58 KiB
58 KiB
In [1]:
import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, Dataset, random_split from PIL import Image import numpy as np import matplotlib.pyplot as plt import cv2 import pandas as pd
In [2]:
np.random.seed(0) torch.random.manual_seed(0)
Out[2]:
<torch._C.Generator at 0x7fb6e75377f0>
In [3]:
max_pixel_value = 107.49169921875
In [4]:
class NO2Dataset(Dataset): def __init__(self, image_dir, mask_dir): self.image_dir = image_dir self.mask_dir = mask_dir self.image_filenames = [f for f in os.listdir(image_dir) if f.endswith('.npy')] # 仅加载 .npy 文件 self.mask_filenames = [f for f in os.listdir(mask_dir) if f.endswith('.jpg')] # 仅加载 .jpg 文件 def __len__(self): return len(self.image_filenames) def __getitem__(self, idx): image_path = os.path.join(self.image_dir, self.image_filenames[idx]) mask_idx = np.random.choice(self.mask_filenames) mask_path = os.path.join(self.mask_dir, mask_idx) # 加载图像数据 (.npy 文件) image = np.load(image_path).astype(np.float32)[:,:,:1] / max_pixel_value # 形状为 (96, 96, 1) # 加载掩码数据 (.jpg 文件) mask = np.array(Image.open(mask_path).convert('L')).astype(np.float32) # 将掩码数据中非0值设为1,0值保持不变 mask = np.where(mask != 0, 1.0, 0.0) # 保持掩码数据形状为 (96, 96, 1) mask = mask[:, :, np.newaxis] # 将形状调整为 (96, 96, 1) # 应用掩码 masked_image = image.copy() masked_image[:, :, 0] = image[:, :, 0] * mask.squeeze() # 遮盖NO2数据 # cGAN的输入和目标 X = masked_image[:, :, :1] # 形状为 (96, 96, 8) y = image[:, :, 0:1] # 目标输出为NO2数据,形状为 (96, 96, 1) # 转换形状为 (channels, height, width) X = np.transpose(X, (2, 0, 1)) # 转换为 (1, 96, 96) y = np.transpose(y, (2, 0, 1)) # 转换为 (1, 96, 96) mask = np.transpose(mask, (2, 0, 1)) # 转换为 (1, 96, 96) return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.float32), torch.tensor(mask, dtype=torch.float32) # 实例化数据集和数据加载器 image_dir = './out_mat/96/train/' mask_dir = './out_mat/96/mask/20/'
In [5]:
train_set = NO2Dataset(image_dir, mask_dir) train_loader = DataLoader(train_set, batch_size=64, shuffle=True, num_workers=8) val_set = NO2Dataset('./out_mat/96/valid/', mask_dir) val_loader = DataLoader(val_set, batch_size=64, shuffle=False, num_workers=4) test_set = NO2Dataset('./out_mat/96/test/', mask_dir) test_loader = DataLoader(test_set, batch_size=64, shuffle=False, num_workers=4)
In [6]:
# 可视化特定特征的函数 def visualize_feature(input_feature,masked_feature, output_feature, title): plt.figure(figsize=(12, 6)) plt.subplot(1, 3, 1) plt.imshow(input_feature[0].cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Input") plt.subplot(1, 3, 2) plt.imshow(masked_feature[0].cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Masked") plt.subplot(1, 3, 3) plt.imshow(output_feature[0].detach().cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Recovery") plt.show()
In [7]:
class Conv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False): super(Conv, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2) )
In [8]:
class ConvBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False): super(ConvBNReLU, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2), norm_layer(out_channels), nn.ReLU() )
In [9]:
class SeparableBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d): super(SeparableBNReLU, self).__init__( nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), # 分离卷积,仅调整空间信息 norm_layer(in_channels), # 对输入通道进行归一化 nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), # 这里进行升维操作 nn.ReLU6() )
In [10]:
class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) # 如果输入和输出通道不一致,进行降采样操作 self.downsample = downsample if in_channels != out_channels or stride != 1: self.downsample = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += identity out = self.relu(out) return out
In [11]:
class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True) self.drop = nn.Dropout(drop, inplace=True) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x
In [12]:
class MultiHeadAttentionBlock(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.1): super(MultiHeadAttentionBlock, self).__init__() self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout) self.norm = nn.LayerNorm(embed_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): # (B, C, H, W) -> (HW, B, C) for MultiheadAttention compatibility B, C, H, W = x.shape x = x.view(B, C, H * W).permute(2, 0, 1) # (B, C, H, W) -> (HW, B, C) # Apply multihead attention attn_output, _ = self.attention(x, x, x) # Apply normalization and dropout attn_output = self.norm(attn_output) attn_output = self.dropout(attn_output) # Reshape back to (B, C, H, W) attn_output = attn_output.permute(1, 2, 0).view(B, C, H, W) return attn_output
In [13]:
class SpatialAttentionBlock(nn.Module): def __init__(self): super(SpatialAttentionBlock, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False) def forward(self, x): #(B, 64, H, W) avg_out = torch.mean(x, dim=1, keepdim=True) #(B, 1, H, W) max_out, _ = torch.max(x, dim=1, keepdim=True)#(B, 1, H, W) out = torch.cat([avg_out, max_out], dim=1)#(B, 2, H, W) out = torch.sigmoid(self.conv(out))#(B, 1, H, W) return x * out #(B, C, H, W)
In [14]:
class DecoderAttentionBlock(nn.Module): def __init__(self, in_channels): super(DecoderAttentionBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1) self.conv2 = nn.Conv2d(in_channels // 2, in_channels, kernel_size=1) self.spatial_attention = SpatialAttentionBlock() def forward(self, x): # 通道注意力 b, c, h, w = x.size() avg_pool = F.adaptive_avg_pool2d(x, 1) max_pool = F.adaptive_max_pool2d(x, 1) avg_out = self.conv1(avg_pool) max_out = self.conv1(max_pool) out = avg_out + max_out out = torch.sigmoid(self.conv2(out)) # 添加空间注意力 out = x * out out = self.spatial_attention(out) return out
In [15]:
class SEBlock(nn.Module): def __init__(self, in_channels, reduced_dim): super(SEBlock, self).__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), # 全局平均池化 nn.Conv2d(in_channels, reduced_dim, kernel_size=1), nn.ReLU(), nn.Conv2d(reduced_dim, in_channels, kernel_size=1), nn.Sigmoid() # 使用Sigmoid是因为我们要对通道进行权重归一化 ) def forward(self, x): return x * self.se(x)
In [16]:
def masked_mse_loss(preds, target, mask): loss = (preds - target) ** 2 loss = loss.mean(dim=-1) # 对每个像素点求平均 loss = (loss * mask).sum() / mask.sum() # 只计算被mask的像素点的损失 return loss
In [17]:
# 定义Masked Autoencoder模型 class MaskedAutoencoder(nn.Module): def __init__(self): super(MaskedAutoencoder, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(1, 32, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), nn.ReLU(), SEBlock(128, 128) ) self.mlp = Mlp(in_features=128, hidden_features=256, out_features=128, act_layer=nn.ReLU6, drop=0.1) self.decoder = nn.Sequential( nn.ConvTranspose2d(128, 32, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), DecoderAttentionBlock(32), nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), DecoderAttentionBlock(16), nn.ReLU(), nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1), # 修改为 output_padding=1 nn.Sigmoid() ) def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded # 实例化模型、损失函数和优化器 model = MaskedAutoencoder() criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
In [18]:
# 训练函数 def train_epoch(model, device, data_loader, criterion, optimizer): model.train() running_loss = 0.0 for batch_idx, (X, y, mask) in enumerate(data_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) optimizer.zero_grad() reconstructed = model(X) # loss = criterion(reconstructed, y) loss = masked_mse_loss(reconstructed, y, mask) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / (batch_idx + 1)
In [19]:
# 评估函数 def evaluate(model, device, data_loader, criterion): model.eval() running_loss = 0.0 with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(data_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) reconstructed = model(X) if batch_idx == 8: rand_ind = np.random.randint(0, len(y)) # visualize_feature(y[rand_ind], X[rand_ind], reconstructed[rand_ind], title='NO_2') loss = masked_mse_loss(reconstructed, y, mask) running_loss += loss.item() return running_loss / (batch_idx + 1)
In [20]:
# 数据准备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device)
cuda
In [ ]:
model = model.to(device) num_epochs = 100 train_losses = list() val_losses = list() for epoch in range(num_epochs): train_loss = train_epoch(model, device, train_loader, criterion, optimizer) train_losses.append(train_loss) val_loss = evaluate(model, device, val_loader, criterion) val_losses.append(val_loss) print(f'Epoch {epoch+1}, Train Loss: {train_loss}, Val Loss: {val_loss}') # 测试模型 test_loss = evaluate(model, device, test_loader, criterion) print(f'Test Loss: {test_loss}')
/root/miniconda3/envs/python38/lib/python3.8/site-packages/torch/nn/modules/conv.py:456: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at /opt/conda/conda-bld/pytorch_1711403590347/work/aten/src/ATen/native/cudnn/Conv_v8.cpp:80.) return F.conv2d(input, weight, bias, self.stride,
Epoch 1, Train Loss: 2.1122538542205636, Val Loss: 0.17511643736220117 Epoch 2, Train Loss: 0.09455115371272324, Val Loss: 0.07173499481669113 Epoch 3, Train Loss: 0.05875080322142708, Val Loss: 0.05522163668230398 Epoch 4, Train Loss: 0.04709345177618083, Val Loss: 0.046923332583548416 Epoch 5, Train Loss: 0.04048821633975757, Val Loss: 0.04223129592502295 Epoch 6, Train Loss: 0.03651897717071207, Val Loss: 0.038725908567656335 Epoch 7, Train Loss: 0.03371973283606711, Val Loss: 0.03591352106252713 Epoch 8, Train Loss: 0.030995923611357737, Val Loss: 0.033181621734775714 Epoch 9, Train Loss: 0.02894393834575084, Val Loss: 0.031025866519159347 Epoch 10, Train Loss: 0.026934354539301122, Val Loss: 0.028885239290434923 Epoch 11, Train Loss: 0.025755781114422248, Val Loss: 0.027564026443148728 Epoch 12, Train Loss: 0.024294818880740535, Val Loss: 0.02660573101532993 Epoch 13, Train Loss: 0.023547336254179763, Val Loss: 0.025523469658262694 Epoch 14, Train Loss: 0.02263737249335176, Val Loss: 0.024892248685902625 Epoch 15, Train Loss: 0.02204986723389423, Val Loss: 0.02482297744101553 Epoch 16, Train Loss: 0.021457266258566005, Val Loss: 0.024080637119599242 Epoch 17, Train Loss: 0.020942402789681153, Val Loss: 0.023763289508312496 Epoch 18, Train Loss: 0.02059948215769096, Val Loss: 0.023712928865605325 Epoch 19, Train Loss: 0.020213669665050848, Val Loss: 0.022951017092190572 Epoch 20, Train Loss: 0.02002489379647246, Val Loss: 0.022396566457490424 Epoch 21, Train Loss: 0.019488899257818337, Val Loss: 0.02220052338914195 Epoch 22, Train Loss: 0.019191946226069657, Val Loss: 0.021812534682563882 Epoch 23, Train Loss: 0.018820160999894142, Val Loss: 0.021094122540150115 Epoch 24, Train Loss: 0.01841514516826808, Val Loss: 0.021011906689894732 Epoch 25, Train Loss: 0.01826861325392954, Val Loss: 0.020965722514622247 Epoch 26, Train Loss: 0.01783664010768159, Val Loss: 0.02035376571341237 Epoch 27, Train Loss: 0.01773165784883157, Val Loss: 0.020316684896599 Epoch 28, Train Loss: 0.017462643957362647, Val Loss: 0.020199675196364744 Epoch 29, Train Loss: 0.01726480335237806, Val Loss: 0.019924583983843894 Epoch 30, Train Loss: 0.017130774285412577, Val Loss: 0.019827198264981385 Epoch 31, Train Loss: 0.016821091141302192, Val Loss: 0.01998631670070228 Epoch 32, Train Loss: 0.016754478447887886, Val Loss: 0.019008648901510595 Epoch 33, Train Loss: 0.01657688988452893, Val Loss: 0.01900591877803429 Epoch 34, Train Loss: 0.016496175670613084, Val Loss: 0.019055584264891363 Epoch 35, Train Loss: 0.01644454181470583, Val Loss: 0.018636108959899908 Epoch 36, Train Loss: 0.01607896311823546, Val Loss: 0.018534055174286686 Epoch 37, Train Loss: 0.01588705154224945, Val Loss: 0.018062156513889333 Epoch 38, Train Loss: 0.015864519495962626, Val Loss: 0.018233197171296647 Epoch 39, Train Loss: 0.015855632771394755, Val Loss: 0.018038090332341727 Epoch 40, Train Loss: 0.015651265439982905, Val Loss: 0.01822574678530444 Epoch 41, Train Loss: 0.015510451237996372, Val Loss: 0.017679256400955256 Epoch 42, Train Loss: 0.015349842104436963, Val Loss: 0.018203645916794662 Epoch 43, Train Loss: 0.01543403383451358, Val Loss: 0.017195541675744663 Epoch 44, Train Loss: 0.015325402941233947, Val Loss: 0.017411370608788817 Epoch 45, Train Loss: 0.01518570597876202, Val Loss: 0.017076766354712978 Epoch 46, Train Loss: 0.014841953983182827, Val Loss: 0.016906344637608352 Epoch 47, Train Loss: 0.014843696093356068, Val Loss: 0.016789415712232022 Epoch 48, Train Loss: 0.014590430285104296, Val Loss: 0.01671677505347266 Epoch 49, Train Loss: 0.014620297918158569, Val Loss: 0.01652295997282907 Epoch 50, Train Loss: 0.014581651776654726, Val Loss: 0.01616852485866689 Epoch 51, Train Loss: 0.014414639787026569, Val Loss: 0.016296155653449138 Epoch 52, Train Loss: 0.01424450205157747, Val Loss: 0.016307457906207933 Epoch 53, Train Loss: 0.014137028997238173, Val Loss: 0.01646944234119867 Epoch 54, Train Loss: 0.014159051344939395, Val Loss: 0.016026857336844082 Epoch 55, Train Loss: 0.014192796753425347, Val Loss: 0.01584606984658028 Epoch 56, Train Loss: 0.013916373460076785, Val Loss: 0.015976423856371373 Epoch 57, Train Loss: 0.013736099040394195, Val Loss: 0.015810697172671112 Epoch 58, Train Loss: 0.013836662209276377, Val Loss: 0.015620186396721584 Epoch 59, Train Loss: 0.013784786091413367, Val Loss: 0.015319373792231972 Epoch 60, Train Loss: 0.013611769829497954, Val Loss: 0.015367041216857398 Epoch 61, Train Loss: 0.01358566418931815, Val Loss: 0.015289715783142331 Epoch 62, Train Loss: 0.013467149546093633, Val Loss: 0.015166739780289023 Epoch 63, Train Loss: 0.013366587792019668, Val Loss: 0.014960003544145556 Epoch 64, Train Loss: 0.013362093665971282, Val Loss: 0.015207788253675646 Epoch 65, Train Loss: 0.013282296849352322, Val Loss: 0.015704237049751317 Epoch 66, Train Loss: 0.013314912690553796, Val Loss: 0.015118209617351419 Epoch 67, Train Loss: 0.01314743113610448, Val Loss: 0.014853793154679128 Epoch 68, Train Loss: 0.013220271071125018, Val Loss: 0.015044791985358765 Epoch 69, Train Loss: 0.013089903819700035, Val Loss: 0.014621049485433458 Epoch 70, Train Loss: 0.013003655555591201, Val Loss: 0.015181626902142567 Epoch 71, Train Loss: 0.013071733119153377, Val Loss: 0.014468084979079553 Epoch 72, Train Loss: 0.013008178180555979, Val Loss: 0.014925862592992499 Epoch 73, Train Loss: 0.01300788912521096, Val Loss: 0.015519192122590186 Epoch 74, Train Loss: 0.012897961314001153, Val Loss: 0.014994534872361083 Epoch 75, Train Loss: 0.012850848984632766, Val Loss: 0.014727158249536557 Epoch 76, Train Loss: 0.012889095829380899, Val Loss: 0.014613447293861588 Epoch 77, Train Loss: 0.01279138982447497, Val Loss: 0.014250260944575516
In [25]:
tr_ind = list(range(len(train_losses))) val_ind = list(range(len(val_losses))) plt.plot(train_losses, label='train_loss') plt.plot(val_losses, label='val_loss') plt.legend(loc='best')
Out[25]:
<matplotlib.legend.Legend at 0x7fb64e455b50>
In [26]:
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error, mean_absolute_error
In [27]:
eva_list = list() device = 'cpu' model = model.to(device) with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(test_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域 reconstructed = model(X) # tr_maxs = np.transpose(maxs, (2, 0, 1)) # tr_mins = np.transpose(mins, (2, 0, 1)) rev_data = y * max_pixel_value rev_recon = reconstructed * max_pixel_value # todo: 这里需要只评估修补出来的模块 data_label = torch.squeeze(rev_data, dim=1) * mask_rev data_label = data_label[mask_rev==1] recon_no2 = torch.squeeze(rev_recon, dim=1) * mask_rev recon_no2 = recon_no2[mask_rev==1] mae = mean_absolute_error(data_label, recon_no2) rmse = np.sqrt(mean_squared_error(data_label, recon_no2)) mape = mean_absolute_percentage_error(data_label, recon_no2) r2 = r2_score(data_label, recon_no2) eva_list.append([mae, rmse, mape, r2])
In [28]:
pd.DataFrame(eva_list, columns=['mae', 'rmse', 'mape', 'r2']).describe()
Out[28]:
mae | rmse | mape | r2 | |
---|---|---|---|---|
count | 75.000000 | 75.000000 | 75.000000 | 75.000000 |
mean | 1.548639 | 2.513043 | 0.190712 | 0.850014 |
std | 0.104697 | 0.277761 | 0.018381 | 0.021919 |
min | 1.372461 | 2.125686 | 0.158994 | 0.766183 |
25% | 1.492424 | 2.371325 | 0.177162 | 0.836254 |
50% | 1.553864 | 2.482061 | 0.187778 | 0.851790 |
75% | 1.600554 | 2.630040 | 0.201229 | 0.865281 |
max | 2.036150 | 4.280405 | 0.259433 | 0.884967 |
In [34]:
pd.DataFrame(eva_list, columns=['mae', 'rmse', 'mape', 'r2']).describe().to_csv('./eva_files/decoder+local_loss.csv', encoding='utf-8-sig')
In [29]:
def cal_ioa(y_true, y_pred): # 计算平均值 mean_observed = np.mean(y_true) mean_predicted = np.mean(y_pred) # 计算IoA numerator = np.sum((y_true - y_pred) ** 2) denominator = np.sum((np.abs(y_true - mean_observed) + np.abs(y_pred - mean_predicted)) ** 2) IoA = 1 - (numerator / denominator) return IoA
In [30]:
eva_list_frame = list() device = 'cpu' model = model.to(device) with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(test_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域 reconstructed = model(X) rev_data = y * max_pixel_value rev_recon = reconstructed * max_pixel_value # todo: 这里需要只评估修补出来的模块 for i, sample in enumerate(rev_data): used_mask = mask_rev[i] data_label = sample[0] * used_mask recon_no2 = rev_recon[i][0] * used_mask data_label = data_label[used_mask==1] recon_no2 = recon_no2[used_mask==1] mae = mean_absolute_error(data_label, recon_no2) rmse = np.sqrt(mean_squared_error(data_label, recon_no2)) mape = mean_absolute_percentage_error(data_label, recon_no2) r2 = r2_score(data_label, recon_no2) ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy()) r = np.corrcoef(data_label, recon_no2)[0, 1] eva_list_frame.append([mae, rmse, mape, r2, ioa, r])
In [31]:
pd.DataFrame(eva_list_frame, columns=['mae', 'rmse', 'mape', 'r2', 'ioa', 'r']).describe()
Out[31]:
mae | rmse | mape | r2 | ioa | r | |
---|---|---|---|---|---|---|
count | 4739.000000 | 4739.000000 | 4739.000000 | 4739.000000 | 4739.000000 | 4739.000000 |
mean | 1.553667 | 2.209092 | 0.188788 | 0.523867 | 0.829028 | 0.775553 |
std | 0.821044 | 1.193856 | 0.121753 | 0.420704 | 0.182549 | 0.164661 |
min | 0.525306 | 0.680506 | 0.061413 | -4.738533 | -0.916011 | -0.197854 |
25% | 0.960099 | 1.333764 | 0.131694 | 0.429017 | 0.802631 | 0.715950 |
50% | 1.369256 | 1.958160 | 0.163652 | 0.646098 | 0.889664 | 0.824197 |
75% | 1.892561 | 2.704055 | 0.203364 | 0.768918 | 0.931843 | 0.886272 |
max | 7.905261 | 11.196068 | 1.671224 | 0.972414 | 0.993103 | 0.986316 |
In [ ]: