#!/usr/bin/env python # -*- coding: utf-8 -*- """ @project: @File : resunet @Author : qiqq @create_time : 2023/7/20 18:45 """ import torch import torch.nn as nn from wudingpv.taihuyuan_roof.manet.model.resnet import resnet50 from wudingpv.taihuyuan_roof.manet.model.decoder import * class unetUp(nn.Module): def __init__(self, in_size, out_size): super(unetUp, self).__init__() self.up = nn.UpsamplingBilinear2d(scale_factor=2) self.cbr = nn.Sequential( nn.Conv2d(in_size, out_size, 3, 1, 1, bias=False), nn.BatchNorm2d(out_size), nn.ReLU(inplace=True) ) def forward(self, inputs1, inputs2): outputs = torch.cat([inputs1, self.up(inputs2)], 1) outputs = self.cbr(outputs) return outputs class resUnet(nn.Module): def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): super(resUnet, self).__init__() self.nclas = num_classes self.finnal_channel = 512 self.backbone = resnet50(pretrained=pretrained) self.decoder = unetDecoder(in_filters=[ 512, 1024, 3072],out_filters=[128, 256, 512]) def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out class resUnet2(nn.Module): def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): super(resUnet2, self).__init__() self.nclas = num_classes self.finnal_channel = 512 self.backbone = resnet50(pretrained=pretrained) #中间用carb消融的那个3*3卷积降维了 self.decoder = unetDecoder( in_filters=[ 512, 1024, 1536],out_filters=[128, 256, 512]) def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out class resUnetcarb(nn.Module): def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): super(resUnetcarb, self).__init__() # in_filters = [192, 384, 768], out_filters = [64, 128, 256] self.nclas = num_classes self.finnal_channel = 512 self.backbone = resnet50(pretrained=pretrained) self.decoder = unetCARBDecoder() def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out class resUnetpamcarb(nn.Module): def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): super(resUnetpamcarb, self).__init__() # in_filters = [192, 384, 768], out_filters = [64, 128, 256] self.nclas = num_classes self.finnal_channel = 512 self.backbone = resnet50(pretrained=pretrained) self.decoder = unetpamCARBDecoder() def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out class resUnetPAM(nn.Module): def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): super(resUnetPAM, self).__init__() self.nclas = num_classes self.backbone = resnet50(pretrained=pretrained) self.decoder = unetpamDecoder(in_filters=[ 512, 1024, 1536],out_filters=[128, 256, 512]) def forward(self, inputs): feaureslist = self.backbone(inputs) #2 4 8 16 32 feaureslist=feaureslist[1:] out = self.decoder(feaureslist) out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) return out # class resUnetpamcarb(nn.Module): # def __init__(self, num_classes=2, pretrained=True, backbone='resnet50'): # super(resUnetpamcarb, self).__init__() # # self.nclas = num_classes # self.finnal_channel = 512 # self.backbone = resnet50(pretrained=pretrained) # self.decoder = unetpamCARBDecoder() # # def forward(self, inputs): # # feaureslist = self.backbone(inputs) #2 4 8 16 32 # feaureslist=feaureslist[1:] # out = self.decoder(feaureslist) # out = F.interpolate(out, size=inputs.size()[2:], mode='bilinear', align_corners=True) # return out if __name__ == '__main__': indd=torch.rand(2,3,512,512) modl=resUnet() out=modl(indd) print(type(out)) print(out.shape)