# import sys # from fastapi import FastAPI # from fastapi.staticfiles import StaticFiles # version = f"{sys.version_info.major}.{sys.version_info.minor}" # app = FastAPI() # # 将 /root/app 目录挂载为静态文件 # app.mount("/files", StaticFiles(directory="/root/app"), name="files") # @app.get("/") # async def read_root(): # message = f"Hello world! From FastAPI running on Uvicorn with Gunicorn. Using Python {version}" # return {"message": message} # from PIL import Image # import pandas as pd # # 读取图片 # image_path = '/home/xiazj/ai-station-code/tmp/dimaoshibie/d94afe94-2fae-4ce5-9ee4-94ac1d699337/merge_binary_dimao2.jpg' # 替换成你的图片路径 # image = Image.open(image_path) # # 获取图片的RGB数据 # pixels = list(image.getdata()) # # 创建一个DataFrame来统计每种颜色的出现次数 # color_counts = pd.Series(pixels).value_counts() # # 将颜色统计结果转换为DataFrame # color_summary = color_counts.reset_index() # color_summary.columns = ['RGB', 'Count'] # # 打印结果 # print(color_summary) # # 可选:将结果保存到CSV文件 # color_summary.to_csv('color_summary.csv', index=False) import pickle # 指定文件路径 file_path = '/home/xiazj/ai-station-code/tmp/sam/c768f709-b123-48fb-b98b-addf0bbb8a04/model_params.pickle' # 读取 pickle 文件 with open(file_path, 'rb') as file: data,api = pickle.load(file) # 打印数据 print(data) print(api)