MAE_ATMO/torch_MAE_1d_ViT.ipynb

30 KiB
Raw Blame History

In [1]:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset, random_split
import numpy as np
import pandas as pd
import os
from PIL import Image

MAX_VALUE = 107.49169921875
In [2]:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device
Out[2]:
device(type='cuda')
In [3]:
class GrayScaleDataset(Dataset):
    def __init__(self, data_dir):
        self.data_dir = data_dir
        self.file_list = [x for x in os.listdir(data_dir) if x.endswith('npy')]

    def __len__(self):
        return len(self.file_list)

    def __getitem__(self, idx):
        file_path = os.path.join(self.data_dir, self.file_list[idx])
        data = np.load(file_path)[:,:,0] / MAX_VALUE
        return torch.tensor(data, dtype=torch.float32).unsqueeze(0)
 
In [4]:
class NO2Dataset(Dataset):
    
    def __init__(self, image_dir, mask_dir):
        
        self.image_dir = image_dir
        self.mask_dir = mask_dir
        self.image_filenames = [f for f in os.listdir(image_dir) if f.endswith('.npy')]  # 仅加载 .npy 文件
        self.mask_filenames = [f for f in os.listdir(mask_dir) if f.endswith('.jpg')]  # 仅加载 .jpg 文件
        
    def __len__(self):
        
        return len(self.image_filenames)
    
    def __getitem__(self, idx):
        
        image_path = os.path.join(self.image_dir, self.image_filenames[idx])
        mask_idx = idx % len(self.mask_filenames)
        mask_path = os.path.join(self.mask_dir, self.mask_filenames[mask_idx])

        # 加载图像数据 (.npy 文件)
        image = np.load(image_path).astype(np.float32)[:,:,:1] / MAX_VALUE  # 形状为 (96, 96, 1)

        # 加载掩码数据 (.jpg 文件)
        mask = np.array(Image.open(mask_path).convert('L')).astype(np.float32)

        # 将掩码数据中非0值设为10值保持不变
        mask = np.where(mask != 0, 1.0, 0.0)

        # 保持掩码数据形状为 (96, 96, 1)
        mask = mask[:, :, np.newaxis]  # 将形状调整为 (96, 96, 1)

        # 应用掩码
        masked_image = image.copy()
        masked_image[:, :, 0] = image[:, :, 0] * mask.squeeze()  # 遮盖NO2数据

        # cGAN的输入和目标
        X = masked_image[:, :, :1]  # 形状为 (96, 96, 8)
        y = image[:, :, 0:1]  # 目标输出为NO2数据形状为 (96, 96, 1)

        # 转换形状为 (channels, height, width)
        X = np.transpose(X, (2, 0, 1))  # 转换为 (1, 96, 96)
        y = np.transpose(y, (2, 0, 1))  # 转换为 (1, 96, 96)
        mask = np.transpose(mask, (2, 0, 1))  # 转换为 (1, 96, 96)

        return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.float32), torch.tensor(mask, dtype=torch.float32)
In [5]:
class PatchMasking:
    def __init__(self, patch_size, mask_ratio):
        self.patch_size = patch_size
        self.mask_ratio = mask_ratio

    def __call__(self, x):
        batch_size, C, H, W = x.shape
        num_patches = (H // self.patch_size) * (W // self.patch_size)
        num_masked = int(num_patches * self.mask_ratio)
        
        # 为每个样本生成独立的mask
        masks = []
        for _ in range(batch_size):
            mask = torch.zeros(num_patches, dtype=torch.bool, device=x.device)
            mask[:num_masked] = 1
            mask = mask[torch.randperm(num_patches)]
            mask = mask.view(H // self.patch_size, W // self.patch_size)
            mask = mask.repeat_interleave(self.patch_size, dim=0).repeat_interleave(self.patch_size, dim=1)
            masks.append(mask)
        
        # 将所有mask堆叠成一个批量张量
        masks = torch.stack(masks, dim=0)
        masks = torch.unsqueeze(masks, dim=1)
        
        # 应用mask到输入x上
        masked_x = x * (1 - masks.float())
        return masked_x, masks
In [12]:
class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True)

        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True)
        self.drop = nn.Dropout(drop, inplace=True)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
In [6]:
class ViTEncoder(nn.Module):
    def __init__(self, img_size=96, patch_size=8, dim=128, depth=4, heads=4, mlp_dim=256):
        super(ViTEncoder, self).__init__()
        self.patch_size = patch_size
        self.dim = dim
        self.patch_embedding = nn.Conv2d(1, dim, kernel_size=patch_size, stride=patch_size)
        
        # 定义 Transformer 编码器层
        encoder_layer = nn.TransformerEncoderLayer(d_model=dim, nhead=heads, dim_feedforward=mlp_dim)
        self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=depth)

    def forward(self, x):
        x = self.patch_embedding(x)
        x = x.flatten(2).transpose(1, 2)  # 形状变为 (batch_size, num_patches, dim)
        x = self.transformer_encoder(x)
        return x

class ConvDecoder(nn.Module):
    def __init__(self, dim=128, patch_size=8, img_size=96):
        super(ConvDecoder, self).__init__()
        self.dim = dim
        self.patch_size = patch_size
        self.img_size = img_size
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(dim, 128, kernel_size=patch_size, stride=patch_size),
            nn.ReLU(),
            nn.ConvTranspose2d(128, 1, kernel_size=3, stride=1, padding=1)
        )

    def forward(self, x):
        # x = x.transpose(1, 2).view(-1, self.dim, self.img_size // self.patch_size, self.img_size // self.patch_size)
        x = self.decoder(x)
        return x

class MAEModel(nn.Module):
    def __init__(self, encoder, decoder):
        super(MAEModel, self).__init__()
        self.encoder = encoder
        self.decoder = decoder

    def forward(self, x):
        encoded = self.encoder(x)
        decoded = self.decoder(encoded)
        return decoded
In [7]:
def masked_mse_loss(preds, target, mask):
    loss = (preds - target) ** 2
    loss = loss.mean(dim=-1)  # 对每个像素点求平均
    loss = (loss * mask).sum() / mask.sum()  # 只计算被mask的像素点的损失
    return loss
In [8]:
def train_model(model, train_loader, val_loader, epochs, criterion, optimizer, device):
    model.to(device)
    for epoch in range(epochs):
        model.train()
        train_loss = 0
        for data in train_loader:
            data = data.to(device)
            optimizer.zero_grad()
            masked_data, mask = PatchMasking(patch_size=16, mask_ratio=0.2)(data)
            output = model(masked_data)
            loss = masked_mse_loss(output, data, mask)
            loss.backward()
            optimizer.step()
            train_loss += loss.item()
        train_loss /= len(train_loader)

        model.eval()
        val_loss = 0
        with torch.no_grad():
            for data in val_loader:
                data = data.to(device)
                masked_data, mask = PatchMasking(patch_size=16, mask_ratio=0.2)(data)
                output = model(masked_data)
                loss = masked_mse_loss(output, data, mask)
                val_loss += loss.item()
        val_loss /= len(val_loader)

        print(f'Epoch {epoch+1}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}')
In [9]:
train_dir = './out_mat/96/train/'
train_dataset = GrayScaleDataset(train_dir)

val_dir = './out_mat/96/valid/'
val_dataset = GrayScaleDataset(val_dir)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
In [13]:
encoder = ViTEncoder()
decoder = ConvDecoder()
model = MAEModel(encoder, decoder)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
In [19]:
a.transpose(1, 2).reshape(-1, 128, 6, 6).shape
Out[19]:
torch.Size([128, 128, 6, 6])
In [15]:
for i in train_loader:
    a = encoder(i)
    b = model.mlp(a)
    c = decoder(b)
    break
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
Cell In[15], line 3
      1 for i in train_loader:
      2     a = encoder(i)
----> 3     b = model.mlp(a)
      4     c = decoder(b)
      5     break

File ~/miniconda3/envs/python38/lib/python3.8/site-packages/torch/nn/modules/module.py:1511, in Module._wrapped_call_impl(self, *args, **kwargs)
   1509     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1510 else:
-> 1511     return self._call_impl(*args, **kwargs)

File ~/miniconda3/envs/python38/lib/python3.8/site-packages/torch/nn/modules/module.py:1520, in Module._call_impl(self, *args, **kwargs)
   1515 # If we don't have any hooks, we want to skip the rest of the logic in
   1516 # this function, and just call forward.
   1517 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1518         or _global_backward_pre_hooks or _global_backward_hooks
   1519         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1520     return forward_call(*args, **kwargs)
   1522 try:
   1523     result = None

Cell In[12], line 13, in Mlp.forward(self, x)
     12 def forward(self, x):
---> 13     x = self.fc1(x)
     14     x = self.act(x)
     15     x = self.drop(x)

File ~/miniconda3/envs/python38/lib/python3.8/site-packages/torch/nn/modules/module.py:1511, in Module._wrapped_call_impl(self, *args, **kwargs)
   1509     return self._compiled_call_impl(*args, **kwargs)  # type: ignore[misc]
   1510 else:
-> 1511     return self._call_impl(*args, **kwargs)

File ~/miniconda3/envs/python38/lib/python3.8/site-packages/torch/nn/modules/module.py:1520, in Module._call_impl(self, *args, **kwargs)
   1515 # If we don't have any hooks, we want to skip the rest of the logic in
   1516 # this function, and just call forward.
   1517 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
   1518         or _global_backward_pre_hooks or _global_backward_hooks
   1519         or _global_forward_hooks or _global_forward_pre_hooks):
-> 1520     return forward_call(*args, **kwargs)
   1522 try:
   1523     result = None

File ~/miniconda3/envs/python38/lib/python3.8/site-packages/torch/nn/modules/conv.py:460, in Conv2d.forward(self, input)
    459 def forward(self, input: Tensor) -> Tensor:
--> 460     return self._conv_forward(input, self.weight, self.bias)

File ~/miniconda3/envs/python38/lib/python3.8/site-packages/torch/nn/modules/conv.py:456, in Conv2d._conv_forward(self, input, weight, bias)
    452 if self.padding_mode != 'zeros':
    453     return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
    454                     weight, bias, self.stride,
    455                     _pair(0), self.dilation, self.groups)
--> 456 return F.conv2d(input, weight, bias, self.stride,
    457                 self.padding, self.dilation, self.groups)

RuntimeError: Given groups=1, weight of size [256, 128, 1, 1], expected input[1, 32, 144, 128] to have 128 channels, but got 32 channels instead
In [ ]:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_model(model, train_loader, val_loader, epochs=100, criterion=criterion, optimizer=optimizer, device=device)
In [19]:
test_set = NO2Dataset('./out_mat/96/test/', './out_mat/96/mask/20/')
test_loader = DataLoader(test_set, batch_size=32, shuffle=False, num_workers=4)
In [20]:
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error, mean_absolute_error
In [21]:
def cal_ioa(y_true, y_pred):
    # 计算平均值
    mean_observed = np.mean(y_true)
    mean_predicted = np.mean(y_pred)

    # 计算IoA
    numerator = np.sum((y_true - y_pred) ** 2)
    denominator = 2 * np.sum((np.abs(y_true - mean_observed) + np.abs(y_pred - mean_predicted)) ** 2)
    IoA = 1 - (numerator / denominator)

    return IoA
In [22]:
eva_list = list()
device = 'cpu'
model = model.to(device)
with torch.no_grad():
    for batch_idx, (X, y, mask) in enumerate(test_loader):
        X, y, mask = X.to(device), y.to(device), mask.to(device)
        mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域
        reconstructed = model(X)
        rev_data = y * MAX_VALUE
        rev_recon = reconstructed * MAX_VALUE
        # todo: 这里需要只评估修补出来的模块
        data_label = torch.squeeze(rev_data, dim=1) * mask_rev
        data_label = data_label[mask_rev==1]
        recon_no2 = torch.squeeze(rev_recon, dim=1) * mask_rev
        recon_no2 = recon_no2[mask_rev==1]
        mae = mean_absolute_error(data_label, recon_no2)
        rmse = np.sqrt(mean_squared_error(data_label, recon_no2))
        mape = mean_absolute_percentage_error(data_label, recon_no2)
        r2 = r2_score(data_label, recon_no2)
        ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy())
        eva_list.append([mae, rmse, mape, r2, ioa])
In [23]:
pd.DataFrame(eva_list, columns=['mae', 'rmse', 'mape', 'r2', 'ioa']).describe()
Out[23]:
mae rmse mape r2 ioa
count 149.000000 149.000000 149.000000 149.000000 149.000000
mean 7.068207 9.016465 0.814727 -0.952793 0.564749
std 0.659118 0.774556 0.054147 0.162851 0.033048
min 5.609327 7.113544 0.599120 -1.402735 0.461420
25% 6.613351 8.499699 0.782008 -1.049951 0.544980
50% 7.086443 9.045812 0.811261 -0.938765 0.567080
75% 7.495309 9.530408 0.848900 -0.849266 0.586134
max 8.663801 10.995004 0.984343 -0.591799 0.630479
In [ ]: