63 lines
3.0 KiB
Python
63 lines
3.0 KiB
Python
import os
|
||
|
||
from PIL import Image
|
||
from tqdm import tqdm
|
||
|
||
from segformer import SegFormer_Segmentation
|
||
from utils.utils_metrics import compute_mIoU, show_results
|
||
|
||
'''
|
||
进行指标评估需要注意以下几点:
|
||
1、该文件生成的图为灰度图,因为值比较小,按照PNG形式的图看是没有显示效果的,所以看到近似全黑的图是正常的。
|
||
2、该文件计算的是验证集的miou,当前该库将测试集当作验证集使用,不单独划分测试集
|
||
'''
|
||
if __name__ == "__main__":
|
||
#---------------------------------------------------------------------------#
|
||
# miou_mode用于指定该文件运行时计算的内容
|
||
# miou_mode为0代表整个miou计算流程,包括获得预测结果、计算miou。
|
||
# miou_mode为1代表仅仅获得预测结果。
|
||
# miou_mode为2代表仅仅计算miou。
|
||
#---------------------------------------------------------------------------#
|
||
miou_mode = 0
|
||
#------------------------------#
|
||
# 分类个数+1、如2+1
|
||
#------------------------------#
|
||
num_classes = 21
|
||
#--------------------------------------------#
|
||
# 区分的种类,和json_to_dataset里面的一样
|
||
#--------------------------------------------#
|
||
name_classes = ["background","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
|
||
# name_classes = ["_background_","cat","dog"]
|
||
#-------------------------------------------------------#
|
||
# 指向VOC数据集所在的文件夹
|
||
# 默认指向根目录下的VOC数据集
|
||
#-------------------------------------------------------#
|
||
VOCdevkit_path = 'VOCdevkit'
|
||
|
||
image_ids = open(os.path.join(VOCdevkit_path, "VOC2007/ImageSets/Segmentation/val.txt"),'r').read().splitlines()
|
||
gt_dir = os.path.join(VOCdevkit_path, "VOC2007/SegmentationClass/")
|
||
miou_out_path = "miou_out"
|
||
pred_dir = os.path.join(miou_out_path, 'detection-results')
|
||
|
||
if miou_mode == 0 or miou_mode == 1:
|
||
if not os.path.exists(pred_dir):
|
||
os.makedirs(pred_dir)
|
||
|
||
print("Load model.")
|
||
segformer = SegFormer_Segmentation()
|
||
print("Load model done.")
|
||
|
||
print("Get predict result.")
|
||
for image_id in tqdm(image_ids):
|
||
image_path = os.path.join(VOCdevkit_path, "VOC2007/JPEGImages/"+image_id+".jpg")
|
||
image = Image.open(image_path)
|
||
image = segformer.get_miou_png(image)
|
||
image.save(os.path.join(pred_dir, image_id + ".png"))
|
||
print("Get predict result done.")
|
||
|
||
if miou_mode == 0 or miou_mode == 2:
|
||
print("Get miou.")
|
||
hist, IoUs, PA_Recall, Precision = compute_mIoU(gt_dir, pred_dir, image_ids, num_classes, name_classes) # 执行计算mIoU的函数
|
||
print("Get miou done.")
|
||
show_results(miou_out_path, hist, IoUs, PA_Recall, Precision, name_classes)
|