#!/usr/bin/env python # -*- coding: utf-8 -*- """ @project: @File : polyscheduler @Author : qiqq @create_time : 2022/11/4 20:42 """ from torch.optim.lr_scheduler import _LRScheduler import types import math from torch._six import inf from functools import wraps import warnings import weakref from collections import Counter from bisect import bisect_right from torch.optim import Optimizer '''网上复现的多项式学习率,貌似见过的论文都用这个''' class LinoPolyScheduler(_LRScheduler): r""" Args: optimizer (Optimizer): Wrapped optimizer. total_steps (int): The total number of steps in the cycle. Note that if a value is not provided here, then it must be inferred by providing a value for epochs and steps_per_epoch. Default: None epochs (int): The number of epochs to train for. This is used along with steps_per_epoch in order to infer the total number of steps in the cycle if a value for total_steps is not provided. Default: None steps_per_epoch (int): The number of steps per epoch to train for. This is used along with epochs in order to infer the total number of steps in the cycle if a value for total_steps is not provided. Default: None last_epoch (int): The index of the last batch. This parameter is used when resuming a training job. Since `step()` should be invoked after each batch instead of after each epoch, this number represents the total number of *batches* computed, not the total number of epochs computed. When last_epoch=-1, the schedule is started from the beginning. Default: -1 verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. Example: # >>> data_loader = torch.utils.data.DataLoader(...) # >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) # >>> scheduler = torch.optim.lr_scheduler.PolyScheduler(optimizer, min_lr=0.01, steps_per_epoch=None, epochs=10) # >>> for epoch in range(10): # >>> for batch in data_loader: # >>> train_batch(...) # >>> scheduler.step() .. _Super-Convergence\: Very Fast Training of Neural Networks Using Large Learning Rates: https://arxiv.org/abs/1708.07120 """ def __init__(self, optimizer, power=0.9, total_steps=None, epochs=None, steps_per_epoch=None, min_lr=0, last_epoch=-1, verbose=False): # Validate optimizer if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format( type(optimizer).__name__)) self.optimizer = optimizer # self.by_epoch = by_epoch self.epochs = epochs self.min_lr = min_lr self.power = power # check param param_dic = {'total_steps': total_steps, 'epochs': epochs, 'steps_per_epoch': steps_per_epoch} for k, v in param_dic.items(): if v is not None: if v <= 0 or not isinstance(v, int): raise ValueError("Expected positive integer {}, but got {}".format(k, v)) # Validate total_steps if total_steps is not None: self.total_steps = total_steps elif epochs is not None and steps_per_epoch is None: self.total_steps = epochs elif epochs is not None and steps_per_epoch is not None: self.total_steps = epochs * steps_per_epoch else: raise ValueError("You must define either total_steps OR epochs OR (epochs AND steps_per_epoch)") super(LinoPolyScheduler, self).__init__(optimizer, last_epoch, verbose) def _format_param(self, name, optimizer, param): """Return correctly formatted lr/momentum for each param group.""" if isinstance(param, (list, tuple)): if len(param) != len(optimizer.param_groups): raise ValueError("expected {} values for {}, got {}".format( len(optimizer.param_groups), name, len(param))) return param else: return [param] * len(optimizer.param_groups) def get_lr(self): if not self._get_lr_called_within_step: warnings.warn("To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning) step_num = self.last_epoch if step_num > self.total_steps: raise ValueError("Tried to step {} times. The specified number of total steps is {}" .format(step_num + 1, self.total_steps)) coeff = (1 - step_num / self.total_steps) ** self.power return [(base_lr - self.min_lr) * coeff + self.min_lr for base_lr in self.base_lrs]