116 lines
4.2 KiB
Python
116 lines
4.2 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
"""
|
||
|
@project:
|
||
|
@File : EarlyStop
|
||
|
@Author : qiqq
|
||
|
@create_time : 2022/11/5 11:39
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import os
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import os
|
||
|
|
||
|
class EarlyStopping:
|
||
|
"""Early stops the training if validation loss doesn't improve after a given patience."""
|
||
|
def __init__(self, save_path=None, patience=10, verbose=False, delta=0):
|
||
|
"""
|
||
|
Args:
|
||
|
save_path : 模型保存文件夹
|
||
|
patience (int): How long to wait after last time validation loss improved.
|
||
|
Default: 7
|
||
|
verbose (bool): If True, prints a message for each validation loss improvement.
|
||
|
Default: False
|
||
|
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
|
||
|
Default: 0
|
||
|
"""
|
||
|
self.save_path = save_path
|
||
|
self.patience = patience
|
||
|
self.verbose = verbose
|
||
|
self.counter = 0
|
||
|
self.best_score = None
|
||
|
self.early_stop = False
|
||
|
self.val_loss_min = np.Inf
|
||
|
self.delta = delta
|
||
|
|
||
|
def __call__(self, val_score):
|
||
|
|
||
|
score = val_score
|
||
|
|
||
|
if self.best_score is None:
|
||
|
self.best_score = score
|
||
|
# self.save_checkpoint(val_loss, model)
|
||
|
elif score < self.best_score + self.delta:
|
||
|
self.counter += 1
|
||
|
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
|
||
|
if self.counter >= self.patience:
|
||
|
self.early_stop = True
|
||
|
else:
|
||
|
self.best_score = score
|
||
|
# self.save_checkpoint(val_loss, model)
|
||
|
self.counter = 0
|
||
|
#
|
||
|
# def save_checkpoint(self, val_loss, model):
|
||
|
# '''Saves model when validation loss decrease.'''
|
||
|
# if self.verbose:
|
||
|
# print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
|
||
|
# path = os.path.join(self.save_path, 'best_network.pth')
|
||
|
# torch.save(model.state_dict(), path) # 这里会存储迄今最优模型的参数
|
||
|
# self.val_loss_min = val_loss
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
#
|
||
|
# class EarlyStopping:
|
||
|
# """Early stops the training if validation loss doesn't improve after a given patience."""
|
||
|
# def __init__(self, save_path, patience=7, verbose=False, delta=0):
|
||
|
# """
|
||
|
# Args:
|
||
|
# save_path : 模型保存文件夹
|
||
|
# patience (int): How long to wait after last time validation loss improved.
|
||
|
# Default: 7
|
||
|
# verbose (bool): If True, prints a message for each validation loss improvement.
|
||
|
# Default: False
|
||
|
# delta (float): Minimum change in the monitored quantity to qualify as an improvement.
|
||
|
# Default: 0
|
||
|
# """
|
||
|
# self.save_path = save_path
|
||
|
# self.patience = patience
|
||
|
# self.verbose = verbose
|
||
|
# self.counter = 0
|
||
|
# self.best_score = None
|
||
|
# self.early_stop = False
|
||
|
# self.val_loss_min = np.Inf
|
||
|
# self.delta = delta
|
||
|
#
|
||
|
# def __call__(self, val_loss, model):
|
||
|
#
|
||
|
# score = -val_loss
|
||
|
#
|
||
|
# if self.best_score is None:
|
||
|
# self.best_score = score
|
||
|
# self.save_checkpoint(val_loss, model)
|
||
|
# elif score < self.best_score + self.delta:
|
||
|
# self.counter += 1
|
||
|
# print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
|
||
|
# if self.counter >= self.patience:
|
||
|
# self.early_stop = True
|
||
|
# else:
|
||
|
# self.best_score = score
|
||
|
# self.save_checkpoint(val_loss, model)
|
||
|
# self.counter = 0
|
||
|
#
|
||
|
# def save_checkpoint(self, val_loss, model):
|
||
|
# '''Saves model when validation loss decrease.'''
|
||
|
# if self.verbose:
|
||
|
# print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
|
||
|
# path = os.path.join(self.save_path, 'best_network.pth')
|
||
|
# torch.save(model.state_dict(), path) # 这里会存储迄今最优模型的参数
|
||
|
# self.val_loss_min = val_loss
|
||
|
|