import numpy as np import torch import json def adjust_learning_rate(optimizer, epoch, args): if args.lradj=='type1': lr_adjust = {2: args.learning_rate * 0.5 ** 1, 4: args.learning_rate * 0.5 ** 2, 6: args.learning_rate * 0.5 ** 3, 8: args.learning_rate * 0.5 ** 4, 10: args.learning_rate * 0.5 ** 5} elif args.lradj=='type2': lr_adjust = {5: args.learning_rate * 0.5 ** 1, 10: args.learning_rate * 0.5 ** 2, 15: args.learning_rate * 0.5 ** 3, 20: args.learning_rate * 0.5 ** 4, 25: args.learning_rate * 0.5 ** 5} else: lr_adjust = {} if epoch in lr_adjust.keys(): lr = lr_adjust[epoch] for param_group in optimizer.param_groups: param_group['lr'] = lr print('Updating learning rate to {}'.format(lr)) class EarlyStopping: def __init__(self, patience=7, verbose=False, delta=0): self.patience = patience self.verbose = verbose self.counter = 0 self.best_score = None self.early_stop = False self.val_loss_min = np.Inf self.delta = delta def __call__(self, val_loss, model, path): score = -val_loss if self.best_score is None: self.best_score = score self.save_checkpoint(val_loss, model, path) elif score < self.best_score + self.delta: self.counter += 1 print(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True else: self.best_score = score self.save_checkpoint(val_loss, model, path) self.counter = 0 def save_checkpoint(self, val_loss, model, path): if self.verbose: print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') torch.save(model.state_dict(), path+'/'+'checkpoint.pth') self.val_loss_min = val_loss class StandardScaler(): def __init__(self, mean=0., std=1.): self.mean = mean self.std = std def fit(self, data): self.mean = data.mean(0) self.std = data.std(0) def transform(self, data): mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std return (data - mean) / std def inverse_transform(self, data): mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std return (data * std) + mean def load_args(filename): with open(filename, 'r') as f: args = json.load(f) return args def string_split(str_for_split): str_no_space = str_for_split.replace(' ', '') str_split = str_no_space.split(',') value_list = [eval(x) for x in str_split] return value_list