",
" loss = loss.mean(dim=-1) # 对每个像素点求平均\n",
" loss = (loss * mask).sum() / mask.sum() # 只计算被mask的像素点的损失\n",
" return loss"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "94457c6b-4c6e-4aff-946d-fe4c670bfe16",
"metadata": {},
"outputs": [],
"source": [
"# 评估函数\n",
"def evaluate(model, device, data_loader, criterion):\n",
" model.eval()\n",
" running_loss = 0.0\n",
" with torch.no_grad():\n",
" for batch_idx, (X, y, mask) in enumerate(data_loader):\n",
" X, y, mask = X.to(device), y.to(device), mask.to(device)\n",
" reconstructed = model(X)\n",
" if batch_idx == 8:\n",
" rand_ind = np.random.randint(0, len(y))\n",
" # visualize_feature(y[rand_ind], X[rand_ind], reconstructed[rand_ind], title='NO_2')\n",
" loss = masked_mse_loss(reconstructed, y, mask)\n",
" running_loss += loss.item()\n",
" return running_loss / (batch_idx + 1)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "296ba6bd-2239-4948-b278-7edcb29bfd14",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"cuda\n"
]
}
],
"source": [
"# 数据准备\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
"print(device)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "775bb9b8-1d6a-40f0-82e5-e1d6bc369e7a",
"metadata": {},
"outputs": [],
"source": [
"model10 = torch.load('./models/MAE/final_10.pt')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "44b36101-69a1-4b12-823b-8653110863c5",
"metadata": {},
"outputs": [],
"source": [
"model20 = torch.load('./models/MAE/final_20.pt')\n",
"model30 = torch.load('./models/MAE/final_30.pt')\n",
"model40 = torch.load('./models/MAE/final_40.pt')"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "a8467686-0655-4056-8e01-56299eb89d7c",
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error, mean_absolute_error"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "9d13fb84-65e2-4e67-91a2-d6a4b36a0842",
"metadata": {},
"outputs": [],
"source": [
"# 实例化数据集和数据加载器\n",
"image_dir = './2022data/selected_data/'"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "5bb0c2d4-e05d-4611-b247-4b8b000e6fc9",
"metadata": {},
"outputs": [],
"source": [
"def cal_ioa(y_true, y_pred):\n",
" # 计算平均值\n",
" mean_observed = np.mean(y_true)\n",
" mean_predicted = np.mean(y_pred)\n",
"\n",
" # 计算IoA\n",
" numerator = np.sum((y_true - y_pred) ** 2)\n",
" denominator = np.sum((np.abs(y_true - mean_observed) + np.abs(y_pred - mean_predicted)) ** 2)\n",
" IoA = 1 - (numerator / denominator)\n",
"\n",
" return IoA"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "cab43bce-4d37-4f13-9153-9b9ced72fdaa",
"metadata": {},
"outputs": [],
"source": [
"def predict_frame(model, mask_dir):\n",
" test_set = NO2Dataset(image_dir, mask_dir)\n",
" test_loader = DataLoader(test_set, batch_size=32, shuffle=False, num_workers=4)\n",
" eva_list_frame = list()\n",
" device = 'cpu'\n",
" model = model.to(device)\n",
" with torch.no_grad():\n",
" for batch_idx, (X, y, mask) in enumerate(test_loader):\n",
" X, y, mask = X.to(device), y.to(device), mask.to(device)\n",
" mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域\n",
" reconstructed = model(X)\n",
" rev_data = y * max_pixel_value\n",
" rev_recon = reconstructed * max_pixel_value\n",
" # todo: 这里需要只评估修补出来的模块\n",
" for i, sample in enumerate(rev_data):\n",
" used_mask = mask_rev[i]\n",
" data_label = sample[0] * used_mask\n",
" recon_no2 = rev_recon[i][0] * used_mask\n",
" data_label = data_label[used_mask==1]\n",
" recon_no2 = recon_no2[used_mask==1]\n",
" mae = mean_absolute_error(data_label, recon_no2)\n",
" rmse = np.sqrt(mean_squared_error(data_label, recon_no2))\n",
" mape = mean_absolute_percentage_error(data_label, recon_no2)\n",
" r2 = r2_score(data_label, recon_no2)\n",
" ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy())\n",
" r = np.corrcoef(data_label, recon_no2)[0, 1]\n",
" eva_list_frame.append([mae, rmse, mape, r2, ioa, r])\n",
" return eva_list_frame"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "7d791903-c6eb-4170-b816-07c127471aa3",
"metadata": {},
"outputs": [],
"source": [
"def predict_batch(model, mask_dir):\n",
" test_set = NO2Dataset(image_dir, mask_dir)\n",
" test_loader = DataLoader(test_set, batch_size=32, shuffle=False, num_workers=4)\n",
" eva_list = list()\n",
" device = 'cpu'\n",
" model = model.to(device)\n",
" with torch.no_grad():\n",
" for batch_idx, (X, y, mask) in enumerate(test_loader):\n",
" X, y, mask = X.to(device), y.to(device), mask.to(device)\n",
" mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域\n",
" reconstructed = model(X)\n",
" rev_data = y * max_pixel_value\n",
" rev_recon = reconstructed * max_pixel_value\n",
" # todo: 这里需要只评估修补出来的模块\n",
" data_label = torch.squeeze(rev_data, dim=1) * mask_rev\n",
" data_label = data_label[mask_rev==1]\n",
" recon_no2 = torch.squeeze(rev_recon, dim=1) * mask_rev\n",
" recon_no2 = recon_no2[mask_rev==1]\n",
" mae = mean_absolute_error(data_label, recon_no2)\n",
" rmse = np.sqrt(mean_squared_error(data_label, recon_no2))\n",
" mape = mean_absolute_percentage_error(data_label, recon_no2)\n",
" r2 = r2_score(data_label, recon_no2)\n",
" ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy())\n",
" r = np.corrcoef(data_label, recon_no2)[0, 1]\n",
" eva_list.append([mae, rmse, mape, r2, ioa, r])\n",
" return eva_list"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "0174210e-a771-47ed-a719-65c18e0185fe",
"metadata": {},
"outputs": [],
"source": [
"eva_10 = predict_batch(model10, './out_mat/96/mask/10/')"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "1e9a5196-b8a6-42d8-b1fc-8f37decead81",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" mae | \n",
" rmse | \n",
" mape | \n",
" r2 | \n",
" ioa | \n",
" r | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 1.091435 | \n",
" 1.800776 | \n",
" 0.144901 | \n",
" 0.921502 | \n",
" 0.978528 | \n",
" 0.961399 | \n",
"
\n",
" \n",
" std | \n",
" 0.121988 | \n",
" 0.277084 | \n",
" 0.013961 | \n",
" 0.021990 | \n",
" 0.006471 | \n",
" 0.011300 | \n",
"
\n",
" \n",
" min | \n",
" 0.780621 | \n",
" 1.203425 | \n",
" 0.112769 | \n",
" 0.814169 | \n",
" 0.938012 | \n",
" 0.912011 | \n",
"
\n",
" \n",
" 25% | \n",
" 1.010365 | \n",
" 1.604889 | \n",
" 0.134638 | \n",
" 0.908699 | \n",
" 0.974835 | \n",
" 0.954552 | \n",
"
\n",
" \n",
" 50% | \n",
" 1.084495 | \n",
" 1.778022 | \n",
" 0.143943 | \n",
" 0.924748 | \n",
" 0.979503 | \n",
" 0.962814 | \n",
"
\n",
" \n",
" 75% | \n",
" 1.167333 | \n",
" 1.943834 | \n",
" 0.153004 | \n",
" 0.936659 | \n",
" 0.983079 | \n",
" 0.969209 | \n",
"
\n",
" \n",
" max | \n",
" 1.663302 | \n",
" 3.638290 | \n",
" 0.195296 | \n",
" 0.966477 | \n",
" 0.991180 | \n",
" 0.984394 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" mae rmse mape r2 ioa r\n",
"count 944.000000 944.000000 944.000000 944.000000 944.000000 944.000000\n",
"mean 1.091435 1.800776 0.144901 0.921502 0.978528 0.961399\n",
"std 0.121988 0.277084 0.013961 0.021990 0.006471 0.011300\n",
"min 0.780621 1.203425 0.112769 0.814169 0.938012 0.912011\n",
"25% 1.010365 1.604889 0.134638 0.908699 0.974835 0.954552\n",
"50% 1.084495 1.778022 0.143943 0.924748 0.979503 0.962814\n",
"75% 1.167333 1.943834 0.153004 0.936659 0.983079 0.969209\n",
"max 1.663302 3.638290 0.195296 0.966477 0.991180 0.984394"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame.from_records(eva_10, columns=['mae', 'rmse', 'mape', 'r2', 'ioa', 'r']).describe()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "a34173c5-b193-4f5f-9a2a-8f577c013156",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 1.355741 | \n",
" 2.298790 | \n",
" 0.187385 | \n",
" 0.874066 | \n",
" 0.964384 | \n",
" 0.936755 | \n",
"
\n",
" \n",
" std | \n",
" 0.175765 | \n",
" 0.420152 | \n",
" 0.021570 | \n",
" 0.036664 | \n",
" 0.011227 | \n",
" 0.019697 | \n",
"
\n",
" \n",
" min | \n",
" 0.937516 | \n",
" 1.491321 | \n",
" 0.135232 | \n",
" 0.670371 | \n",
" 0.899252 | \n",
" 0.821530 | \n",
"
\n",
" \n",
" 25% | \n",
" 1.227770 | \n",
" 2.003057 | \n",
" 0.172465 | \n",
" 0.852918 | \n",
" 0.958502 | \n",
" 0.925009 | \n",
"
\n",
" \n",
" 50% | \n",
" 1.338980 | \n",
" 2.233278 | \n",
" 0.184734 | \n",
" 0.879677 | \n",
" 0.966322 | \n",
" 0.939587 | \n",
"
\n",
" \n",
" 75% | \n",
" 1.461651 | \n",
" 2.517045 | \n",
" 0.200911 | \n",
" 0.900681 | \n",
" 0.972358 | \n",
" 0.950725 | \n",
"
\n",
" \n",
" max | \n",
" 2.233936 | \n",
" 4.265592 | \n",
" 0.289657 | \n",
" 0.949471 | \n",
" 0.986560 | \n",
" 0.976791 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 0 1 2 3 4 5\n",
"count 944.000000 944.000000 944.000000 944.000000 944.000000 944.000000\n",
"mean 1.355741 2.298790 0.187385 0.874066 0.964384 0.936755\n",
"std 0.175765 0.420152 0.021570 0.036664 0.011227 0.019697\n",
"min 0.937516 1.491321 0.135232 0.670371 0.899252 0.821530\n",
"25% 1.227770 2.003057 0.172465 0.852918 0.958502 0.925009\n",
"50% 1.338980 2.233278 0.184734 0.879677 0.966322 0.939587\n",
"75% 1.461651 2.517045 0.200911 0.900681 0.972358 0.950725\n",
"max 2.233936 4.265592 0.289657 0.949471 0.986560 0.976791"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eva_20 = predict_batch(model20, './out_mat/96/mask/20/')\n",
"pd.DataFrame.from_records(eva_20).describe()"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "c8a2ecdc-ef09-4fe2-a95e-9ede1a6a5e32",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" 0 | \n",
" 1 | \n",
" 2 | \n",
" 3 | \n",
" 4 | \n",
" 5 | \n",
"
\n",
" \n",
" \n",
" \n",
" count | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
" 944.000000 | \n",
"
\n",
" \n",
" mean | \n",
" 1.539012 | \n",
" 2.592209 | \n",
" 0.198195 | \n",
" 0.849743 | \n",
" 0.956817 | \n",
" 0.924245 | \n",
"
\n",
" \n",
" std | \n",
" 0.199099 | \n",
" 0.457944 | \n",
" 0.021195 | \n",
" 0.037078 | \n",
" 0.011842 | \n",
" 0.020082 | \n",
"
\n",
" \n",
" min | \n",
" 1.072083 | \n",
" 1.713604 | \n",
" 0.153092 | \n",
" 0.674728 | \n",
" 0.878825 | \n",
" 0.837543 | \n",
"
\n",
" \n",
" 25% | \n",
" 1.404373 | \n",
" 2.280456 | \n",
" 0.183094 | \n",
" 0.829249 | \n",
" 0.950952 | \n",
" 0.912680 | \n",
"
\n",
" \n",
" 50% | \n",
" 1.509811 | \n",
" 2.494275 | \n",
" 0.195810 | \n",
" 0.853937 | \n",
" 0.958379 | \n",
" 0.926343 | \n",
"
\n",
" \n",
" 75% | \n",
" 1.649892 | \n",
" 2.814400 | \n",
" 0.211518 | \n",
" 0.875720 | \n",
" 0.964866 | \n",
" 0.938508 | \n",
"
\n",
" \n",
" max | \n",
" 2.427394 | \n",
" 5.086926 | \n",
" 0.281582 | \n",
" 0.936612 | \n",
" 0.982576 | \n",
" 0.969190 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 0 1 2 3 4 5\n",
"count 944.000000 944.000000 944.000000 944.000000 944.000000 944.000000\n",
"mean 1.539012 2.592209 0.198195 0.849743 0.956817 0.924245\n",
"std 0.199099 0.457944 0.021195 0.037078 0.011842 0.020082\n",
"min 1.072083 1.713604 0.153092 0.674728 0.878825 0.837543\n",
"25% 1.404373 2.280456 0.183094 0.829249 0.950952 0.912680\n",
"50% 1.509811 2.494275 0.195810 0.853937 0.958379 0.926343\n",
"75% 1.649892 2.814400 0.211518 0.875720 0.964866 0.938508\n",
"max 2.427394 5.086926 0.281582 0.936612 0.982576 0.969190"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eva_30 = predict_batch(model30, './out_mat/96/mask/30/')\n",
"pd.DataFrame.from_records(eva_30).describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "478ad241-6774-4fb2-ae72-9abea0ca2a98",
"metadata": {},
"outputs": [],
"source": [
"eva_40 = predict_batch(model40, './out_mat/96/mask/40/')\n",
"pd.DataFrame.from_records(eva_40).describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "946d8ee3-608b-4327-b576-88bf723449d7",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "14be731a-0334-4912-9d7b-5d040bcffa33",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}