196 KiB
196 KiB
In [1]:
import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader, Dataset, random_split from PIL import Image import numpy as np import matplotlib.pyplot as plt import cv2 import pandas as pd
In [2]:
np.random.seed(42) torch.random.manual_seed(42)
Out[2]:
<torch._C.Generator at 0x7f8d8a9ef7f0>
In [3]:
# 计算图像数据中的最大像素值 max_pixel_value = 107.49169921875
In [4]:
class NO2Dataset(Dataset): def __init__(self, image_dir, mask_dir): self.image_dir = image_dir self.mask_dir = mask_dir self.image_filenames = [f for f in os.listdir(image_dir) if f.endswith('.npy')] # 仅加载 .npy 文件 self.mask_filenames = [f for f in os.listdir(mask_dir) if f.endswith('.jpg')] # 仅加载 .jpg 文件 def __len__(self): return len(self.image_filenames) def __getitem__(self, idx): image_path = os.path.join(self.image_dir, self.image_filenames[idx]) mask_idx = np.random.choice(self.mask_filenames) mask_path = os.path.join(self.mask_dir, mask_idx) # 加载图像数据 (.npy 文件) image = np.load(image_path).astype(np.float32)[:,:,:1] / max_pixel_value # 形状为 (96, 96, 1) # 加载掩码数据 (.jpg 文件) mask = np.array(Image.open(mask_path).convert('L')).astype(np.float32) # 将掩码数据中非0值设为1,0值保持不变 mask = np.where(mask != 0, 1.0, 0.0) # 保持掩码数据形状为 (96, 96, 1) mask = mask[:, :, np.newaxis] # 将形状调整为 (96, 96, 1) # 应用掩码 masked_image = image.copy() masked_image[:, :, 0] = image[:, :, 0] * mask.squeeze() # 遮盖NO2数据 # cGAN的输入和目标 X = masked_image[:, :, :1] # 形状为 (96, 96, 8) y = image[:, :, 0:1] # 目标输出为NO2数据,形状为 (96, 96, 1) # 转换形状为 (channels, height, width) X = np.transpose(X, (2, 0, 1)) # 转换为 (1, 96, 96) y = np.transpose(y, (2, 0, 1)) # 转换为 (1, 96, 96) mask = np.transpose(mask, (2, 0, 1)) # 转换为 (1, 96, 96) return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.float32), torch.tensor(mask, dtype=torch.float32) # 实例化数据集和数据加载器 image_dir = './out_mat/96/train/' mask_dir = './out_mat/96/mask/20/' print(f"checkpoint before Generator is OK")
checkpoint before Generator is OK
In [5]:
train_set = NO2Dataset(image_dir, mask_dir) train_loader = DataLoader(train_set, batch_size=64, shuffle=True, num_workers=8) val_set = NO2Dataset('./out_mat/96/valid/', mask_dir) val_loader = DataLoader(val_set, batch_size=64, shuffle=False, num_workers=4) test_set = NO2Dataset('./out_mat/96/test/', mask_dir) test_loader = DataLoader(test_set, batch_size=64, shuffle=False, num_workers=4)
In [6]:
# 可视化特定特征的函数 def visualize_feature(input_feature,masked_feature, output_feature, title): plt.figure(figsize=(12, 6)) plt.subplot(1, 3, 1) plt.imshow(input_feature[0].cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Input") plt.subplot(1, 3, 2) plt.imshow(masked_feature[0].cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Masked") plt.subplot(1, 3, 3) plt.imshow(output_feature[0].detach().cpu().numpy(), cmap='RdYlGn_r') plt.title(title + " Recovery") plt.show()
In [7]:
class Conv(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, bias=False): super(Conv, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2) )
In [8]:
class ConvBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, dilation=1, stride=1, norm_layer=nn.BatchNorm2d, bias=False): super(ConvBNReLU, self).__init__( nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, bias=bias, dilation=dilation, stride=stride, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2), norm_layer(out_channels), nn.ReLU() )
In [9]:
class SeparableBNReLU(nn.Sequential): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, norm_layer=nn.BatchNorm2d): super(SeparableBNReLU, self).__init__( nn.Conv2d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, padding=((stride - 1) + dilation * (kernel_size - 1)) // 2, groups=in_channels, bias=False), # 分离卷积,仅调整空间信息 norm_layer(in_channels), # 对输入通道进行归一化 nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), # 这里进行升维操作 nn.ReLU6() )
In [10]:
class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) # 如果输入和输出通道不一致,进行降采样操作 self.downsample = downsample if in_channels != out_channels or stride != 1: self.downsample = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): identity = x if self.downsample is not None: identity = self.downsample(x) out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += identity out = self.relu(out) return out
In [11]:
class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU6, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True) self.drop = nn.Dropout(drop, inplace=True) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x
In [12]:
class MultiHeadAttentionBlock(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.1): super(MultiHeadAttentionBlock, self).__init__() self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout) self.norm = nn.LayerNorm(embed_dim) self.dropout = nn.Dropout(dropout) def forward(self, x): # (B, C, H, W) -> (HW, B, C) for MultiheadAttention compatibility B, C, H, W = x.shape x = x.view(B, C, H * W).permute(2, 0, 1) # (B, C, H, W) -> (HW, B, C) # Apply multihead attention attn_output, _ = self.attention(x, x, x) # Apply normalization and dropout attn_output = self.norm(attn_output) attn_output = self.dropout(attn_output) # Reshape back to (B, C, H, W) attn_output = attn_output.permute(1, 2, 0).view(B, C, H, W) return attn_output
In [13]:
class SpatialAttentionBlock(nn.Module): def __init__(self): super(SpatialAttentionBlock, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3, bias=False) def forward(self, x): #(B, 64, H, W) avg_out = torch.mean(x, dim=1, keepdim=True) #(B, 1, H, W) max_out, _ = torch.max(x, dim=1, keepdim=True)#(B, 1, H, W) out = torch.cat([avg_out, max_out], dim=1)#(B, 2, H, W) out = torch.sigmoid(self.conv(out))#(B, 1, H, W) return x * out #(B, C, H, W)
In [14]:
class DecoderAttentionBlock(nn.Module): def __init__(self, in_channels): super(DecoderAttentionBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1) self.conv2 = nn.Conv2d(in_channels // 2, in_channels, kernel_size=1) self.spatial_attention = SpatialAttentionBlock() def forward(self, x): # 通道注意力 b, c, h, w = x.size() avg_pool = F.adaptive_avg_pool2d(x, 1) max_pool = F.adaptive_max_pool2d(x, 1) avg_out = self.conv1(avg_pool) max_out = self.conv1(max_pool) out = avg_out + max_out out = torch.sigmoid(self.conv2(out)) # 添加空间注意力 out = x * out out = self.spatial_attention(out) return out
In [15]:
class SEBlock(nn.Module): def __init__(self, in_channels, reduced_dim): super(SEBlock, self).__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), # 全局平均池化 nn.Conv2d(in_channels, reduced_dim, kernel_size=1), nn.ReLU(), nn.Conv2d(reduced_dim, in_channels, kernel_size=1), nn.Sigmoid() # 使用Sigmoid是因为我们要对通道进行权重归一化 ) def forward(self, x): return x * self.se(x)
In [16]:
def masked_mse_loss(preds, target, mask): loss = (preds - target) ** 2 loss = loss.mean(dim=-1) # 对每个像素点求平均 loss = (loss * (1-mask)).sum() / (1-mask).sum() # 只计算被mask的像素点的损失 return loss
In [17]:
# 定义Masked Autoencoder模型 class MaskedAutoencoder(nn.Module): def __init__(self): super(MaskedAutoencoder, self).__init__() self.encoder = nn.Sequential( Conv(1, 32, kernel_size=3, stride=2), nn.ReLU(), SEBlock(32,32), ConvBNReLU(32, 64, kernel_size=3, stride=2), ResidualBlock(64,64), SeparableBNReLU(64, 128, kernel_size=3, stride=2), MultiHeadAttentionBlock(embed_dim=128, num_heads=4), SEBlock(128, 128) ) # self.mlp = Mlp(in_features=128, hidden_features=256, out_features=128, act_layer=nn.ReLU6, drop=0.1) self.decoder = nn.Sequential( nn.ConvTranspose2d(128, 32, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), DecoderAttentionBlock(32), nn.ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1, output_padding=1), nn.ReLU(), DecoderAttentionBlock(16), nn.ReLU(), nn.ConvTranspose2d(16, 1, kernel_size=3, stride=2, padding=1, output_padding=1), # 修改为 output_padding=1 nn.Sigmoid() ) def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded # 实例化模型、损失函数和优化器 model = MaskedAutoencoder() criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
In [18]:
# 训练函数 def train_epoch(model, device, data_loader, criterion, optimizer): model.train() running_loss = 0.0 for batch_idx, (X, y, mask) in enumerate(data_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) optimizer.zero_grad() reconstructed = model(X) loss = masked_mse_loss(reconstructed, y, mask) loss.backward() optimizer.step() running_loss += loss.item() return running_loss / (batch_idx + 1)
In [19]:
# 评估函数 def evaluate(model, device, data_loader, criterion): model.eval() running_loss = 0.0 with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(data_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) reconstructed = model(X) if batch_idx == 8: rand_ind = np.random.randint(0, len(y)) # visualize_feature(y[rand_ind], X[rand_ind], reconstructed[rand_ind], title='NO_2') loss = masked_mse_loss(reconstructed, y, mask) running_loss += loss.item() return running_loss / (batch_idx + 1)
In [20]:
# 数据准备 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device)
cuda
In [21]:
model = model.to(device) num_epochs = 160 train_losses = list() val_losses = list() for epoch in range(num_epochs): train_loss = train_epoch(model, device, train_loader, criterion, optimizer) train_losses.append(train_loss) val_loss = evaluate(model, device, val_loader, criterion) val_losses.append(val_loss) print(f'Epoch {epoch+1}, Train Loss: {train_loss}, Val Loss: {val_loss}') # 测试模型 test_loss = evaluate(model, device, test_loader, criterion) print(f'Test Loss: {test_loss}')
/root/miniconda3/envs/python38/lib/python3.8/site-packages/torch/nn/modules/conv.py:456: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at /opt/conda/conda-bld/pytorch_1711403590347/work/aten/src/ATen/native/cudnn/Conv_v8.cpp:80.) return F.conv2d(input, weight, bias, self.stride,
Epoch 1, Train Loss: 1.828955806274876, Val Loss: 0.08777590596408986 Epoch 2, Train Loss: 0.06457909727781012, Val Loss: 0.05018303115198861 Epoch 3, Train Loss: 0.04399169035006368, Val Loss: 0.03933813378437242 Epoch 4, Train Loss: 0.03737294341049839, Val Loss: 0.04090026577017201 Epoch 5, Train Loss: 0.03340746862947513, Val Loss: 0.029788545930563515 Epoch 6, Train Loss: 0.03127880183240158, Val Loss: 0.02878953230136366 Epoch 7, Train Loss: 0.030086695853816837, Val Loss: 0.027378849156979305 Epoch 8, Train Loss: 0.02827827861470184, Val Loss: 0.026564865748384105 Epoch 9, Train Loss: 0.026973650764014447, Val Loss: 0.026876062349374615 Epoch 10, Train Loss: 0.026198443756149145, Val Loss: 0.025235873994542593 Epoch 11, Train Loss: 0.025248640154501754, Val Loss: 0.025164278752323407 Epoch 12, Train Loss: 0.0246738152373493, Val Loss: 0.02402887423870279 Epoch 13, Train Loss: 0.02429686849446673, Val Loss: 0.02467221769490349 Epoch 14, Train Loss: 0.023617587716242915, Val Loss: 0.024100169289245535 Epoch 15, Train Loss: 0.022902602209535796, Val Loss: 0.023378314227977797 Epoch 16, Train Loss: 0.022661644239067746, Val Loss: 0.02472560463556603 Epoch 17, Train Loss: 0.02193861959154526, Val Loss: 0.02273730694580434 Epoch 18, Train Loss: 0.021775715561075645, Val Loss: 0.022977211248518814 Epoch 19, Train Loss: 0.021564541914852325, Val Loss: 0.022313175500551268 Epoch 20, Train Loss: 0.0214472935851396, Val Loss: 0.022048505606935984 Epoch 21, Train Loss: 0.020810687219340835, Val Loss: 0.02184077285563768 Epoch 22, Train Loss: 0.020310772384592647, Val Loss: 0.021513454977478554 Epoch 23, Train Loss: 0.02010334756350118, Val Loss: 0.02177375905326943 Epoch 24, Train Loss: 0.02025744297795675, Val Loss: 0.02049418441506464 Epoch 25, Train Loss: 0.019826160295995657, Val Loss: 0.023377947564890134 Epoch 26, Train Loss: 0.019065276574806875, Val Loss: 0.020193443425110917 Epoch 27, Train Loss: 0.01881279432745071, Val Loss: 0.01942526154331307 Epoch 28, Train Loss: 0.01839842515413841, Val Loss: 0.01973166508572315 Epoch 29, Train Loss: 0.018092166516555555, Val Loss: 0.021518220902601286 Epoch 30, Train Loss: 0.01789530134942543, Val Loss: 0.0191833000741343 Epoch 31, Train Loss: 0.017643442852021546, Val Loss: 0.018857373494599292 Epoch 32, Train Loss: 0.017585936365604543, Val Loss: 0.018622038858150367 Epoch 33, Train Loss: 0.017121152348513382, Val Loss: 0.018597172726112516 Epoch 34, Train Loss: 0.016807572604223872, Val Loss: 0.01907729919054615 Epoch 35, Train Loss: 0.0167503119735983, Val Loss: 0.018055098590010137 Epoch 36, Train Loss: 0.01674377040839509, Val Loss: 0.017786314029858183 Epoch 37, Train Loss: 0.016270555827641888, Val Loss: 0.01821137344770467 Epoch 38, Train Loss: 0.016271821564090166, Val Loss: 0.017419732745681236 Epoch 39, Train Loss: 0.01634730132180823, Val Loss: 0.017153916838787385 Epoch 40, Train Loss: 0.016149515664855545, Val Loss: 0.01720947952968861 Epoch 41, Train Loss: 0.015722640304331573, Val Loss: 0.01671495117636314 Epoch 42, Train Loss: 0.015584125958882165, Val Loss: 0.016605446490445243 Epoch 43, Train Loss: 0.015607581132996168, Val Loss: 0.016551834531128407 Epoch 44, Train Loss: 0.015686789721375303, Val Loss: 0.017196020681355426 Epoch 45, Train Loss: 0.0152399734099302, Val Loss: 0.016840887422770706 Epoch 46, Train Loss: 0.015122933551651296, Val Loss: 0.018965846010998114 Epoch 47, Train Loss: 0.015065566115259554, Val Loss: 0.016344470375064594 Epoch 48, Train Loss: 0.014854169773766726, Val Loss: 0.016327281677122437 Epoch 49, Train Loss: 0.014882152102459845, Val Loss: 0.015837757153186336 Epoch 50, Train Loss: 0.014656414190957848, Val Loss: 0.016042638750774645 Epoch 51, Train Loss: 0.014637816764200418, Val Loss: 0.015558397091591536 Epoch 52, Train Loss: 0.01454300198784214, Val Loss: 0.015685647628756603 Epoch 53, Train Loss: 0.014566657712691994, Val Loss: 0.01571561763090874 Epoch 54, Train Loss: 0.01434676954522729, Val Loss: 0.015356795890117758 Epoch 55, Train Loss: 0.014364799384348557, Val Loss: 0.015472657116713808 Epoch 56, Train Loss: 0.014128341450930783, Val Loss: 0.015367844809235922 Epoch 57, Train Loss: 0.014267995692878677, Val Loss: 0.016404178910958234 Epoch 58, Train Loss: 0.01399662052882773, Val Loss: 0.014956932640008962 Epoch 59, Train Loss: 0.013984658806607056, Val Loss: 0.01512009026343698 Epoch 60, Train Loss: 0.013917681792278608, Val Loss: 0.01516334629103319 Epoch 61, Train Loss: 0.013808810461811614, Val Loss: 0.015075811351746765 Epoch 62, Train Loss: 0.014042920544387051, Val Loss: 0.015152243647112776 Epoch 63, Train Loss: 0.0136711714971971, Val Loss: 0.014804388201837219 Epoch 64, Train Loss: 0.013782783121797457, Val Loss: 0.015533475858618074 Epoch 65, Train Loss: 0.013631306383669661, Val Loss: 0.014752479089396213 Epoch 66, Train Loss: 0.013644688259186357, Val Loss: 0.01469478735338841 Epoch 67, Train Loss: 0.013522711930056793, Val Loss: 0.014726998854372928 Epoch 68, Train Loss: 0.01350348583159692, Val Loss: 0.014617940202466588 Epoch 69, Train Loss: 0.013397794087644684, Val Loss: 0.014498871904033334 Epoch 70, Train Loss: 0.013320690925504888, Val Loss: 0.014324163573224153 Epoch 71, Train Loss: 0.013295841332008108, Val Loss: 0.014810262790033177 Epoch 72, Train Loss: 0.013151036726943614, Val Loss: 0.014535954208182754 Epoch 73, Train Loss: 0.01315474125409597, Val Loss: 0.014322022976937578 Epoch 74, Train Loss: 0.013201014497473337, Val Loss: 0.014625799591972757 Epoch 75, Train Loss: 0.013166735187155065, Val Loss: 0.01410402478511209 Epoch 76, Train Loss: 0.013011173492199496, Val Loss: 0.014279130234647153 Epoch 77, Train Loss: 0.012954122741131833, Val Loss: 0.015670507896079947 Epoch 78, Train Loss: 0.012964830874202497, Val Loss: 0.013965579806201493 Epoch 79, Train Loss: 0.01284469154765874, Val Loss: 0.014020084167149529 Epoch 80, Train Loss: 0.01269332727230194, Val Loss: 0.014467649356420361 Epoch 81, Train Loss: 0.012900225120779287, Val Loss: 0.014321781124975255 Epoch 82, Train Loss: 0.012758908171705795, Val Loss: 0.013745425046602292 Epoch 83, Train Loss: 0.01266205709418683, Val Loss: 0.013802579048075784 Epoch 84, Train Loss: 0.012549680232128315, Val Loss: 0.013783436657777473 Epoch 85, Train Loss: 0.012634162601689545, Val Loss: 0.01444499020867828 Epoch 86, Train Loss: 0.012543465024190086, Val Loss: 0.014219797327558495 Epoch 87, Train Loss: 0.012490486795234195, Val Loss: 0.013482047425610806 Epoch 88, Train Loss: 0.012537837625619327, Val Loss: 0.014496686354057113 Epoch 89, Train Loss: 0.012536356080786891, Val Loss: 0.013949389360956292 Epoch 90, Train Loss: 0.012426643302601776, Val Loss: 0.013645224328806152 Epoch 91, Train Loss: 0.012394862496806531, Val Loss: 0.013617335818707943 Epoch 92, Train Loss: 0.012383774110075959, Val Loss: 0.013630805342499889 Epoch 93, Train Loss: 0.012307288521749267, Val Loss: 0.013647960637932393 Epoch 94, Train Loss: 0.012298794681625218, Val Loss: 0.013733426678870151 Epoch 95, Train Loss: 0.012473734824263165, Val Loss: 0.013764488983398942 Epoch 96, Train Loss: 0.012222074678515276, Val Loss: 0.013446863671180918 Epoch 97, Train Loss: 0.012306330008120344, Val Loss: 0.013694896279319899 Epoch 98, Train Loss: 0.012166704374263019, Val Loss: 0.013338639831809855 Epoch 99, Train Loss: 0.012187617220447965, Val Loss: 0.01352898025913025 Epoch 100, Train Loss: 0.012234464256565252, Val Loss: 0.013427354033980796 Epoch 101, Train Loss: 0.012252488267122273, Val Loss: 0.013189904238861887 Epoch 102, Train Loss: 0.01208857831692225, Val Loss: 0.013358786896760785 Epoch 103, Train Loss: 0.012067412587693718, Val Loss: 0.013412703287356826 Epoch 104, Train Loss: 0.011943526178348863, Val Loss: 0.013329273687480991 Epoch 105, Train Loss: 0.012186939030457911, Val Loss: 0.013039200052396576 Epoch 106, Train Loss: 0.012064487648833739, Val Loss: 0.013328265718448518 Epoch 107, Train Loss: 0.01196315302624942, Val Loss: 0.013011285284561898 Epoch 108, Train Loss: 0.011942964125175082, Val Loss: 0.013228343076892753 Epoch 109, Train Loss: 0.011851983095862363, Val Loss: 0.012941466032791494 Epoch 110, Train Loss: 0.011892807039401035, Val Loss: 0.013264400856708413 Epoch 111, Train Loss: 0.011915889784747192, Val Loss: 0.01319889353115612 Epoch 112, Train Loss: 0.011905829402123484, Val Loss: 0.014149442662610047 Epoch 113, Train Loss: 0.011818570989455903, Val Loss: 0.013042371636673586 Epoch 114, Train Loss: 0.011752497955140743, Val Loss: 0.01301327784226012 Epoch 115, Train Loss: 0.011813209191606375, Val Loss: 0.01286677592225484 Epoch 116, Train Loss: 0.011725439075113198, Val Loss: 0.013167357391941904 Epoch 117, Train Loss: 0.011835235226721141, Val Loss: 0.01286814648157625 Epoch 118, Train Loss: 0.011680879099873835, Val Loss: 0.012708428107313256 Epoch 119, Train Loss: 0.01173722647959322, Val Loss: 0.012885383775096331 Epoch 120, Train Loss: 0.011672099965343777, Val Loss: 0.012913884747940214 Epoch 121, Train Loss: 0.011704605972866693, Val Loss: 0.012728425813143823 Epoch 122, Train Loss: 0.011705320578015021, Val Loss: 0.012817327530860012 Epoch 123, Train Loss: 0.011644495068492288, Val Loss: 0.012942980015789396 Epoch 124, Train Loss: 0.011633442955439171, Val Loss: 0.012936850551015405 Epoch 125, Train Loss: 0.011616052921558396, Val Loss: 0.012702107387803384 Epoch 126, Train Loss: 0.011607619160652588, Val Loss: 0.012658866025062639 Epoch 127, Train Loss: 0.011635440495310788, Val Loss: 0.01304104494681554 Epoch 128, Train Loss: 0.01150463111074775, Val Loss: 0.013212839975508291 Epoch 129, Train Loss: 0.011585681133293078, Val Loss: 0.01278914052492647 Epoch 130, Train Loss: 0.011392400087565896, Val Loss: 0.012796499154794572 Epoch 131, Train Loss: 0.011433751801358598, Val Loss: 0.012598757076063264 Epoch 132, Train Loss: 0.011496097840921303, Val Loss: 0.01271620902941743 Epoch 133, Train Loss: 0.011477598884815804, Val Loss: 0.013398304248034065 Epoch 134, Train Loss: 0.011365674946314552, Val Loss: 0.012668505741922713 Epoch 135, Train Loss: 0.01142354957696995, Val Loss: 0.013356663286685944 Epoch 136, Train Loss: 0.011355750374139497, Val Loss: 0.012617305616167054 Epoch 137, Train Loss: 0.011350866257877013, Val Loss: 0.012997348792850971 Epoch 138, Train Loss: 0.011416472670617715, Val Loss: 0.012524361819473665 Epoch 139, Train Loss: 0.011427981736646458, Val Loss: 0.012654973694415235 Epoch 140, Train Loss: 0.011318818902213607, Val Loss: 0.012664613897787102 Epoch 141, Train Loss: 0.011320005095247446, Val Loss: 0.012727182441905363 Epoch 142, Train Loss: 0.011245375826651827, Val Loss: 0.012474427931010723 Epoch 143, Train Loss: 0.011338526420919091, Val Loss: 0.012642348824597117 Epoch 144, Train Loss: 0.011243535689207497, Val Loss: 0.012692421772030752 Epoch 145, Train Loss: 0.011166462189023289, Val Loss: 0.01263011310861182 Epoch 146, Train Loss: 0.011227301243942178, Val Loss: 0.012461379587427894 Epoch 147, Train Loss: 0.01119774208364019, Val Loss: 0.012749987918494353 Epoch 148, Train Loss: 0.011138954723441001, Val Loss: 0.012676928915194612 Epoch 149, Train Loss: 0.011145075226122398, Val Loss: 0.012806226499378681 Epoch 150, Train Loss: 0.011238663441737731, Val Loss: 0.012608930385157244 Epoch 151, Train Loss: 0.01112103075430724, Val Loss: 0.012799791727604261 Epoch 152, Train Loss: 0.01109027168958595, Val Loss: 0.01240885794273953 Epoch 153, Train Loss: 0.011098397055721026, Val Loss: 0.012326594039019364 Epoch 154, Train Loss: 0.011026590389676356, Val Loss: 0.012310143629672811 Epoch 155, Train Loss: 0.011067607804339682, Val Loss: 0.01242478439278567 Epoch 156, Train Loss: 0.01105262930215332, Val Loss: 0.01238662200465576 Epoch 157, Train Loss: 0.010977347388097117, Val Loss: 0.012163419262575569 Epoch 158, Train Loss: 0.010957017552071924, Val Loss: 0.012397716572480415 Epoch 159, Train Loss: 0.010956506543396192, Val Loss: 0.012370292931350309 Epoch 160, Train Loss: 0.01093887382980133, Val Loss: 0.012291266110294791 Test Loss: 0.006885056002065539
In [23]:
tr_ind = list(range(len(train_losses))) val_ind = list(range(len(val_losses))) plt.plot(train_losses[1:], label='train_loss') plt.plot(val_losses[1:], label='val_loss') plt.legend(loc='best')
Out[23]:
<matplotlib.legend.Legend at 0x7f8d2cf4ebe0>
In [24]:
from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_percentage_error, mean_absolute_error
In [25]:
def cal_ioa(y_true, y_pred): # 计算平均值 mean_observed = np.mean(y_true) mean_predicted = np.mean(y_pred) # 计算IoA numerator = np.sum((y_true - y_pred) ** 2) denominator = np.sum((np.abs(y_true - mean_observed) + np.abs(y_pred - mean_predicted)) ** 2) IoA = 1 - (numerator / denominator) return IoA
In [26]:
eva_list = list() device = 'cpu' model = model.to(device) with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(test_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域 reconstructed = model(X) rev_data = y * max_pixel_value rev_recon = reconstructed * max_pixel_value # todo: 这里需要只评估修补出来的模块 data_label = torch.squeeze(rev_data, dim=1) * mask_rev data_label = data_label[mask_rev==1] recon_no2 = torch.squeeze(rev_recon, dim=1) * mask_rev recon_no2 = recon_no2[mask_rev==1] mae = mean_absolute_error(data_label, recon_no2) rmse = np.sqrt(mean_squared_error(data_label, recon_no2)) mape = mean_absolute_percentage_error(data_label, recon_no2) r2 = r2_score(data_label, recon_no2) ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy()) r = np.corrcoef(data_label, recon_no2)[0, 1] eva_list.append([mae, rmse, mape, r2, ioa, r])
In [27]:
eva_list_frame = list() device = 'cpu' model = model.to(device) best_mape = 1 best_img = None best_mask = None best_recov = None with torch.no_grad(): for batch_idx, (X, y, mask) in enumerate(test_loader): X, y, mask = X.to(device), y.to(device), mask.to(device) mask_rev = (torch.squeeze(mask, dim=1)==0) * 1 # mask取反获得修复区域 reconstructed = model(X) rev_data = y * max_pixel_value rev_recon = reconstructed * max_pixel_value # todo: 这里需要只评估修补出来的模块 for i, sample in enumerate(rev_data): used_mask = mask_rev[i] data_label = sample[0] * used_mask recon_no2 = rev_recon[i][0] * used_mask data_label = data_label[used_mask==1] recon_no2 = recon_no2[used_mask==1] mae = mean_absolute_error(data_label, recon_no2) rmse = np.sqrt(mean_squared_error(data_label, recon_no2)) mape = mean_absolute_percentage_error(data_label, recon_no2) r2 = r2_score(data_label, recon_no2) ioa = cal_ioa(data_label.detach().numpy(), recon_no2.detach().numpy()) r = np.corrcoef(data_label, recon_no2)[0, 1] eva_list_frame.append([mae, rmse, mape, r2, ioa, r]) if mape < best_mape: best_recov = rev_recon[i][0].numpy() best_mask = used_mask.numpy() best_img = sample[0].numpy() best_mape = mape
In [28]:
pd.DataFrame(eva_list_frame, columns=['mae', 'rmse', 'mape', 'r2', 'ioa', 'r']).describe()
Out[28]:
mae | rmse | mape | r2 | ioa | r | |
---|---|---|---|---|---|---|
count | 4739.000000 | 4739.000000 | 4739.000000 | 4739.000000 | 4739.000000 | 4739.000000 |
mean | 1.261634 | 1.801726 | 0.153962 | 0.681159 | 0.891040 | 0.840609 |
std | 0.572205 | 0.861009 | 0.065723 | 0.249771 | 0.110411 | 0.124012 |
min | 0.361480 | 0.468918 | 0.047540 | -2.107971 | -0.424296 | -0.070884 |
25% | 0.828453 | 1.149391 | 0.111256 | 0.600440 | 0.868937 | 0.797875 |
50% | 1.135805 | 1.621294 | 0.143929 | 0.740937 | 0.922953 | 0.872734 |
75% | 1.557381 | 2.250718 | 0.179544 | 0.835907 | 0.953556 | 0.921983 |
max | 5.733449 | 8.356097 | 1.116946 | 0.985570 | 0.996237 | 0.993398 |
In [31]:
pd.DataFrame(eva_list, columns=['mae', 'rmse', 'mape', 'r2', 'ioa', 'r']).describe()
Out[31]:
mae | rmse | mape | r2 | ioa | r | |
---|---|---|---|---|---|---|
count | 75.000000 | 75.000000 | 75.000000 | 75.000000 | 75.000000 | 75.000000 |
mean | 1.263991 | 1.987788 | 0.153931 | 0.907729 | 0.974785 | 0.953238 |
std | 0.108035 | 0.209185 | 0.007592 | 0.017280 | 0.005782 | 0.007909 |
min | 1.077143 | 1.658797 | 0.135271 | 0.791607 | 0.933031 | 0.905484 |
25% | 1.208991 | 1.892923 | 0.149006 | 0.901544 | 0.972912 | 0.950092 |
50% | 1.255151 | 1.967265 | 0.153929 | 0.908183 | 0.974939 | 0.953771 |
75% | 1.307615 | 2.079039 | 0.158463 | 0.915666 | 0.977269 | 0.957454 |
max | 1.956845 | 3.320712 | 0.175028 | 0.931715 | 0.981832 | 0.965467 |
In [67]:
# torch.save(model, './models/MAE/final_20.pt')
In [32]:
model_20 = torch.load('./models/MAE/final_20.pt')
In [38]:
# 可视化特定特征的函数 def visualize_rst(input_feature,masked_feature, recov_region, output_feature, title): plt.figure(figsize=(12, 6)) plt.subplot(1, 4, 1) plt.imshow(input_feature, cmap='RdYlGn_r') plt.gca().axis('off') # 获取当前坐标轴并关闭 plt.subplot(1, 4, 2) plt.imshow(masked_feature, cmap='gray') plt.gca().axis('off') # 获取当前坐标轴并关闭 plt.subplot(1, 4, 3) plt.imshow(recov_region, cmap='RdYlGn_r') plt.gca().axis('off') # 获取当前坐标轴并关闭 plt.subplot(1, 4, 4) plt.imshow(output_feature, cmap='RdYlGn_r') plt.gca().axis('off') # 获取当前坐标轴并关闭 plt.savefig('./figures/result/20_samples.png', bbox_inches='tight')
In [39]:
best_mask_cp = np.where(best_mask == 0, np.nan, best_mask)
In [49]:
visualize_rst(best_img, best_mask, best_recov*best_mask_cp, best_img * (1-best_mask) + best_recov*best_mask, '')
In [33]:
find_ex = set([x.split('-')[0].strip() for x in os.listdir('./test_img/') if 'npy' in x]) find_ex
Out[33]:
{'1114', '1952', '2568', '3523', '602'}
In [70]:
for j in find_ex: ori = np.load(f'./test_img/{j}-real.npy')[0] mask = np.load(f'./test_img/{j}-mask.npy') mask_rev = 1 - mask img_in = ori * mask_rev / max_pixel_value img_out = model(torch.tensor(img_in.reshape(1, 1, 96, 96), dtype=torch.float32)).detach().cpu().numpy()[0][0] * max_pixel_value out = ori * mask_rev + img_out * mask plt.imshow(out, cmap='RdYlGn_r') plt.gca().axis('off') plt.savefig(f'./test_img/out_fig/{j}-mae_my_out.png', bbox_inches='tight') plt.clf()
<Figure size 640x480 with 0 Axes>
In [ ]: