import base64 import json import os import os.path as osp import numpy as np import PIL.Image from labelme import utils ''' 制作自己的语义分割数据集需要注意以下几点: 1、我使用的labelme版本是3.16.7,建议使用该版本的labelme,有些版本的labelme会发生错误, 具体错误为:Too many dimensions: 3 > 2 安装方式为命令行pip install labelme==3.16.7 2、此处生成的标签图是8位彩色图,与视频中看起来的数据集格式不太一样。 虽然看起来是彩图,但事实上只有8位,此时每个像素点的值就是这个像素点所属的种类。 所以其实和视频中VOC数据集的格式一样。因此这样制作出来的数据集是可以正常使用的。也是正常的。 ''' if __name__ == '__main__': jpgs_path = "datasets/JPEGImages" pngs_path = "datasets/SegmentationClass" classes = ["_background_","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] # classes = ["_background_","cat","dog"] count = os.listdir("./datasets/before/") for i in range(0, len(count)): path = os.path.join("./datasets/before", count[i]) if os.path.isfile(path) and path.endswith('json'): data = json.load(open(path)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(path), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value # label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0]+'.jpg')) new = np.zeros([np.shape(img)[0],np.shape(img)[1]]) for name in label_names: index_json = label_names.index(name) index_all = classes.index(name) new = new + index_all*(np.array(lbl) == index_json) utils.lblsave(osp.join(pngs_path, count[i].split(".")[0]+'.png'), new) print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')