#!/usr/bin/env python # -*- coding: utf-8 -*- """ @project: @File : resunet @Author : qiqq @create_time : 2023/7/20 18:45 """ import torch import torch.nn as nn from taihuyuan_pv.mitunet.model.resnet2 import resnet50 from taihuyuan_pv.mitunet.model.decoder2 import * class unetUp(nn.Module): def __init__(self, in_size, out_size): super(unetUp, self).__init__() self.up = nn.UpsamplingBilinear2d(scale_factor=2) self.cbr = nn.Sequential( nn.Conv2d(in_size, out_size, 3, 1, 1, bias=False), nn.BatchNorm2d(out_size), nn.ReLU(inplace=True) ) def forward(self, inputs1, inputs2): outputs = torch.cat([inputs1, self.up(inputs2)], 1) outputs = self.cbr(outputs) return outputs class resUnet(nn.Module): def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): super(resUnet, self).__init__() self.nclas = num_classes self.finnal_channel = 512 self.backbone = resnet50(pretrained=pretrained) self.decoder = unetDecoder(in_filters=[ 512, 1024, 3072],out_filters=[128, 256, 512]) def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out class resUnetPAM(nn.Module): def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): super(resUnetPAM, self).__init__() self.nclas = num_classes self.backbone = resnet50(pretrained=pretrained) self.decoder = unetpamDecoder(in_filters=[ 512, 1024, 1536],out_filters=[128, 256, 512]) def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out class resUnetpamcarb_d16(nn.Module): '''除了下采样变成16倍数 其他都没变''' def __init__(self, num_classes=2, pretrained=True,replace_stride_with_dilation=[False,False,True] ): super(resUnetpamcarb_d16, self).__init__() self.nclas = num_classes self.finnal_channel = 512 self.backbone = resnet50(pretrained=pretrained,replace_stride_with_dilation=replace_stride_with_dilation) self.decoder = unetpamCARBDecoder() def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out class resUnetpamcam(nn.Module): def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): super(resUnetpamcam, self).__init__() self.nclas = num_classes self.finnal_channel = 512 self.backbone = resnet50(pretrained=pretrained) self.decoder = unetpamcamDecoder() def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out # 1/4 1/8 1/16 1/32 记作 1 2 3 4 class resUnetpamcarb_4(nn.Module): def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): super(resUnetpamcarb_4, self).__init__() self.nclas = num_classes self.finnal_channel = 512 self.backbone = resnet50(pretrained=pretrained) self.decoder = unetpamDecoderzuhe() def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out if __name__ == '__main__': indd=torch.rand(2,3,512,512) modl=resUnetpamcarb_d16() out=modl(indd) print(type(out))