70 lines
3.2 KiB
Python
70 lines
3.2 KiB
Python
import base64
|
||
import json
|
||
import os
|
||
import os.path as osp
|
||
|
||
import numpy as np
|
||
import PIL.Image
|
||
from labelme import utils
|
||
|
||
'''
|
||
制作自己的语义分割数据集需要注意以下几点:
|
||
1、我使用的labelme版本是3.16.7,建议使用该版本的labelme,有些版本的labelme会发生错误,
|
||
具体错误为:Too many dimensions: 3 > 2
|
||
安装方式为命令行pip install labelme==3.16.7
|
||
2、此处生成的标签图是8位彩色图,与视频中看起来的数据集格式不太一样。
|
||
虽然看起来是彩图,但事实上只有8位,此时每个像素点的值就是这个像素点所属的种类。
|
||
所以其实和视频中VOC数据集的格式一样。因此这样制作出来的数据集是可以正常使用的。也是正常的。
|
||
'''
|
||
if __name__ == '__main__':
|
||
jpgs_path = "datasets/JPEGImages"
|
||
pngs_path = "datasets/SegmentationClass"
|
||
classes = ["_background_","aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
|
||
# classes = ["_background_","cat","dog"]
|
||
|
||
count = os.listdir("./datasets/before/")
|
||
for i in range(0, len(count)):
|
||
path = os.path.join("./datasets/before", count[i])
|
||
|
||
if os.path.isfile(path) and path.endswith('json'):
|
||
data = json.load(open(path))
|
||
|
||
if data['imageData']:
|
||
imageData = data['imageData']
|
||
else:
|
||
imagePath = os.path.join(os.path.dirname(path), data['imagePath'])
|
||
with open(imagePath, 'rb') as f:
|
||
imageData = f.read()
|
||
imageData = base64.b64encode(imageData).decode('utf-8')
|
||
|
||
img = utils.img_b64_to_arr(imageData)
|
||
label_name_to_value = {'_background_': 0}
|
||
for shape in data['shapes']:
|
||
label_name = shape['label']
|
||
if label_name in label_name_to_value:
|
||
label_value = label_name_to_value[label_name]
|
||
else:
|
||
label_value = len(label_name_to_value)
|
||
label_name_to_value[label_name] = label_value
|
||
|
||
# label_values must be dense
|
||
label_values, label_names = [], []
|
||
for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]):
|
||
label_values.append(lv)
|
||
label_names.append(ln)
|
||
assert label_values == list(range(len(label_values)))
|
||
|
||
lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value)
|
||
|
||
|
||
PIL.Image.fromarray(img).save(osp.join(jpgs_path, count[i].split(".")[0]+'.jpg'))
|
||
|
||
new = np.zeros([np.shape(img)[0],np.shape(img)[1]])
|
||
for name in label_names:
|
||
index_json = label_names.index(name)
|
||
index_all = classes.index(name)
|
||
new = new + index_all*(np.array(lbl) == index_json)
|
||
|
||
utils.lblsave(osp.join(pngs_path, count[i].split(".")[0]+'.png'), new)
|
||
print('Saved ' + count[i].split(".")[0] + '.jpg and ' + count[i].split(".")[0] + '.png')
|