ai-station-code/wudingpv/taihuyuan_pv/mitunet/model/resunet.py

188 lines
6.1 KiB
Python
Raw Normal View History

2025-05-06 11:18:48 +08:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@project:
@File : resunet
@Author : qiqq
@create_time : 2023/7/20 18:45
"""
import torch
import torch.nn as nn
from taihuyuan_pv.mitunet.model.resnet import resnet50
from taihuyuan_pv.mitunet.model.decoder import *
class unetUp(nn.Module):
def __init__(self, in_size, out_size):
super(unetUp, self).__init__()
self.up = nn.UpsamplingBilinear2d(scale_factor=2)
self.cbr = nn.Sequential(
nn.Conv2d(in_size, out_size, 3, 1, 1, bias=False),
nn.BatchNorm2d(out_size),
nn.ReLU(inplace=True)
)
def forward(self, inputs1, inputs2):
outputs = torch.cat([inputs1, self.up(inputs2)], 1)
outputs = self.cbr(outputs)
return outputs
class resUnet(nn.Module):
def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'):
super(resUnet, self).__init__()
self.nclas = num_classes
self.finnal_channel = 512
self.backbone = resnet50(pretrained=pretrained)
# #j最后一层加了个trans 2048-512 解码器用了两个3*3深度cbr
# self.decoder = unetDecoder(in_filters=[ 512, 1024, 1536],out_filters=[128, 256, 512])
self.decoder = unetDecoder(in_filters=[ 512, 1024, 3072],out_filters=[128, 256, 512])
def forward(self, inputs):
feaureslist = self.backbone(inputs) #2 4 8 16 32
feaureslist=feaureslist[1:]
out = self.decoder(feaureslist)
out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True)
return out
#
#
class resUnetPAM(nn.Module):
def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'):
super(resUnetPAM, self).__init__()
self.nclas = num_classes
self.backbone = resnet50(pretrained=pretrained)
self.decoder = unetpamDecoder(in_filters=[ 512, 1024, 1536],out_filters=[128, 256, 512])
def forward(self, inputs):
feaureslist = self.backbone(inputs) #2 4 8 16 32
feaureslist=feaureslist[1:]
out = self.decoder(feaureslist)
out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True)
return out
class resUnetpamcarb(nn.Module):
def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'):
super(resUnetpamcarb, self).__init__()
self.nclas = num_classes
self.finnal_channel = 512
self.backbone = resnet50(pretrained=pretrained)
self.decoder = unetpamCARBDecoder()
def forward(self, inputs):
feaureslist = self.backbone(inputs) #2 4 8 16 32
feaureslist=feaureslist[1:]
out = self.decoder(feaureslist)
out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True)
return out
class resUnetaspp(nn.Module):
def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'):
super(resUnetaspp, self).__init__()
self.nclas = num_classes
self.backbone = resnet50(pretrained=pretrained)
##aspp出来是256
'''
256 512 1024 2048_256
用一个1*1变成128 256 512
in_filters=[ 448, 640, 768],out_filters=[128, 320, 384]
'''
self.decoder = unetasppDecoder( in_filters=[ 448, 640, 768],out_filters=[128, 320, 384] )
def forward(self, inputs):
feaureslist = self.backbone(inputs) #2 4 8 16 32
feaureslist=feaureslist[1:]
out = self.decoder(feaureslist)
out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True)
return out
# class resUnetpamcam(nn.Module):
# def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'):
# super(resUnetpamcam, self).__init__()
#
# self.nclas = num_classes
# self.finnal_channel = 512
# self.backbone = resnet50(pretrained=pretrained)
# self.decoder = unetpamcamDecoder()
#
# def forward(self, inputs):
#
# feaureslist = self.backbone(inputs) #2 4 8 16 32
# feaureslist=feaureslist[1:]
# out = self.decoder(feaureslist)
# out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True)
# return out
#
#
#
# # 1/4 1/8 1/16 1/32 记作 1 2 3 4
# class resUnetpamcarb_4(nn.Module):
# def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'):
# super(resUnetpamcarb_4, self).__init__()
#
# self.nclas = num_classes
# self.finnal_channel = 512
# self.backbone = resnet50(pretrained=pretrained)
# self.decoder = unetpamDecoderzuhe()
#
# def forward(self, inputs):
#
# feaureslist = self.backbone(inputs) #2 4 8 16 32
# feaureslist=feaureslist[1:]
# out = self.decoder(feaureslist)
# out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True)
# return out
#
#################resunet大调参版本2, 再不行我就不活了#####################################
class resUnet_version2(nn.Module):
def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'):
super(resUnet_version2, self).__init__()
self.nclas = num_classes
self.finnal_channel = 512
self.backbone = resnet50(pretrained=pretrained)
self.decoder = unetDecoder2(in_filters = [384, 768, 1536], out_filters = [128, 256, 512])
def forward(self, inputs):
feaureslist = self.backbone(inputs) #2 4 8 16 32
feaureslist=feaureslist[1:]
out = self.decoder(feaureslist)
out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True)
return out
#
#############################################
if __name__ == '__main__':
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
indd=torch.rand(2,3,512,512).to(device)
modl=resUnet_version2().to(device)
out=modl(indd)
print(type(out))
print(out.shape)