import time import os import cv2 import numpy as np from PIL import Image from tqdm import tqdm from segformer import SegFormer_Segmentation def model(): return SegFormer_Segmentation() def predict(img): SegFormer = model() count = True name_classes = ["_background_", "Cropland", 'Forest', 'Grass', 'Shrub', 'Wetland', 'Water', 'Tundra', 'Impervious surface', 'Bareland', 'Ice/snow'] image = Image.open(img) r_image, count_dict, classes_nums = SegFormer.detect_image(image, count=count, name_classes=name_classes) r_image.show() if __name__ == "__main__": path = "/home/xiazj/ai-station-code/tmp/dimaoshibie/d94afe94-2fae-4ce5-9ee4-94ac1d699337/dimao2.jpg" predict(path)