53 KiB
53 KiB
In [30]:
import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, Dataset, random_split from PIL import Image import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2
In [4]:
np.random.seed(0) torch.random.manual_seed(0)
Out[4]:
<torch._C.Generator at 0x7f6d6be638f0>
In [5]:
# 定义函数来找到最大值 def find_max_pixel_value(image_dir): max_pixel_value = 0.0 for filename in os.listdir(image_dir): if filename.endswith('.npy'): image_path = os.path.join(image_dir, filename) image = np.load(image_path).astype(np.float32) max_pixel_value = max(max_pixel_value, image[:, :, 0].max()) return max_pixel_value # 计算图像数据中的最大像素值 image_dir = './out_mat/96/train/' max_pixel_value = find_max_pixel_value(image_dir) print(f"Maximum pixel value in the dataset: {max_pixel_value}")
Maximum pixel value in the dataset: 107.49169921875
In [6]:
class NO2Dataset(Dataset): def __init__(self, image_dir, mask_dir): self.image_dir = image_dir self.mask_dir = mask_dir self.image_filenames = [f for f in os.listdir(image_dir) if f.endswith('.npy')] # 仅加载 .npy 文件 self.mask_filenames = [f for f in os.listdir(mask_dir) if f.endswith('.jpg')] # 仅加载 .jpg 文件 def __len__(self): return len(self.image_filenames) def __getitem__(self, idx): image_path = os.path.join(self.image_dir, self.image_filenames[idx]) mask_idx = np.random.choice(self.mask_filenames) mask_path = os.path.join(self.mask_dir, mask_idx) # 加载图像数据 (.npy 文件) image = np.load(image_path).astype(np.float32)[:,:,:1] / max_pixel_value # 形状为 (96, 96, 1) # 加载掩码数据 (.jpg 文件) mask = np.array(Image.open(mask_path).convert('L')).astype(np.float32) # 将掩码数据中非0值设为1,0值保持不变 mask = np.where(mask != 0, 1.0, 0.0) # 保持掩码数据形状为 (96, 96, 1) mask = mask[:, :, np.newaxis] # 将形状调整为 (96, 96, 1) # 应用掩码 masked_image = image.copy() masked_image[:, :, 0] = image[:, :, 0] * mask.squeeze() # 遮盖NO2数据 # cGAN的输入和目标 X = masked_image[:, :, :1] # 形状为 (96, 96, 8) y = image[:, :, 0:1] # 目标输出为NO2数据,形状为 (96, 96, 1) # 转换形状为 (channels, height, width) X = np.transpose(X, (2, 0, 1)) # 转换为 (1, 96, 96) y = np.transpose(y, (2, 0, 1)) # 转换为 (1, 96, 96) mask = np.transpose(mask, (2, 0, 1)) # 转换为 (1, 96, 96) return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.float32), torch.tensor(mask, dtype=torch.float32) # 实例化数据集和数据加载器 image_dir = './out_mat/96/train/' mask_dir = './out_mat/96/mask/20/' print(f"checkpoint before Generator is OK")
checkpoint before Generator is OK
In [7]:
dataset = NO2Dataset(image_dir, mask_dir) dataloader = DataLoader(dataset, batch_size=64, shuffle=True, num_workers=8) val_set = NO2Dataset('./out_mat/96/valid/', mask_dir) val_loader = DataLoader(val_set, batch_size=64, shuffle=False, num_workers=4) test_set = NO2Dataset('./out_mat/96/test/', mask_dir) test_loader = DataLoader(test_set, batch_size=64, shuffle=False, num_workers=4)
In [8]:
# 可视化特定特征的函数 def visualize_feature(input_feature,masked_feature, output_feature, title): plt.figure(figsize=(12, 6)) plt.subplot(1, 3, 1) plt.imshow(input_feature[0].cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Input") plt.subplot(1, 3, 2) plt.imshow(masked_feature[0].cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Masked") plt.subplot(1, 3, 3) plt.imshow(output_feature[0].detach().cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Recovery") plt.show()
In [9]:
# 设置随机种子以确保结果的可重复性 torch.manual_seed(0) np.random.seed(0) # 数据准备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device)
cuda
In [10]:
# 定义Masked Autoencoder模型 class MaskedAutoencoderBase(nn.Module): def __init__(self): super(MaskedAutoencoderBase, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), nn.ReLU(), ) self.decoder = nn.Sequential( nn.ConvTranspose2d(128, 32, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1), nn.Sigmoid() # 使用Sigmoid是因为输入数据是0-1之间的 ) def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded
In [11]:
def masked_mse_loss(preds, target, mask): loss = (preds - target) ** 2 loss = loss.mean(dim=-1) # 对每个像素点求平均 loss = (loss * mask).sum() / mask.sum() # 只计算被mask的像素点的损失 return loss
In [12]:
# 实例化模型、损失函数和优化器 model = MaskedAutoencoderBase() criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
In [18]:
# 训练函数 def train_epoch(model, device, data_loader, criterion, optimizer): model.train() running_loss = 0.0 for batch_idx, (X, y, mask) in enumerate(data_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) optimizer.zero_grad() reconstructed = model(X) loss = masked_mse_loss(reconstructed, y, mask) # loss = criterion(reconstructed, y) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / (batch_idx + 1)
In [19]:
# 评估函数 def evaluate(model, device, data_loader, criterion): model.eval() running_loss = 0.0 with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(data_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) reconstructed = model(X) if batch_idx == 8: rand_ind = np.random.randint(0, len(y)) # visualize_feature(y[rand_ind], X[rand_ind], reconstructed[rand_ind], title='NO_2') loss = masked_mse_loss(reconstructed, y, mask) # loss = criterion(reconstructed, y) running_loss += loss.item() return running_loss / (batch_idx + 1)
In [20]:
model = model.to(device) num_epochs = 100 train_losses = list() val_losses = list() for epoch in range(num_epochs): train_loss = train_epoch(model, device, dataloader, criterion, optimizer) train_losses.append(train_loss) val_loss = evaluate(model, device, val_loader, criterion) val_losses.append(val_loss) print(f'Epoch {epoch+1}, Train Loss: {train_loss}, Val Loss: {val_loss}') # 测试模型 test_loss = evaluate(model, device, test_loader, criterion) print(f'Test Loss: {test_loss}')
Epoch 1, Train Loss: 2.4377448216936233, Val Loss: 0.1723788405087457 Epoch 2, Train Loss: 0.09637997932197374, Val Loss: 0.07621741728551353 Epoch 3, Train Loss: 0.06397618102934657, Val Loss: 0.06195200451496822 Epoch 4, Train Loss: 0.052692288621974906, Val Loss: 0.052603201690449644 Epoch 5, Train Loss: 0.045533701719529036, Val Loss: 0.0462518873721806 Epoch 6, Train Loss: 0.040426999678095564, Val Loss: 0.04118765834996949 Epoch 7, Train Loss: 0.03643315702979787, Val Loss: 0.0370612932619319 Epoch 8, Train Loss: 0.03297993362074691, Val Loss: 0.0338741072189452 Epoch 9, Train Loss: 0.030229569176595177, Val Loss: 0.03180063916231269 Epoch 10, Train Loss: 0.028299911767600827, Val Loss: 0.03058352780097456 Epoch 11, Train Loss: 0.026935207724357337, Val Loss: 0.029766072282817826 Epoch 12, Train Loss: 0.026076676769618782, Val Loss: 0.028107319638800265 Epoch 13, Train Loss: 0.02534967841821139, Val Loss: 0.027272115475428637 Epoch 14, Train Loss: 0.024701394381349166, Val Loss: 0.02684043228292643 Epoch 15, Train Loss: 0.0240272392550011, Val Loss: 0.02594853615138068 Epoch 16, Train Loss: 0.0233813104438083, Val Loss: 0.025640942656726978 Epoch 17, Train Loss: 0.02310016915273438, Val Loss: 0.02571806650775582 Epoch 18, Train Loss: 0.022718923658792054, Val Loss: 0.024644668200122778 Epoch 19, Train Loss: 0.022323213453052576, Val Loss: 0.024273945435659208 Epoch 20, Train Loss: 0.02199719715685223, Val Loss: 0.02410240029332353 Epoch 21, Train Loss: 0.021530815467024535, Val Loss: 0.02380427871066243 Epoch 22, Train Loss: 0.021460241776262743, Val Loss: 0.0232450627346537 Epoch 23, Train Loss: 0.02090326771050977, Val Loss: 0.022885078564286232 Epoch 24, Train Loss: 0.020652044475363774, Val Loss: 0.022562191390724323 Epoch 25, Train Loss: 0.02051923798985387, Val Loss: 0.022203324724044373 Epoch 26, Train Loss: 0.020149177833767743, Val Loss: 0.022744494337421744 Epoch 27, Train Loss: 0.020068248640300268, Val Loss: 0.022425833088693333 Epoch 28, Train Loss: 0.019720358143529397, Val Loss: 0.02253118777341807 Epoch 29, Train Loss: 0.01939903690288084, Val Loss: 0.021765351378873213 Epoch 30, Train Loss: 0.01943497322989922, Val Loss: 0.021345259649540062 Epoch 31, Train Loss: 0.019241397384928458, Val Loss: 0.02124041018646155 Epoch 32, Train Loss: 0.01906546402464144, Val Loss: 0.021633521083797982 Epoch 33, Train Loss: 0.01884070100512302, Val Loss: 0.021043253979131357 Epoch 34, Train Loss: 0.01874133140855785, Val Loss: 0.02059999839472237 Epoch 35, Train Loss: 0.01853996916544851, Val Loss: 0.021178998303279947 Epoch 36, Train Loss: 0.018260161060412106, Val Loss: 0.020367807639178944 Epoch 37, Train Loss: 0.01830708983233956, Val Loss: 0.020017842692670536 Epoch 38, Train Loss: 0.018042967790675362, Val Loss: 0.020187884722071798 Epoch 39, Train Loss: 0.017922898732197056, Val Loss: 0.019615614786744118 Epoch 40, Train Loss: 0.017794321282236486, Val Loss: 0.019430582606191956 Epoch 41, Train Loss: 0.017688655022656517, Val Loss: 0.019477688401603875 Epoch 42, Train Loss: 0.017460078103512383, Val Loss: 0.018902005530448993 Epoch 43, Train Loss: 0.01727662416638441, Val Loss: 0.018832763184362382 Epoch 44, Train Loss: 0.017280888195599666, Val Loss: 0.019056980081124983 Epoch 45, Train Loss: 0.017114856775012312, Val Loss: 0.018604515495696174 Epoch 46, Train Loss: 0.016909640970858234, Val Loss: 0.018437264904157438 Epoch 47, Train Loss: 0.016691252999185946, Val Loss: 0.01889144025965413 Epoch 48, Train Loss: 0.016869753608079047, Val Loss: 0.018732781104965887 Epoch 49, Train Loss: 0.01653263871179243, Val Loss: 0.01850963812043418 Epoch 50, Train Loss: 0.01653244017520875, Val Loss: 0.0178856217344083 Epoch 51, Train Loss: 0.016499577624874823, Val Loss: 0.01781756227919415 Epoch 52, Train Loss: 0.016335643743249504, Val Loss: 0.01821571894323648 Epoch 53, Train Loss: 0.016375035212406415, Val Loss: 0.017511379168327176 Epoch 54, Train Loss: 0.016288986672428948, Val Loss: 0.017456448650849398 Epoch 55, Train Loss: 0.01623404509517137, Val Loss: 0.017827068525018978 Epoch 56, Train Loss: 0.016188283936615196, Val Loss: 0.017475027326883663 Epoch 57, Train Loss: 0.01605349867359588, Val Loss: 0.017256822728955033 Epoch 58, Train Loss: 0.015958637990610022, Val Loss: 0.017457437256712522 Epoch 59, Train Loss: 0.016034694237001774, Val Loss: 0.017437012713235705 Epoch 60, Train Loss: 0.0158486066956483, Val Loss: 0.017560158175096582 Epoch 61, Train Loss: 0.015632042563275286, Val Loss: 0.01692103194211846 Epoch 62, Train Loss: 0.015540152108608677, Val Loss: 0.01698271286632143 Epoch 63, Train Loss: 0.01545496231043025, Val Loss: 0.01699626362368242 Epoch 64, Train Loss: 0.015430795162488398, Val Loss: 0.01687317063559347 Epoch 65, Train Loss: 0.015489797350732191, Val Loss: 0.017046043955123248 Epoch 66, Train Loss: 0.015236956011682179, Val Loss: 0.0172197060214717 Epoch 67, Train Loss: 0.015348140916755895, Val Loss: 0.016508253249548265 Epoch 68, Train Loss: 0.015228347097519055, Val Loss: 0.016413471842212462 Epoch 69, Train Loss: 0.01516882229025997, Val Loss: 0.01686259738600521 Epoch 70, Train Loss: 0.015173258315593574, Val Loss: 0.01757873013726811 Epoch 71, Train Loss: 0.015156847716678986, Val Loss: 0.016662339123883353 Epoch 72, Train Loss: 0.015105586064507088, Val Loss: 0.016890839868183457 Epoch 73, Train Loss: 0.014925161955887051, Val Loss: 0.015931842709655194 Epoch 74, Train Loss: 0.014886363126497947, Val Loss: 0.016006485308840204 Epoch 75, Train Loss: 0.015015289608531735, Val Loss: 0.015968994154080526 Epoch 76, Train Loss: 0.014806462892968403, Val Loss: 0.015919692327838336 Epoch 77, Train Loss: 0.014728168116962653, Val Loss: 0.015852669684855797 Epoch 78, Train Loss: 0.014845167781319914, Val Loss: 0.016079049404543726 Epoch 79, Train Loss: 0.014719554133998435, Val Loss: 0.015957326447563387 Epoch 80, Train Loss: 0.014635249268281404, Val Loss: 0.015849308388780303 Epoch 81, Train Loss: 0.014474964379800849, Val Loss: 0.015526832887597049 Epoch 82, Train Loss: 0.014369143295641007, Val Loss: 0.015485089967277512 Epoch 83, Train Loss: 0.014446225396076743, Val Loss: 0.015848276135859204 Epoch 84, Train Loss: 0.014476079110537419, Val Loss: 0.015343323600158762 Epoch 85, Train Loss: 0.014672522836378174, Val Loss: 0.015515949938501885 Epoch 86, Train Loss: 0.014440825409545568, Val Loss: 0.015224411166203556 Epoch 87, Train Loss: 0.014462759978980111, Val Loss: 0.015663697370397512 Epoch 88, Train Loss: 0.01440465696262971, Val Loss: 0.015856551353944773 Epoch 89, Train Loss: 0.014255739579146559, Val Loss: 0.015246662380757616 Epoch 90, Train Loss: 0.014205876624202756, Val Loss: 0.015011716536732752 Epoch 91, Train Loss: 0.014259663818216924, Val Loss: 0.015085076996639593 Epoch 92, Train Loss: 0.014251617286978156, Val Loss: 0.015133185506756627 Epoch 93, Train Loss: 0.014119144052302723, Val Loss: 0.015415464166496227 Epoch 94, Train Loss: 0.014192042264053554, Val Loss: 0.015254960033986995 Epoch 95, Train Loss: 0.014140318196855094, Val Loss: 0.017451592276234235 Epoch 96, Train Loss: 0.014092271857890502, Val Loss: 0.015359595265072672 Epoch 97, Train Loss: 0.01409529693843574, Val Loss: 0.015055305060388437 Epoch 98, Train Loss: 0.014136464546688578, Val Loss: 0.015083992547953307 Epoch 99, Train Loss: 0.013914715411792103, Val Loss: 0.014718598477653604 Epoch 100, Train Loss: 0.013870610982518305, Val Loss: 0.01483591334588492 Test Loss: 0.010182651478874807
In [24]:
tr_ind = list(range(len(train_losses))) val_ind = list(range(len(val_losses))) plt.plot(train_losses, label='train_loss') plt.plot(val_losses, label='val_loss') plt.legend(loc='best')
Out[24]:
<matplotlib.legend.Legend at 0x7f6b7999d190>
In [25]:
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error, mean_absolute_error
In [26]:
eva_list = list() device = 'cpu' model = model.to(device) with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(test_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域 reconstructed = model(X) # tr_maxs = np.transpose(maxs, (2, 0, 1)) # tr_mins = np.transpose(mins, (2, 0, 1)) rev_data = y * max_pixel_value rev_recon = reconstructed * max_pixel_value # todo: 这里需要只评估修补出来的模块 data_label = torch.squeeze(rev_data, dim=1) * mask_rev data_label = data_label[mask_rev==1] recon_no2 = torch.squeeze(rev_recon, dim=1) * mask_rev recon_no2 = recon_no2[mask_rev==1] mae = mean_absolute_error(data_label, recon_no2) rmse = np.sqrt(mean_squared_error(data_label, recon_no2)) mape = mean_absolute_percentage_error(data_label, recon_no2) r2 = r2_score(data_label, recon_no2) eva_list.append([mae, rmse, mape, r2])
In [28]:
pd.DataFrame(eva_list, columns=['mae', 'rmse', 'mape', 'r2']).describe()
Out[28]:
mae | rmse | mape | r2 | |
---|---|---|---|---|
count | 75.000000 | 75.000000 | 75.000000 | 75.000000 |
mean | 1.669181 | 2.722375 | 0.228690 | 0.825025 |
std | 0.101549 | 0.229373 | 0.027824 | 0.023960 |
min | 1.456919 | 2.206495 | 0.147438 | 0.751642 |
25% | 1.600787 | 2.569844 | 0.210564 | 0.815437 |
50% | 1.663539 | 2.723380 | 0.228493 | 0.826285 |
75% | 1.726697 | 2.848122 | 0.248380 | 0.837574 |
max | 1.998206 | 3.443690 | 0.287797 | 0.881901 |
In [31]:
def cal_ioa(y_true, y_pred): # 计算平均值 mean_observed = np.mean(y_true) mean_predicted = np.mean(y_pred) # 计算IoA numerator = np.sum((y_true - y_pred) ** 2) denominator = np.sum((np.abs(y_true - mean_observed) + np.abs(y_pred - mean_predicted)) ** 2) IoA = 1 - (numerator / denominator) return IoA
In [33]:
eva_list_frame = list() device = 'cpu' model = model.to(device) with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(test_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域 reconstructed = model(X) rev_data = y * max_pixel_value rev_recon = reconstructed * max_pixel_value # todo: 这里需要只评估修补出来的模块 for i, sample in enumerate(rev_data): used_mask = mask_rev[i] data_label = sample[0] * used_mask recon_no2 = rev_recon[i][0] * used_mask data_label = data_label[used_mask==1] recon_no2 = recon_no2[used_mask==1] mae = mean_absolute_error(data_label, recon_no2) rmse = np.sqrt(mean_squared_error(data_label, recon_no2)) mape = mean_absolute_percentage_error(data_label, recon_no2) r2 = r2_score(data_label, recon_no2) ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy()) r = np.corrcoef(data_label, recon_no2)[0, 1] eva_list_frame.append([mae, rmse, mape, r2, ioa, r])
In [34]:
pd.DataFrame(eva_list_frame, columns=['mae', 'rmse', 'mape', 'r2', 'ioa', 'r']).describe()
Out[34]:
mae | rmse | mape | r2 | ioa | r | |
---|---|---|---|---|---|---|
count | 4739.000000 | 4739.000000 | 4739.000000 | 4739.000000 | 4739.000000 | 4739.000000 |
mean | 1.657513 | 2.352886 | 0.232260 | 0.406715 | 0.823672 | 0.747644 |
std | 0.897659 | 1.318793 | 0.234080 | 0.877368 | 0.184708 | 0.191853 |
min | 0.546354 | 0.695038 | 0.066870 | -30.315991 | -1.254103 | -0.392216 |
25% | 1.042898 | 1.472388 | 0.137216 | 0.313886 | 0.782728 | 0.671206 |
50% | 1.465436 | 2.072718 | 0.174430 | 0.610684 | 0.879875 | 0.805015 |
75% | 1.976618 | 2.785021 | 0.234618 | 0.757136 | 0.929170 | 0.879403 |
max | 9.007959 | 12.398485 | 3.290891 | 0.973600 | 0.993247 | 0.987535 |
In [29]:
pd.DataFrame(eva_list, columns=['mae', 'rmse', 'mape', 'r2']).describe().to_csv('./eva_files/baseline_mask_loss.csv', encoding='utf-8-sig')
In [26]:
visualize_feature(data[5], masked_data[5], reconstructed[5], 'NO2')
--------------------------------------------------------------------------- NameError Traceback (most recent call last) Cell In[26], line 1 ----> 1 visualize_feature(data[5], masked_data[5], reconstructed[5], 'NO2') NameError: name 'data' is not defined
In [ ]: