ai-station-code/guangfufadian/utils/tools.py

83 lines
3.1 KiB
Python

import numpy as np
import torch
import json
def adjust_learning_rate(optimizer, epoch, args):
if args.lradj=='type1':
lr_adjust = {2: args.learning_rate * 0.5 ** 1, 4: args.learning_rate * 0.5 ** 2,
6: args.learning_rate * 0.5 ** 3, 8: args.learning_rate * 0.5 ** 4,
10: args.learning_rate * 0.5 ** 5}
elif args.lradj=='type2':
lr_adjust = {5: args.learning_rate * 0.5 ** 1, 10: args.learning_rate * 0.5 ** 2,
15: args.learning_rate * 0.5 ** 3, 20: args.learning_rate * 0.5 ** 4,
25: args.learning_rate * 0.5 ** 5}
else:
lr_adjust = {}
if epoch in lr_adjust.keys():
lr = lr_adjust[epoch]
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print('Updating learning rate to {}'.format(lr))
class EarlyStopping:
def __init__(self, patience=7, verbose=False, delta=0):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
def __call__(self, val_loss, model, path):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model, path)
elif score < self.best_score + self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model, path)
self.counter = 0
def save_checkpoint(self, val_loss, model, path):
if self.verbose:
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
torch.save(model.state_dict(), path+'/'+'checkpoint.pth')
self.val_loss_min = val_loss
class StandardScaler():
def __init__(self, mean=0., std=1.):
self.mean = mean
self.std = std
def fit(self, data):
self.mean = data.mean(0)
self.std = data.std(0)
def transform(self, data):
mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean
std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std
return (data - mean) / std
def inverse_transform(self, data):
mean = torch.from_numpy(self.mean).type_as(data).to(data.device) if torch.is_tensor(data) else self.mean
std = torch.from_numpy(self.std).type_as(data).to(data.device) if torch.is_tensor(data) else self.std
return (data * std) + mean
def load_args(filename):
with open(filename, 'r') as f:
args = json.load(f)
return args
def string_split(str_for_split):
str_no_space = str_for_split.replace(' ', '')
str_split = str_no_space.split(',')
value_list = [eval(x) for x in str_split]
return value_list