import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, repeat import numpy as np from math import sqrt class FullAttention(nn.Module): ''' The Attention operation ''' def __init__(self, scale=None, attention_dropout=0.1): super(FullAttention, self).__init__() self.scale = scale # attention计算时,缩放,公式中的根号下dk self.dropout = nn.Dropout(attention_dropout) def forward(self, queries, keys, values): B, L, H, E = queries.shape _, S, _, D = values.shape scale = self.scale or 1./sqrt(E) # qkv的计算 scores = torch.einsum("blhe,bshe->bhls", queries, keys) # 查询序列长度L, 键序列S A = self.dropout(torch.softmax(scale * scores, dim=-1)) # 这里训练的时候就drop呀 V = torch.einsum("bhls,bshd->blhd", A, values) return V.contiguous() # 将v放在连续内存中 class AttentionLayer(nn.Module): ''' The Multi-head Self-Attention (MSA) Layer ''' def __init__(self, d_model, n_heads, d_keys=None, d_values=None, dropout = 0.1): super(AttentionLayer, self).__init__() d_keys = d_keys or (d_model//n_heads) d_values = d_values or (d_model//n_heads) self.inner_attention = FullAttention(scale=None, attention_dropout = dropout) # 全链接层 self.query_projection = nn.Linear(d_model, d_keys * n_heads) # q self.key_projection = nn.Linear(d_model, d_keys * n_heads) # k self.value_projection = nn.Linear(d_model, d_values * n_heads) # v self.out_projection = nn.Linear(d_values * n_heads, d_model) # 输出层 self.n_heads = n_heads def forward(self, queries, keys, values): # 原始输入作为qkv B, L, _ = queries.shape _, S, _ = keys.shape H = self.n_heads # 获取qkv矩阵 queries = self.query_projection(queries).view(B, L, H, -1) # queries(224,28,256) -> (224,28,256) -> (224,28,4,64) keys = self.key_projection(keys).view(B, S, H, -1) values = self.value_projection(values).view(B, S, H, -1) out = self.inner_attention( queries, keys, values, ) out = out.view(B, L, -1) # (224,28,256) return self.out_projection(out) class TwoStageAttentionLayer(nn.Module): ''' The Two Stage Attention (TSA) Layer input/output shape: [batch_size, Data_dim(D), Seg_num(L), d_model] ''' def __init__(self, seg_num, factor, d_model, n_heads, d_ff = None, dropout=0.1): super(TwoStageAttentionLayer, self).__init__() d_ff = d_ff or 4*d_model # 如果变量 d_ff 的值为 None 或等价于布尔值 False(例如未显式指定),则将 d_ff 设置为 4 * d_model。 如果 d_ff 已经有定义(即非 None 且布尔值为 True),那么 d_ff 保持原值 self.time_attention = AttentionLayer(d_model, n_heads, dropout = dropout) # 用于时间维度上的注意力计算,捕捉时间序列数据中的时间依赖性 self.dim_sender = AttentionLayer(d_model, n_heads, dropout = dropout) # 在注意力机制中,dim_sender 是发送方特征的维度,用于生成查询(Query)或键(Key) self.dim_receiver = AttentionLayer(d_model, n_heads, dropout = dropout) # 在注意力机制中,dim_receiver 是接收方特征的维度,用于生成值(Value)或接收注意力权重。 self.router = nn.Parameter(torch.randn(seg_num, factor, d_model)) # (28,10,256)在复杂注意力机制中,router 帮助模型动态分配注意力资源,提升对不同特征的关注能力。 # nn.Parameter 是一个特殊的张量类型,用于定义可以被优化器(如 SGD、Adam 等)更新的模型参数 self.dropout = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.norm4 = nn.LayerNorm(d_model) self.MLP1 = nn.Sequential(nn.Linear(d_model, d_ff), #FFN模块; nn.GELU(), nn.Linear(d_ff, d_model)) self.MLP2 = nn.Sequential(nn.Linear(d_model, d_ff), nn.GELU(), nn.Linear(d_ff, d_model)) def forward(self, x): #Cross Time Stage: Directly apply MSA to each dimension batch = x.shape[0] time_in = rearrange(x, 'b ts_d seg_num d_model -> (b ts_d) seg_num d_model') # 224,28,256 , 其中 224 = 32* 7 time_enc = self.time_attention( time_in, time_in, time_in ) dim_in = time_in + self.dropout(time_enc) # 残差 dim_in = self.norm1(dim_in) # 层归一化 dim_in = dim_in + self.dropout(self.MLP1(dim_in)) # FNN + 残差 dim_in = self.norm2(dim_in) # 层归一化 #Cross Dimension Stage: use a small set of learnable vectors to aggregate and distribute messages to build the D-to-D connection dim_send = rearrange(dim_in, '(b ts_d) seg_num d_model -> (b seg_num) ts_d d_model', b = batch) # (224,28,256) -> (896,7,256) 这样的重排使得每个批次的每个分段(segment)可以独立处理。通过将批量和分段数量结合在一起,后续的操作可以更方便地进行并行计算和消息传递。 batch_router = repeat(self.router, 'seg_num factor d_model -> (repeat seg_num) factor d_model', repeat = batch) # (28,10,256) => (896,10,256) 28*32 = 896 , 通过重复路由器参数,确保每个批次都使用相同的路由器设置。这种方式可以保持模型的一致性,并减少模型参数的数量,同时允许每个批次的数据使用相同的学习策略。 dim_buffer = self.dim_sender(batch_router, dim_send, dim_send) # 通过路由器将输入数据(dim_send)进行处理,生成一个中间的缓冲区(dim_buffer)。 dim_receive = self.dim_receiver(dim_send, dim_buffer, dim_buffer) # 接收来自 dim_sender 的消息,并结合原始输入(dim_send)和缓冲区(dim_buffer)来生成接收的输出(dim_receive) dim_enc = dim_send + self.dropout(dim_receive) # 使用残差连接(dim_send + self.dropout(dim_receive))来结合原始输入和接收的消息。这种方法有助于缓解深度网络中的梯度消失问题,并保持信息流动 dim_enc = self.norm3(dim_enc) # 来标准化输出,进一步稳定训练过程 dim_enc = dim_enc + self.dropout(self.MLP2(dim_enc)) # 通过多层感知机(MLP)对编码后的信息进行进一步的变换和学习。再次使用残差连接将 MLP 的输出与 dim_enc 结合 dim_enc = self.norm4(dim_enc) final_out = rearrange(dim_enc, '(b seg_num) ts_d d_model -> b ts_d seg_num d_model', b = batch) return final_out