16 KiB
16 KiB
In [3]:
import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset, random_split import os import numpy as np import matplotlib.pyplot as plt import cv2
In [1]:
def load_data(pix, use_type='train'): datasets = list() file_list = [x for x in os.listdir(f"./out_mat/{pix}/{use_type}/") if x.endswith('.npy')] for file in file_list: file_img = np.load(f"./out_mat/{pix}/{use_type}/{file}")[:,:,:7] datasets.append(file_img) return np.asarray(datasets)
In [4]:
train_set = load_data(96, 'train') val_set = load_data(96, 'valid') test_set = load_data(96, 'test')
In [5]:
def load_mask(mask_rate): mask_files = os.listdir(f'./out_mat/96/mask/{mask_rate}') masks = list() for file in mask_files: d = cv2.imread(f'./out_mat/96/mask/{mask_rate}/{file}', cv2.IMREAD_GRAYSCALE) d = (d > 0) * 1 masks.append(d) return np.asarray(masks)
In [6]:
masks = load_mask(20)
In [7]:
maxs = train_set.max(axis=0) mins = train_set.min(axis=0)
In [8]:
len(train_set)
Out[8]:
26749
In [9]:
norm_train = (train_set - mins) / (maxs-mins)
In [10]:
del train_set
In [11]:
norm_valid = (val_set - mins) / (maxs-mins)
In [12]:
del val_set
In [13]:
norm_test = (test_set - mins) / (maxs-mins)
In [14]:
del test_set
In [15]:
norm_train.shape
Out[15]:
(26749, 96, 96)
In [ ]:
trans_train = np.transpose(norm_train, (0, 3, 1, 2)) trans_val = np.transpose(norm_valid, (0, 3, 1, 2)) trans_test = np.transpose(norm_test, (0, 3, 1, 2))
In [16]:
# 可视化特定特征的函数 def visualize_feature(input_feature,masked_feature, output_feature, title): plt.figure(figsize=(12, 6)) plt.subplot(1, 3, 1) plt.imshow(input_feature[0].cpu().numpy()) plt.title(title + " Input") plt.subplot(1, 3, 2) plt.imshow(masked_feature[0].cpu().numpy()) plt.title(title + " Masked") plt.subplot(1, 3, 3) plt.imshow(output_feature[0].detach().cpu().numpy()) plt.title(title + " Recovery") plt.show()
In [ ]:
# 设置随机种子以确保结果的可重复性 torch.manual_seed(0) np.random.seed(0) # 数据准备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) # 将numpy数组转换为PyTorch张量 tensor_train = torch.tensor(trans_train.astype(np.float32), device=device) tensor_valid = torch.tensor(trans_val.astype(np.float32), device=device) tensor_test = torch.tensor(trans_test.astype(np.float32), device=device)
In [ ]:
# 创建一个数据集和数据加载器 train_set = TensorDataset(tensor_train, tensor_train) # 输出和标签相同,因为我们是自编码器 val_set = TensorDataset(tensor_valid, tensor_valid) test_set = TensorDataset(tensor_test, tensor_test) batch_size = 64 train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True) val_loader = DataLoader(val_set, batch_size=batch_size, shuffle=False) test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False)
In [ ]:
def mask_data(data, device, masks): mask_inds = np.random.choice(masks.shape[0], data.shape[0]) mask = torch.from_numpy(masks[mask_inds]).to(device) tmp_first_channel = data[:, 0, :, :] * mask masked_data = torch.clone(data) masked_data[:, 0, :, :] = tmp_first_channel return masked_data
In [ ]:
class SEBlock(nn.Module): def __init__(self, in_channels, reduced_dim): super(SEBlock, self).__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), # 全局平均池化 nn.Conv2d(in_channels, reduced_dim, kernel_size=1), nn.ReLU(), nn.Conv2d(reduced_dim, in_channels, kernel_size=1), nn.Sigmoid() # 使用Sigmoid是因为我们要对通道进行权重归一化 ) def forward(self, x): return x * self.se(x)
In [ ]:
# 定义Masked Autoencoder模型 class MaskedAutoencoder(nn.Module): def __init__(self): super(MaskedAutoencoder, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(7, 32, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), nn.ReLU(), SEBlock(128, 128) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(128, 32, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), nn.ConvTranspose2d(16, 7, kernel_size=3, stride=2, padding=1, output_padding=1), nn.Sigmoid() # 使用Sigmoid是因为输入数据是0-1之间的 ) def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded # 实例化模型、损失函数和优化器 model = MaskedAutoencoder() criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
In [ ]:
# 训练函数 def train_epoch(model, device, data_loader, criterion, optimizer): model.train() running_loss = 0.0 for batch_idx, (data, _) in enumerate(data_loader): masked_data = mask_data(data, device, masks) optimizer.zero_grad() reconstructed = model(masked_data) loss = criterion(reconstructed, data) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / (batch_idx + 1)
In [ ]:
# 评估函数 def evaluate(model, device, data_loader, criterion): model.eval() running_loss = 0.0 with torch.no_grad(): for batch_idx, (data, _) in enumerate(data_loader): data = data.to(device) masked_data = mask_data(data, device, masks) reconstructed = model(masked_data) if batch_idx == 8: rand_ind = np.random.randint(0, len(data)) visualize_feature(data[rand_ind], masked_data[rand_ind], reconstructed[rand_ind], title='NO_2') loss = criterion(reconstructed, data) running_loss += loss.item() return running_loss / (batch_idx + 1)
In [ ]:
# 测试函数 def test(model, device, data_loader): model.eval() with torch.no_grad(): for batch_idx, (data, _) in enumerate(data_loader): data = data.to(device) masked_data = mask_data(data, device, masks) masked_ind = np.argwhere(masked_data[0][0]==0) reconstructed = model(masked_data) recon_no2 = reconstructed[0][0] ori_no2 = data[0][0] return
In [ ]:
model = model.to(device) num_epochs = 100 train_losses = list() val_losses = list() for epoch in range(num_epochs): train_loss = train_epoch(model, device, train_loader, criterion, optimizer) train_losses.append(train_loss) val_loss = evaluate(model, device, val_loader, criterion) val_losses.append(val_loss) print(f'Epoch {epoch+1}, Train Loss: {train_loss}, Val Loss: {val_loss}') # 测试模型 test_loss = evaluate(model, device, test_loader, criterion) print(f'Test Loss: {test_loss}')
In [ ]:
tr_ind = list(range(len(train_losses))) val_ind = list(range(len(val_losses))) plt.plot(train_losses, label='train_loss') plt.plot(val_losses, label='val_loss') plt.legend(loc='best')
In [ ]:
with torch.no_grad(): device = 'cpu' for batch_idx, (data, _) in enumerate(test_loader): model = model.to(device) data = data.to(device) masked_data = mask_data(data, device, masks) reconstructed = model(masked_data) tr_maxs = np.transpose(maxs, (2, 0, 1)) tr_mins = np.transpose(mins, (2, 0, 1)) rev_data = data * (tr_maxs - tr_mins) + tr_mins rev_recon = reconstructed * (tr_maxs - tr_mins) + tr_mins data_label = ((rev_data!=0) * (masked_data==0) * rev_data)[:, 0] recon_no2 = ((rev_data!=0) * (masked_data==0) * rev_recon)[:, 0] break
In [ ]:
real = data_label.flatten() pred = recon_no2.flatten()
In [ ]:
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error, mean_absolute_error
In [ ]:
mean_squared_error(real, pred)
In [ ]:
mean_absolute_percentage_error(real, pred)
In [ ]:
r2_score(real, pred)
In [ ]:
mean_absolute_error(real, pred)
In [ ]:
visualize_feature(data[5], masked_data[5], reconstructed[5], 'NO2')
In [3]:
len('The total $R^2$ for under 40\% missing data test set was 0.88.')
Out[3]:
62
In [ ]: