ai-station-code/wudingpv/taihuyuan_pv/schedulers/EarlyStop.py

116 lines
4.2 KiB
Python
Raw Normal View History

2025-05-06 11:18:48 +08:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@project:
@File : EarlyStop
@Author : qiqq
@create_time : 2022/11/5 11:39
"""
import numpy as np
import torch
import os
import numpy as np
import torch
import os
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, save_path=None, patience=10, verbose=False, delta=0):
"""
Args:
save_path : 模型保存文件夹
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.save_path = save_path
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self, val_score):
score = val_score
if self.best_score is None:
self.best_score = score
# self.save_checkpoint(val_loss, model)
elif score < self.best_score + self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
# self.save_checkpoint(val_loss, model)
self.counter = 0
#
# def save_checkpoint(self, val_loss, model):
# '''Saves model when validation loss decrease.'''
# if self.verbose:
# print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
# path = os.path.join(self.save_path, 'best_network.pth')
# torch.save(model.state_dict(), path) # 这里会存储迄今最优模型的参数
# self.val_loss_min = val_loss
#
# class EarlyStopping:
# """Early stops the training if validation loss doesn't improve after a given patience."""
# def __init__(self, save_path, patience=7, verbose=False, delta=0):
# """
# Args:
# save_path : 模型保存文件夹
# patience (int): How long to wait after last time validation loss improved.
# Default: 7
# verbose (bool): If True, prints a message for each validation loss improvement.
# Default: False
# delta (float): Minimum change in the monitored quantity to qualify as an improvement.
# Default: 0
# """
# self.save_path = save_path
# self.patience = patience
# self.verbose = verbose
# self.counter = 0
# self.best_score = None
# self.early_stop = False
# self.val_loss_min = np.Inf
# self.delta = delta
#
# def __call__(self, val_loss, model):
#
# score = -val_loss
#
# if self.best_score is None:
# self.best_score = score
# self.save_checkpoint(val_loss, model)
# elif score < self.best_score + self.delta:
# self.counter += 1
# print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
# if self.counter >= self.patience:
# self.early_stop = True
# else:
# self.best_score = score
# self.save_checkpoint(val_loss, model)
# self.counter = 0
#
# def save_checkpoint(self, val_loss, model):
# '''Saves model when validation loss decrease.'''
# if self.verbose:
# print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
# path = os.path.join(self.save_path, 'best_network.pth')
# torch.save(model.state_dict(), path) # 这里会存储迄今最优模型的参数
# self.val_loss_min = val_loss