import time import os import cv2 import numpy as np from PIL import Image from tqdm import tqdm from segformer import SegFormer_Segmentation def model(): return SegFormer_Segmentation() def predict(img): SegFormer = model() count = True name_classes = ["_background_", "Cropland", 'Forest', 'Grass', 'Shrub', 'Wetland', 'Water', 'Tundra', 'Impervious surface', 'Bareland', 'Ice/snow'] image = Image.open(img) r_image, count_dict, classes_nums = SegFormer.detect_image(image, count=count, name_classes=name_classes) r_image.show() if __name__ == "__main__": path = "D:\\project\\ai-station\\tmp\\dimaoshibie\\crop_9_14.tif" predict(path)