36 KiB
36 KiB
In [1]:
import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, Dataset, random_split from PIL import Image import numpy as np import matplotlib.pyplot as plt import cv2 import pandas as pd
In [2]:
max_pixel_value = 107.49169921875 print(f"Maximum pixel value in the dataset: {max_pixel_value}")
Maximum pixel value in the dataset: 107.49169921875
In [3]:
class NO2Dataset(Dataset): def __init__(self, image_dir, mask_dir): self.image_dir = image_dir self.mask_dir = mask_dir self.image_filenames = [f for f in os.listdir(image_dir) if f.endswith('.npy')] # 仅加载 .npy 文件 self.mask_filenames = [f for f in os.listdir(mask_dir) if f.endswith('.jpg')] # 仅加载 .jpg 文件 def __len__(self): return len(self.image_filenames) def __getitem__(self, idx): image_path = os.path.join(self.image_dir, self.image_filenames[idx]) mask_idx = np.random.choice(self.mask_filenames) mask_path = os.path.join(self.mask_dir, mask_idx) # 加载图像数据 (.npy 文件) image = np.expand_dims(np.load(image_path).astype(np.float32), axis=2) / max_pixel_value # 形状为 (96, 96, 1) # 加载掩码数据 (.jpg 文件) mask = np.array(Image.open(mask_path).convert('L')).astype(np.float32) # 将掩码数据中非0值设为1,0值保持不变 mask = np.where(mask != 0, 1.0, 0.0) # 保持掩码数据形状为 (96, 96, 1) mask = mask[:, :, np.newaxis] # 将形状调整为 (96, 96, 1) # 应用掩码 masked_image = image.copy() masked_image[:, :, 0] = image[:, :, 0] * mask.squeeze() # 遮盖NO2数据 # cGAN的输入和目标 X = masked_image[:, :, :1] # 形状为 (96, 96, 8) y = image[:, :, 0:1] # 目标输出为NO2数据,形状为 (96, 96, 1) # 转换形状为 (channels, height, width) X = np.transpose(X, (2, 0, 1)) # 转换为 (1, 96, 96) y = np.transpose(y, (2, 0, 1)) # 转换为 (1, 96, 96) mask = np.transpose(mask, (2, 0, 1)) # 转换为 (1, 96, 96) return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.float32), torch.tensor(mask, dtype=torch.float32)
In [4]:
# 可视化特定特征的函数 def visualize_feature(input_feature,masked_feature, output_feature, title): plt.figure(figsize=(12, 6)) plt.subplot(1, 3, 1) plt.imshow(input_feature[0].cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Input") plt.subplot(1, 3, 2) plt.imshow(masked_feature[0].cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Masked") plt.subplot(1, 3, 3) plt.imshow(output_feature[0].detach().cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Recovery") plt.show()
In [5]:
class Conv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False): super(Conv, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2) )
In [6]:
class ConvBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False): super(ConvBNReLU, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2), norm_layer(out_channels), nn.ReLU() )
In [7]:
class SeparableBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d): super(SeparableBNReLU, self).__init__( nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), # 分离卷积,仅调整空间信息 norm_layer(in_channels), # 对输入通道进行归一化 nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), # 这里进行升维操作 nn.ReLU6() )
In [8]:
class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) # 如果输入和输出通道不一致,进行降采样操作 self.downsample = downsample if in_channels != out_channels or stride != 1: self.downsample = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += identity out = self.relu(out) return out
In [9]:
class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True) self.drop = nn.Dropout(drop, inplace=True) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x
In [10]:
class MultiHeadAttentionBlock(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.1): super(MultiHeadAttentionBlock, self).__init__() self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout) self.norm = nn.LayerNorm(embed_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): # (B, C, H, W) -> (HW, B, C) for MultiheadAttention compatibility B, C, H, W = x.shape x = x.view(B, C, H * W).permute(2, 0, 1) # (B, C, H, W) -> (HW, B, C) # Apply multihead attention attn_output, _ = self.attention(x, x, x) # Apply normalization and dropout attn_output = self.norm(attn_output) attn_output = self.dropout(attn_output) # Reshape back to (B, C, H, W) attn_output = attn_output.permute(1, 2, 0).view(B, C, H, W) return attn_output
In [11]:
class SpatialAttentionBlock(nn.Module): def __init__(self): super(SpatialAttentionBlock, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False) def forward(self, x): #(B, 64, H, W) avg_out = torch.mean(x, dim=1, keepdim=True) #(B, 1, H, W) max_out, _ = torch.max(x, dim=1, keepdim=True)#(B, 1, H, W) out = torch.cat([avg_out, max_out], dim=1)#(B, 2, H, W) out = torch.sigmoid(self.conv(out))#(B, 1, H, W) return x * out #(B, C, H, W)
In [12]:
class DecoderAttentionBlock(nn.Module): def __init__(self, in_channels): super(DecoderAttentionBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1) self.conv2 = nn.Conv2d(in_channels // 2, in_channels, kernel_size=1) self.spatial_attention = SpatialAttentionBlock() def forward(self, x): # 通道注意力 b, c, h, w = x.size() avg_pool = F.adaptive_avg_pool2d(x, 1) max_pool = F.adaptive_max_pool2d(x, 1) avg_out = self.conv1(avg_pool) max_out = self.conv1(max_pool) out = avg_out + max_out out = torch.sigmoid(self.conv2(out)) # 添加空间注意力 out = x * out out = self.spatial_attention(out) return out
In [13]:
class SEBlock(nn.Module): def __init__(self, in_channels, reduced_dim): super(SEBlock, self).__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), # 全局平均池化 nn.Conv2d(in_channels, reduced_dim, kernel_size=1), nn.ReLU(), nn.Conv2d(reduced_dim, in_channels, kernel_size=1), nn.Sigmoid() # 使用Sigmoid是因为我们要对通道进行权重归一化 ) def forward(self, x): return x * self.se(x)
In [14]:
# 定义Masked Autoencoder模型 class MaskedAutoencoder(nn.Module): def __init__(self): super(MaskedAutoencoder, self).__init__() self.encoder = nn.Sequential( Conv(1, 32, kernel_size=3, stride=2), nn.ReLU(), SEBlock(32,32), ConvBNReLU(32, 64, kernel_size=3, stride=2), ResidualBlock(64,64), SeparableBNReLU(64, 128, kernel_size=3, stride=2), MultiHeadAttentionBlock(embed_dim=128, num_heads=4), SEBlock(128, 128) ) self.mlp = Mlp(in_features=128, hidden_features=256, out_features=128, act_layer=nn.ReLU6, drop=0.1) self.decoder = nn.Sequential( nn.ConvTranspose2d(128, 32, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), DecoderAttentionBlock(32), nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), DecoderAttentionBlock(16), nn.ReLU(), nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1), # 修改为 output_padding=1 nn.Sigmoid() ) def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded # 实例化模型、损失函数和优化器 model = MaskedAutoencoder() criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
In [15]:
def masked_mse_loss(preds, target, mask): loss = (preds - target) ** 2 loss = loss.mean(dim=-1) # 对每个像素点求平均 loss = (loss * mask).sum() / mask.sum() # 只计算被mask的像素点的损失 return loss
In [16]:
# 评估函数 def evaluate(model, device, data_loader, criterion): model.eval() running_loss = 0.0 with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(data_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) reconstructed = model(X) if batch_idx == 8: rand_ind = np.random.randint(0, len(y)) # visualize_feature(y[rand_ind], X[rand_ind], reconstructed[rand_ind], title='NO_2') loss = masked_mse_loss(reconstructed, y, mask) running_loss += loss.item() return running_loss / (batch_idx + 1)
In [17]:
# 数据准备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device)
cuda
In [18]:
model10 = torch.load('./models/MAE/final_10.pt')
In [19]:
model20 = torch.load('./models/MAE/final_20.pt') model30 = torch.load('./models/MAE/final_30.pt') model40 = torch.load('./models/MAE/final_40.pt')
In [20]:
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error, mean_absolute_error
In [21]:
# 实例化数据集和数据加载器 image_dir = './2022data/selected_data/'
In [22]:
def cal_ioa(y_true, y_pred): # 计算平均值 mean_observed = np.mean(y_true) mean_predicted = np.mean(y_pred) # 计算IoA numerator = np.sum((y_true - y_pred) ** 2) denominator = np.sum((np.abs(y_true - mean_observed) + np.abs(y_pred - mean_predicted)) ** 2) IoA = 1 - (numerator / denominator) return IoA
In [26]:
def predict_frame(model, mask_dir): test_set = NO2Dataset(image_dir, mask_dir) test_loader = DataLoader(test_set, batch_size=32, shuffle=False, num_workers=4) eva_list_frame = list() device = 'cpu' model = model.to(device) with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(test_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域 reconstructed = model(X) rev_data = y * max_pixel_value rev_recon = reconstructed * max_pixel_value # todo: 这里需要只评估修补出来的模块 for i, sample in enumerate(rev_data): used_mask = mask_rev[i] data_label = sample[0] * used_mask recon_no2 = rev_recon[i][0] * used_mask data_label = data_label[used_mask==1] recon_no2 = recon_no2[used_mask==1] mae = mean_absolute_error(data_label, recon_no2) rmse = np.sqrt(mean_squared_error(data_label, recon_no2)) mape = mean_absolute_percentage_error(data_label, recon_no2) r2 = r2_score(data_label, recon_no2) ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy()) r = np.corrcoef(data_label, recon_no2)[0, 1] eva_list_frame.append([mae, rmse, mape, r2, ioa, r]) return eva_list_frame
In [29]:
def predict_batch(model, mask_dir): test_set = NO2Dataset(image_dir, mask_dir) test_loader = DataLoader(test_set, batch_size=32, shuffle=False, num_workers=4) eva_list = list() device = 'cpu' model = model.to(device) with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(test_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域 reconstructed = model(X) rev_data = y * max_pixel_value rev_recon = reconstructed * max_pixel_value # todo: 这里需要只评估修补出来的模块 data_label = torch.squeeze(rev_data, dim=1) * mask_rev data_label = data_label[mask_rev==1] recon_no2 = torch.squeeze(rev_recon, dim=1) * mask_rev recon_no2 = recon_no2[mask_rev==1] mae = mean_absolute_error(data_label, recon_no2) rmse = np.sqrt(mean_squared_error(data_label, recon_no2)) mape = mean_absolute_percentage_error(data_label, recon_no2) r2 = r2_score(data_label, recon_no2) ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy()) r = np.corrcoef(data_label, recon_no2)[0, 1] eva_list.append([mae, rmse, mape, r2, ioa, r]) return eva_list
In [30]:
eva_10 = predict_batch(model10, './out_mat/96/mask/10/')
In [31]:
pd.DataFrame.from_records(eva_10, columns=['mae', 'rmse', 'mape', 'r2', 'ioa', 'r']).describe()
Out[31]:
mae | rmse | mape | r2 | ioa | r | |
---|---|---|---|---|---|---|
count | 944.000000 | 944.000000 | 944.000000 | 944.000000 | 944.000000 | 944.000000 |
mean | 1.091435 | 1.800776 | 0.144901 | 0.921502 | 0.978528 | 0.961399 |
std | 0.121988 | 0.277084 | 0.013961 | 0.021990 | 0.006471 | 0.011300 |
min | 0.780621 | 1.203425 | 0.112769 | 0.814169 | 0.938012 | 0.912011 |
25% | 1.010365 | 1.604889 | 0.134638 | 0.908699 | 0.974835 | 0.954552 |
50% | 1.084495 | 1.778022 | 0.143943 | 0.924748 | 0.979503 | 0.962814 |
75% | 1.167333 | 1.943834 | 0.153004 | 0.936659 | 0.983079 | 0.969209 |
max | 1.663302 | 3.638290 | 0.195296 | 0.966477 | 0.991180 | 0.984394 |
In [32]:
eva_20 = predict_batch(model20, './out_mat/96/mask/20/') pd.DataFrame.from_records(eva_20).describe()
Out[32]:
0 | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
count | 944.000000 | 944.000000 | 944.000000 | 944.000000 | 944.000000 | 944.000000 |
mean | 1.355741 | 2.298790 | 0.187385 | 0.874066 | 0.964384 | 0.936755 |
std | 0.175765 | 0.420152 | 0.021570 | 0.036664 | 0.011227 | 0.019697 |
min | 0.937516 | 1.491321 | 0.135232 | 0.670371 | 0.899252 | 0.821530 |
25% | 1.227770 | 2.003057 | 0.172465 | 0.852918 | 0.958502 | 0.925009 |
50% | 1.338980 | 2.233278 | 0.184734 | 0.879677 | 0.966322 | 0.939587 |
75% | 1.461651 | 2.517045 | 0.200911 | 0.900681 | 0.972358 | 0.950725 |
max | 2.233936 | 4.265592 | 0.289657 | 0.949471 | 0.986560 | 0.976791 |
In [33]:
eva_30 = predict_batch(model30, './out_mat/96/mask/30/') pd.DataFrame.from_records(eva_30).describe()
Out[33]:
0 | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
count | 944.000000 | 944.000000 | 944.000000 | 944.000000 | 944.000000 | 944.000000 |
mean | 1.539012 | 2.592209 | 0.198195 | 0.849743 | 0.956817 | 0.924245 |
std | 0.199099 | 0.457944 | 0.021195 | 0.037078 | 0.011842 | 0.020082 |
min | 1.072083 | 1.713604 | 0.153092 | 0.674728 | 0.878825 | 0.837543 |
25% | 1.404373 | 2.280456 | 0.183094 | 0.829249 | 0.950952 | 0.912680 |
50% | 1.509811 | 2.494275 | 0.195810 | 0.853937 | 0.958379 | 0.926343 |
75% | 1.649892 | 2.814400 | 0.211518 | 0.875720 | 0.964866 | 0.938508 |
max | 2.427394 | 5.086926 | 0.281582 | 0.936612 | 0.982576 | 0.969190 |
In [ ]:
eva_40 = predict_batch(model40, './out_mat/96/mask/40/') pd.DataFrame.from_records(eva_40).describe()
In [ ]:
In [ ]: