ai-station-code/wudingpv/taihuyuan_pv/utils/util.py

415 lines
14 KiB
Python
Raw Normal View History

2025-05-06 11:18:48 +08:00
from collections import defaultdict, deque
import datetime
import time
import torch
import torch.distributed as dist
from taihuyuan_roof.utils.dice_coefficient_loss import multiclass_dice_coeff, build_target
import errno
import torch.nn.functional as F
import os
import logging
from pathlib import Path
def getLogger(savedir):
logger = logging.getLogger()
logger.setLevel(logging.INFO) # Log等级总开关
formatter = logging.Formatter(fmt="[%(asctime)s|%(filename)s|%(levelname)s] %(message)s",
datefmt="%a %b %d %H:%M:%S %Y")
# StreamHandler
sHandler = logging.StreamHandler()
sHandler.setFormatter(formatter)
logger.addHandler(sHandler)
work_dir= "/"
# FileHandler
Path(savedir).mkdir(parents=True, exist_ok=True)
work_dir = os.path.join(savedir,
time.strftime("%Y-%m-%d-%H.%M", time.localtime())) # 日志文件写入目录
if not os.path.exists(work_dir):
os.makedirs(work_dir)
fHandler = logging.FileHandler(work_dir + '/log.txt', mode='w',encoding="utf-8")
fHandler.setLevel(logging.DEBUG) # 输出到file的log等级的开关
fHandler.setFormatter(formatter) # 定义handler的输出格式
logger.addHandler(fHandler) # 将logger添加到handler里面
return logger
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{value:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
def synchronize_between_processes(self):
"""
Warning: does not synchronize the deque!
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
self.count = int(t[0])
self.total = t[1]
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
class ConfusionMatrix(object):
def __init__(self, num_classes):
self.num_classes = num_classes
self.mat = None
def update(self, a, b):
n = self.num_classes
if self.mat is None:
# 创建混淆矩阵
self.mat = torch.zeros((n, n), dtype=torch.int64, device=a.device)
with torch.no_grad():
# 寻找GT中为目标的像素索引
k = (a >= 0) & (a < n)
# 统计像素真实类别a[k]被预测成类别b[k]的个数(这里的做法很巧妙)
inds = n * a[k].to(torch.int64) + b[k]
self.mat += torch.bincount(inds, minlength=n**2).reshape(n, n)
def reset(self):
if self.mat is not None:
self.mat.zero_()
def compute(self):
# 注意混淆矩阵的形式
# 注意这个混淆矩阵都不太统一 有的是1的样子 有的是2的样子 本计算 借鉴的霹雳大佬的代码采用2的形式
'''1.
预测
真实
'''
'''2.
真实
预测
'''
#
# #0.sum代表所有行之间取sum 保留列的结构 1.sum代表所有列之间取sum保留行的结构
h = self.mat.float()
# 计算全局预测准确率(混淆矩阵的对角线为预测正确的个数)
acc_global = torch.diag(h).sum() / h.sum()
# 计算每个类别的准确率
acc = torch.diag(h) / h.sum(1)
# 计算每个类别预测与真实目标的iou
iu = torch.diag(h) / (h.sum(1) + h.sum(0) - torch.diag(h))
'''
22/9/24补充每一类的准确率p同上边的acc和召回率r
p=tp/tp+fp 对角线/h.sum(1)
召回=tp/tp+fn 对角线/h.sum(0)
f1=2 (p*r)/p+r
'''
recall = torch.diag(h) / h.sum(1)
precion = torch.diag(h) / h.sum(0)
f1 = (2 * precion * recall) / (precion + recall)
return acc_global, acc, iu,precion,recall,f1
# def reduce_from_all_processes(self):
# if not torch.distributed.is_available():
# return
# if not torch.distributed.is_initialized():
# return
# torch.distributed.barrier()
# torch.distributed.all_reduce(self.mat)
def re_zhib(self):
acc_global, acc, iu,precion,recall,f1 = self.compute()
miou = iu.mean().item() * 100
meanf1= f1.mean().item() * 100
pv_iou=iu[1:].mean().item() * 100
pv_f1=f1[1:].mean().item() * 100
acc_global = acc_global.item() * 100
acc = [round(i, 1) for i in (acc * 100).tolist()]
iu = [round(i, 1) for i in (iu * 100).tolist()]
precion = [round(i, 1) for i in (precion * 100).tolist()]
recall = [round(i, 1) for i in (recall * 100).tolist()]
f1 = [round(i, 1) for i in (f1 * 100).tolist()]
return acc_global, acc, iu,precion,recall,f1,miou,meanf1,pv_iou,pv_f1
def __str__(self):
acc_global, acc, iu, precion, recall, f1 = self.compute()
return (
'global correct: {:.1f}\n'
'average row correct: {}\n'
'IoU: {}\n'
'Precion: {:.1f}\n'
'Recall: {:.1f}\n'
'f1: {:.1f}\n'
'mean IoU: {:.1f}\n'
).format(
acc_global.item() * 100,
['{:.1f}'.format(i) for i in (acc * 100).tolist()],
['{:.1f}'.format(i) for i in (iu * 100).tolist()],
['{:.1f}'.format(i) for i in (precion * 100).tolist()],
['{:.1f}'.format(i) for i in (recall * 100).tolist()],
['{:.1f}'.format(i) for i in (f1 * 100).tolist()],
iu.mean().item() * 100)
class MetricLogger(object):
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
for meter in self.meters.values():
meter.synchronize_between_processes()
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {}'.format(header, total_time_str))
class DiceCoefficient(object):
def __init__(self, num_classes: int = 2, ignore_index: int = -100):
self.cumulative_dice = None
self.num_classes = num_classes
self.ignore_index = ignore_index
self.count = None
def update(self, pred, target):
if self.cumulative_dice is None:
self.cumulative_dice = torch.zeros(1, dtype=pred.dtype, device=pred.device)
if self.count is None:
self.count = torch.zeros(1, dtype=pred.dtype, device=pred.device)
# compute the Dice score, ignoring background
pred = F.one_hot(pred.argmax(dim=1), self.num_classes).permute(0, 3, 1, 2).float()
dice_target = build_target(target, self.num_classes, self.ignore_index)
self.cumulative_dice += multiclass_dice_coeff(pred[:, 1:], dice_target[:, 1:], ignore_index=self.ignore_index)
self.count += 1
@property
def value(self):
if self.count == 0:
return 0
else:
return self.cumulative_dice / self.count
def reset(self):
if self.cumulative_dice is not None:
self.cumulative_dice.zero_()
if self.count is not None:
self.count.zeros_()
def reduce_from_all_processes(self):
if not torch.distributed.is_available():
return
if not torch.distributed.is_initialized():
return
torch.distributed.barrier()
torch.distributed.all_reduce(self.cumulative_dice)
torch.distributed.all_reduce(self.count)
def mkdir(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_dist_avail_and_initialized():
if not dist.is_available():
return False
if not dist.is_initialized():
return False
return True
def get_world_size():
if not is_dist_avail_and_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not is_dist_avail_and_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
def save_on_master(*args, **kwargs):
if is_main_process():
torch.save(*args, **kwargs)
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
elif hasattr(args, "rank"):
pass
else:
print('Not using distributed mode')
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
setup_for_distributed(args.rank == 0)