MAE_ATMO/torch_MAE_1d_encoder.ipynb

72 KiB
Raw Blame History

In [1]:
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset, random_split
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import cv2
import pandas as pd
In [2]:
np.random.seed(0)
torch.random.manual_seed(0)
Out[2]:
<torch._C.Generator at 0x7fc9d487f810>
In [3]:
max_pixel_value = 107.49169921875
In [4]:
class NO2Dataset(Dataset):
    
    def __init__(self, image_dir, mask_dir):
        
        self.image_dir = image_dir
        self.mask_dir = mask_dir
        self.image_filenames = [f for f in os.listdir(image_dir) if f.endswith('.npy')]  # 仅加载 .npy 文件
        self.mask_filenames = [f for f in os.listdir(mask_dir) if f.endswith('.jpg')]  # 仅加载 .jpg 文件
        
    def __len__(self):
        
        return len(self.image_filenames)
    
    def __getitem__(self, idx):
        
        image_path = os.path.join(self.image_dir, self.image_filenames[idx])
        mask_idx = np.random.choice(self.mask_filenames)
        mask_path = os.path.join(self.mask_dir, mask_idx)

        # 加载图像数据 (.npy 文件)
        image = np.load(image_path).astype(np.float32)[:,:,:1] / max_pixel_value  # 形状为 (96, 96, 1)

        # 加载掩码数据 (.jpg 文件)
        mask = np.array(Image.open(mask_path).convert('L')).astype(np.float32)

        # 将掩码数据中非0值设为10值保持不变
        mask = np.where(mask != 0, 1.0, 0.0)

        # 保持掩码数据形状为 (96, 96, 1)
        mask = mask[:, :, np.newaxis]  # 将形状调整为 (96, 96, 1)

        # 应用掩码
        masked_image = image.copy()
        masked_image[:, :, 0] = image[:, :, 0] * mask.squeeze()  # 遮盖NO2数据

        # cGAN的输入和目标
        X = masked_image[:, :, :1]  # 形状为 (96, 96, 8)
        y = image[:, :, 0:1]  # 目标输出为NO2数据形状为 (96, 96, 1)

        # 转换形状为 (channels, height, width)
        X = np.transpose(X, (2, 0, 1))  # 转换为 (1, 96, 96)
        y = np.transpose(y, (2, 0, 1))  # 转换为 (1, 96, 96)
        mask = np.transpose(mask, (2, 0, 1))  # 转换为 (1, 96, 96)

        return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.float32), torch.tensor(mask, dtype=torch.float32)

# 实例化数据集和数据加载器
image_dir = './out_mat/96/train/'
mask_dir = './out_mat/96/mask/20/'
In [5]:
train_set = NO2Dataset(image_dir, mask_dir)
train_loader = DataLoader(train_set, batch_size=64, shuffle=True, num_workers=8)
val_set = NO2Dataset('./out_mat/96/valid/', mask_dir)
val_loader = DataLoader(val_set, batch_size=64, shuffle=False, num_workers=4)
test_set = NO2Dataset('./out_mat/96/test/', mask_dir)
test_loader = DataLoader(test_set, batch_size=64, shuffle=False, num_workers=4)
In [6]:
# 可视化特定特征的函数
def visualize_feature(input_feature,masked_feature, output_feature, title):
    plt.figure(figsize=(12, 6))
    plt.subplot(1, 3, 1)
    plt.imshow(input_feature[0].cpu().numpy(), cmap='RdYlGn_r')
    plt.title(title + " Input")
    plt.subplot(1, 3, 2)
    plt.imshow(masked_feature[0].cpu().numpy(), cmap='RdYlGn_r')
    plt.title(title + " Masked")
    plt.subplot(1, 3, 3)
    plt.imshow(output_feature[0].detach().cpu().numpy(), cmap='RdYlGn_r')
    plt.title(title + " Recovery")
    plt.show()
In [7]:
class Conv(nn.Sequential):
    def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False):
        super(Conv, self).__init__(
            nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
                      dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2)
        )
In [8]:
class ConvBNReLU(nn.Sequential):
    def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d,
                 bias=False):
        super(ConvBNReLU, self).__init__(
            nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias,
                      dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2),
            norm_layer(out_channels),
            nn.ReLU()
        )
In [9]:
class SeparableBNReLU(nn.Sequential):
    def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d):
        super(SeparableBNReLU, self).__init__(
            nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, dilation=dilation,
                      padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False),
            # 分离卷积,仅调整空间信息
            norm_layer(in_channels),  # 对输入通道进行归一化
            nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),  # 这里进行升维操作
            nn.ReLU6()
        )
In [10]:
class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(ResidualBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        # 如果输入和输出通道不一致,进行降采样操作
        self.downsample = downsample
        if in_channels != out_channels or stride != 1:
            self.downsample = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels)
            )

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)
        return out
In [11]:
class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True)

        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True)
        self.drop = nn.Dropout(drop, inplace=True)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
In [12]:
class MultiHeadAttentionBlock(nn.Module):
    def __init__(self, embed_dim, num_heads, dropout=0.1):
        super(MultiHeadAttentionBlock, self).__init__()
        self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout)
        self.norm = nn.LayerNorm(embed_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        # (B, C, H, W) -> (HW, B, C) for MultiheadAttention compatibility
        B, C, H, W = x.shape
        x = x.view(B, C, H * W).permute(2, 0, 1)  # (B, C, H, W) -> (HW, B, C)

        # Apply multihead attention
        attn_output, _ = self.attention(x, x, x)

        # Apply normalization and dropout
        attn_output = self.norm(attn_output)
        attn_output = self.dropout(attn_output)

        # Reshape back to (B, C, H, W)
        attn_output = attn_output.permute(1, 2, 0).view(B, C, H, W)

        return attn_output
In [13]:
class SpatialAttentionBlock(nn.Module):
    def __init__(self):
        super(SpatialAttentionBlock, self).__init__()
        self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False)

    def forward(self, x): #(B, 64, H, W)
        avg_out = torch.mean(x, dim=1, keepdim=True) #(B, 1, H, W)
        max_out, _ = torch.max(x, dim=1, keepdim=True)#(B, 1, H, W)
        out = torch.cat([avg_out, max_out], dim=1)#(B, 2, H, W)
        out = torch.sigmoid(self.conv(out))#(B, 1, H, W)
        return x * out #(B, C, H, W)
In [14]:
class DecoderAttentionBlock(nn.Module):
    def __init__(self, in_channels):
        super(DecoderAttentionBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1)
        self.conv2 = nn.Conv2d(in_channels // 2, in_channels, kernel_size=1)
        self.spatial_attention = SpatialAttentionBlock()

    def forward(self, x):
        # 通道注意力
        b, c, h, w = x.size()
        avg_pool = F.adaptive_avg_pool2d(x, 1)
        max_pool = F.adaptive_max_pool2d(x, 1)

        avg_out = self.conv1(avg_pool)
        max_out = self.conv1(max_pool)

        out = avg_out + max_out
        out = torch.sigmoid(self.conv2(out))

        # 添加空间注意力
        out = x * out
        out = self.spatial_attention(out)
        return out
In [15]:
class SEBlock(nn.Module):
    def __init__(self, in_channels, reduced_dim):
        super(SEBlock, self).__init__()
        self.se = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),  # 全局平均池化
            nn.Conv2d(in_channels, reduced_dim, kernel_size=1),
            nn.ReLU(),
            nn.Conv2d(reduced_dim, in_channels, kernel_size=1),
            nn.Sigmoid()  # 使用Sigmoid是因为我们要对通道进行权重归一化
        )

    def forward(self, x):
        return x * self.se(x)
In [16]:
def masked_mse_loss(preds, target, mask):
    loss = (preds - target) ** 2
    loss = loss.mean(dim=-1)  # 对每个像素点求平均
    loss = (loss * mask).sum() / mask.sum()  # 只计算被mask的像素点的损失
    return loss
In [17]:
# 定义Masked Autoencoder模型
class MaskedAutoencoder(nn.Module):
    def __init__(self):
        super(MaskedAutoencoder, self).__init__()
        self.encoder = nn.Sequential(
            Conv(1, 32, kernel_size=3, stride=2),
            nn.ReLU(),
            SEBlock(32,32),
            ConvBNReLU(32, 64, kernel_size=3, stride=2),
            ResidualBlock(64,64),
            SeparableBNReLU(64, 128, kernel_size=3, stride=2),
            MultiHeadAttentionBlock(embed_dim=128, num_heads=4),
            SEBlock(128, 128)
        )
        self.mlp = Mlp(in_features=128, hidden_features=256, out_features=128, act_layer=nn.ReLU6, drop=0.1)
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(128, 32, kernel_size=3, stride=2, padding=1, output_padding=1),
            nn.ReLU(),
            
            # DecoderAttentionBlock(32),
            nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1),
            nn.ReLU(),
            
            # DecoderAttentionBlock(16),
            nn.ReLU(),
            
            nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1),  # 修改为 output_padding=1
            nn.Sigmoid()
        )

    def forward(self, x):
        encoded = self.encoder(x)
        decoded = self.decoder(encoded)
        return decoded

# 实例化模型、损失函数和优化器
model = MaskedAutoencoder()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
In [18]:
# 训练函数
def train_epoch(model, device, data_loader, criterion, optimizer):
    model.train()
    running_loss = 0.0
    for batch_idx, (X, y, mask) in enumerate(data_loader):
        X, y, mask = X.to(device), y.to(device), mask.to(device)
        optimizer.zero_grad()
        reconstructed = model(X)
        # loss = criterion(reconstructed, y)
        loss = masked_mse_loss(reconstructed, y, mask)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    return running_loss / (batch_idx + 1)
In [19]:
# 评估函数
def evaluate(model, device, data_loader, criterion):
    model.eval()
    running_loss = 0.0
    with torch.no_grad():
        for batch_idx, (X, y, mask) in enumerate(data_loader):
            X, y, mask = X.to(device), y.to(device), mask.to(device)
            reconstructed = model(X)
            if batch_idx == 8:
                rand_ind = np.random.randint(0, len(y))
                # visualize_feature(y[rand_ind], X[rand_ind], reconstructed[rand_ind], title='NO_2')
            # loss = criterion(reconstructed, y)
            loss = masked_mse_loss(reconstructed, y, mask)
            running_loss += loss.item()
    return running_loss / (batch_idx + 1)
In [20]:
def masked_mae_loss(preds, target, mask):
    loss = (preds - target) ** 2
    loss = loss.mean(dim=-1)  # 对每个像素点求平均
    loss = (loss * mask).sum() / mask.sum()  # 只计算被mask的像素点的损失
    return loss
In [29]:
# 数据准备
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
cuda
In [30]:
model = model.to(device)

num_epochs = 20
train_losses = list()
val_losses = list()
for epoch in range(num_epochs):
    train_loss = train_epoch(model, device, train_loader, criterion, optimizer)
    train_losses.append(train_loss)
    val_loss = evaluate(model, device, val_loader, criterion)
    val_losses.append(val_loss)
    print(f'Epoch {epoch+1}, Train Loss: {train_loss}, Val Loss: {val_loss}')

# 测试模型
test_loss = evaluate(model, device, test_loader, criterion)
print(f'Test Loss: {test_loss}')
Epoch 1, Train Loss: 0.013549078723781131, Val Loss: 0.014539383435204847
Epoch 2, Train Loss: 0.013641111095966192, Val Loss: 0.014635173200782555
Epoch 3, Train Loss: 0.013503858572290988, Val Loss: 0.01476309893291388
Epoch 4, Train Loss: 0.013455510417970887, Val Loss: 0.014315864057349624
Epoch 5, Train Loss: 0.01339626228704193, Val Loss: 0.01442837900023407
Epoch 6, Train Loss: 0.013295360569035608, Val Loss: 0.015184532503472336
Epoch 12, Train Loss: 0.012901031857793125, Val Loss: 0.013935101566030018
Epoch 13, Train Loss: 0.01295265725158761, Val Loss: 0.013862666924164366
Epoch 14, Train Loss: 0.013010161795149865, Val Loss: 0.013880979492148357
Epoch 15, Train Loss: 0.012936625905940977, Val Loss: 0.013813913021403463
Epoch 16, Train Loss: 0.01287072714926167, Val Loss: 0.01403502803017844
Epoch 17, Train Loss: 0.012832806871214695, Val Loss: 0.014388528165977393
Epoch 18, Train Loss: 0.012794200125992583, Val Loss: 0.01383661480147892
Epoch 19, Train Loss: 0.01294981115208003, Val Loss: 0.01408140508652623
Epoch 20, Train Loss: 0.012662894464583631, Val Loss: 0.01359965718949019
Test Loss: 0.007365767304242279
In [31]:
tr_ind = list(range(len(train_losses)))
val_ind = list(range(len(val_losses)))
plt.plot(train_losses, label='train_loss')
plt.plot(val_losses, label='val_loss')
plt.legend(loc='best')
Out[31]:
<matplotlib.legend.Legend at 0x7fc8e0717100>
No description has been provided for this image
In [32]:
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error, mean_absolute_error
In [33]:
eva_list = list()
model = model.to('cpu')
with torch.no_grad():
    for batch_idx, (X, y, mask) in enumerate(test_loader):
        X, y, mask = X.to(device), y.to(device), mask.to(device)
        mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域
        reconstructed = model(X)
        rev_data = y * max_pixel_value
        rev_recon = reconstructed * max_pixel_value
        # todo: 这里需要只评估修补出来的模块
        data_label = torch.squeeze(rev_data, dim=1) * mask_rev
        data_label = data_label[mask_rev==1]
        recon_no2 = torch.squeeze(rev_recon, dim=1) * mask_rev
        recon_no2 = recon_no2[mask_rev==1]
        mae = mean_absolute_error(data_label, recon_no2)
        rmse = np.sqrt(mean_squared_error(data_label, recon_no2))
        mape = mean_absolute_percentage_error(data_label, recon_no2)
        r2 = r2_score(data_label, recon_no2)
        eva_list.append([mae, rmse, mape, r2])
In [34]:
pd.DataFrame(eva_list, columns=['mae', 'rmse', 'mape', 'r2']).describe()
Out[34]:
mae rmse mape r2
count 75.000000 75.000000 75.000000 75.000000
mean 1.296906 2.022362 0.167694 0.904339
std 0.075761 0.137041 0.013171 0.010395
min 1.121284 1.716275 0.143667 0.875878
25% 1.238378 1.917907 0.156429 0.898060
50% 1.287193 2.011828 0.166679 0.904941
75% 1.353045 2.102409 0.176996 0.911137
max 1.446046 2.414532 0.202142 0.924070
In [35]:
def cal_ioa(y_true, y_pred):
    # 计算平均值
    mean_observed = np.mean(y_true)
    mean_predicted = np.mean(y_pred)

    # 计算IoA
    numerator = np.sum((y_true - y_pred) ** 2)
    denominator = np.sum((np.abs(y_true - mean_observed) + np.abs(y_pred - mean_predicted)) ** 2)
    IoA = 1 - (numerator / denominator)

    return IoA
In [36]:
eva_list_frame = list()
device = 'cpu'
model = model.to(device)
with torch.no_grad():
    for batch_idx, (X, y, mask) in enumerate(test_loader):
        X, y, mask = X.to(device), y.to(device), mask.to(device)
        mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域
        reconstructed = model(X)
        rev_data = y * max_pixel_value
        rev_recon = reconstructed * max_pixel_value
        # todo: 这里需要只评估修补出来的模块
        for i, sample in enumerate(rev_data):
            used_mask = mask_rev[i]
            data_label = sample[0] * used_mask
            recon_no2 = rev_recon[i][0] * used_mask
            data_label = data_label[used_mask==1]
            recon_no2 = recon_no2[used_mask==1]
            mae = mean_absolute_error(data_label, recon_no2)
            rmse = np.sqrt(mean_squared_error(data_label, recon_no2))
            mape = mean_absolute_percentage_error(data_label, recon_no2)
            r2 = r2_score(data_label, recon_no2)
            ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy())
            r = np.corrcoef(data_label, recon_no2)[0, 1]
            eva_list_frame.append([mae, rmse, mape, r2, ioa, r])
In [37]:
pd.DataFrame(eva_list_frame, columns=['mae', 'rmse', 'mape', 'r2', 'ioa', 'r']).describe()
Out[37]:
mae rmse mape r2 ioa r
count 4739.000000 4739.000000 4739.000000 4739.000000 4739.000000 4739.000000
mean 1.306817 1.845819 0.166876 0.670519 0.886646 0.836323
std 0.623645 0.902619 0.107025 0.240752 0.111142 0.121726
min 0.432991 0.568319 0.050612 -1.539424 -0.267569 0.022258
25% 0.835579 1.172322 0.113302 0.583713 0.864756 0.794922
50% 1.161710 1.658195 0.143386 0.735860 0.921341 0.869860
75% 1.617382 2.299731 0.185039 0.827242 0.951285 0.916741
max 5.338230 9.936951 1.929986 0.983208 0.995767 0.992588
In [ ]: