ai-station-code/dimaoshibie/utils/utils_metrics.py

178 lines
7.8 KiB
Python
Raw Normal View History

2025-05-06 11:18:48 +08:00
import csv
import os
from os.path import join
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
def f_score(inputs, target, beta=1, smooth=1e-5, threhold=0.5):
n, c, h, w = inputs.size()
nt, ht, wt, ct = target.size()
if h != ht and w != wt:
inputs = F.interpolate(inputs, size=(ht, wt), mode="bilinear", align_corners=True)
temp_inputs = torch.softmax(inputs.transpose(1, 2).transpose(2, 3).contiguous().view(n, -1, c), -1)
temp_target = target.view(n, -1, ct)
# --------------------------------------------#
# 计算dice系数
# --------------------------------------------#
temp_inputs = torch.gt(temp_inputs, threhold).float()
tp = torch.sum(temp_target[..., :-1] * temp_inputs, axis=[0, 1])
fp = torch.sum(temp_inputs, axis=[0, 1]) - tp
fn = torch.sum(temp_target[..., :-1], axis=[0, 1]) - tp
score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
score = torch.mean(score)
return score
# 设标签宽W长H
def fast_hist(a, b, n):
# --------------------------------------------------------------------------------#
# a是转化成一维数组的标签形状(H×W,)b是转化成一维数组的预测结果形状(H×W,)
# --------------------------------------------------------------------------------#
k = (a >= 0) & (a < n)
# --------------------------------------------------------------------------------#
# np.bincount计算了从0到n**2-1这n**2个数中每个数出现的次数返回值形状(n, n)
# 返回中,写对角线上的为分类正确的像素点
# --------------------------------------------------------------------------------#
return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n)
def per_class_iu(hist):
return np.diag(hist) / np.maximum((hist.sum(1) + hist.sum(0) - np.diag(hist)), 1)
def per_class_PA_Recall(hist):
return np.diag(hist) / np.maximum(hist.sum(1), 1)
def per_class_Precision(hist):
return np.diag(hist) / np.maximum(hist.sum(0), 1)
def per_Accuracy(hist):
return np.sum(np.diag(hist)) / np.maximum(np.sum(hist), 1)
def compute_mIoU(gt_dir, pred_dir, png_name_list, num_classes, name_classes=None):
print('Num classes', num_classes)
hist = np.zeros((num_classes, num_classes))
gt_imgs = [join(gt_dir, x + ".png") for x in png_name_list]
pred_imgs = [join(pred_dir, x + ".png") for x in png_name_list]
for ind in range(len(gt_imgs)):
pred = np.array(Image.open(pred_imgs[ind]))
label = np.array(Image.open(gt_imgs[ind]))
if len(label.flatten()) != len(pred.flatten()):
print('Skipping: len(gt) = {:d}, len(pred) = {:d}, {:s}, {:s}'.format(len(label.flatten()),
len(pred.flatten()), gt_imgs[ind],
pred_imgs[ind]))
continue
hist += fast_hist(label.flatten(), pred.flatten(), num_classes)
if name_classes is not None and ind > 0 and ind % 10 == 0:
print('{:d} / {:d}: mIou-{:0.2f}%; mPA-{:0.2f}%; Accuracy-{:0.2f}%'.format(
ind,
len(gt_imgs),
100 * np.nanmean(per_class_iu(hist)),
100 * np.nanmean(per_class_PA_Recall(hist)),
100 * per_Accuracy(hist)
))
IoUs = per_class_iu(hist)
PA_Recall = per_class_PA_Recall(hist)
Precision = per_class_Precision(hist)
Accuracy = per_Accuracy(hist)
# Calculate OA, Recall, and mf1 (mean F1 score) for each class
OA = np.sum(np.diag(hist)) / np.sum(hist) # Overall Accuracy
Recall = np.diag(hist) / np.maximum(hist.sum(1), 1) # Recall for each class
Precision_for_f1 = np.diag(hist) / np.maximum(hist.sum(0), 1) # Precision for each class
F1_scores = 2 * (Precision_for_f1 * Recall) / np.maximum((Precision_for_f1 + Recall), 1) # F1 for each class
mf1 = np.nanmean(F1_scores) # mean F1 score
# Print per-class results including OA, Recall, and mf1
if name_classes is not None:
for ind_class in range(num_classes):
print(f'===> {name_classes[ind_class]}: '
f'Iou-{round(IoUs[ind_class] * 100, 2)}%; '
f'PA-{round(PA_Recall[ind_class] * 100, 2)}%; '
f'Precision-{round(Precision[ind_class] * 100, 2)}%; '
f'Recall-{round(Recall[ind_class] * 100, 2)}%; '
f'F1-{round(F1_scores[ind_class] * 100, 2)}%')
# Print overall results
print('===> mIoU: ' + str(round(np.nanmean(IoUs) * 100, 2)) + '; mPA: ' + str(
round(np.nanmean(PA_Recall) * 100, 2)) + '; Accuracy: ' + str(round(Accuracy * 100, 2)) +
'; OA: ' + str(round(OA * 100, 2)) + '; mF1: ' + str(round(mf1 * 100, 2)))
return np.array(hist, np.int64), IoUs, PA_Recall, Precision, OA, Recall, F1_scores, mf1
def adjust_axes(r, t, fig, axes):
bb = t.get_window_extent(renderer=r)
text_width_inches = bb.width / fig.dpi
current_fig_width = fig.get_figwidth()
new_fig_width = current_fig_width + text_width_inches
propotion = new_fig_width / current_fig_width
x_lim = axes.get_xlim()
axes.set_xlim([x_lim[0], x_lim[1] * propotion])
def draw_plot_func(values, name_classes, plot_title, x_label, output_path, tick_font_size=12, plt_show=True):
fig = plt.gcf()
axes = plt.gca()
plt.barh(range(len(values)), values, color='royalblue')
plt.title(plot_title, fontsize=tick_font_size + 2)
plt.xlabel(x_label, fontsize=tick_font_size)
plt.yticks(range(len(values)), name_classes, fontsize=tick_font_size)
r = fig.canvas.get_renderer()
for i, val in enumerate(values):
str_val = " " + str(val)
if val < 1.0:
str_val = " {0:.2f}".format(val)
t = plt.text(val, i, str_val, color='royalblue', va='center', fontweight='bold')
if i == (len(values) - 1):
adjust_axes(r, t, fig, axes)
fig.tight_layout()
fig.savefig(output_path)
if plt_show:
plt.show()
plt.close()
def show_results(miou_out_path, hist, IoUs, PA_Recall, Precision, name_classes, tick_font_size=12):
draw_plot_func(IoUs, name_classes, "mIoU = {0:.2f}%".format(np.nanmean(IoUs) * 100), "Intersection over Union", \
os.path.join(miou_out_path, "mIoU.png"), tick_font_size=tick_font_size, plt_show=True)
print("Save mIoU out to " + os.path.join(miou_out_path, "mIoU.png"))
draw_plot_func(PA_Recall, name_classes, "mPA = {0:.2f}%".format(np.nanmean(PA_Recall) * 100), "Pixel Accuracy", \
os.path.join(miou_out_path, "mPA.png"), tick_font_size=tick_font_size, plt_show=False)
print("Save mPA out to " + os.path.join(miou_out_path, "mPA.png"))
draw_plot_func(PA_Recall, name_classes, "mRecall = {0:.2f}%".format(np.nanmean(PA_Recall) * 100), "Recall", \
os.path.join(miou_out_path, "Recall.png"), tick_font_size=tick_font_size, plt_show=False)
print("Save Recall out to " + os.path.join(miou_out_path, "Recall.png"))
draw_plot_func(Precision, name_classes, "mPrecision = {0:.2f}%".format(np.nanmean(Precision) * 100), "Precision", \
os.path.join(miou_out_path, "Precision.png"), tick_font_size=tick_font_size, plt_show=False)
print("Save Precision out to " + os.path.join(miou_out_path, "Precision.png"))
with open(os.path.join(miou_out_path, "confusion_matrix.csv"), 'w', newline='') as f:
writer = csv.writer(f)
writer_list = []
writer_list.append([' '] + [str(c) for c in name_classes])
for i in range(len(hist)):
writer_list.append([name_classes[i]] + [str(x) for x in hist[i]])
writer.writerows(writer_list)
print("Save confusion_matrix out to " + os.path.join(miou_out_path, "confusion_matrix.csv"))