ai-station-code/wudingpv/taihuyuan_pv/compared_experiment/pspnet/model/ceshi.py

350 lines
13 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@project:
@File : ceshi
@Author : qiqq
@create_time : 2023/6/5 22:29
"""
import torch
import torch.nn as nn
# from torchvision.models.resnet import resnet18
from compared_experiment.pspnet.model.resnetceshi import resnet18
from torch.nn import BatchNorm2d
from torch.nn import Module, Conv2d, Parameter
def conv3otherRelu(in_planes, out_planes, kernel_size=None, stride=None, padding=None):
# 3x3 convolution with padding and relu
if kernel_size is None:
kernel_size = 3
assert isinstance(kernel_size, (int, tuple)), 'kernel_size is not in (int, tuple)!'
if stride is None:
stride = 1
assert isinstance(stride, (int, tuple)), 'stride is not in (int, tuple)!'
if padding is None:
padding = 1
assert isinstance(padding, (int, tuple)), 'padding is not in (int, tuple)!'
return nn.Sequential(
nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=True),
nn.ReLU(inplace=True) # inplace=True
)
def l2_norm(x):
return torch.einsum("bcn, bn->bcn", x, 1 / torch.norm(x, p=2, dim=-2))
class Attention(Module):
def __init__(self, in_places, scale=8, eps=1e-6):
super(Attention, self).__init__()
self.gamma = Parameter(torch.zeros(1))
self.in_places = in_places
self.l2_norm = l2_norm
self.eps = eps
self.query_conv = Conv2d(in_channels=in_places, out_channels=in_places // scale, kernel_size=1)
self.key_conv = Conv2d(in_channels=in_places, out_channels=in_places // scale, kernel_size=1)
self.value_conv = Conv2d(in_channels=in_places, out_channels=in_places, kernel_size=1)
def forward(self, x):#x16*16*128
# Apply the feature map to the queries and keys
batch_size, chnnels, width, height = x.shape
Q = self.query_conv(x).view(batch_size, -1, width * height) #16*16*16 --》16*256
K = self.key_conv(x).view(batch_size, -1, width * height) #16*256
V = self.value_conv(x).view(batch_size, -1, width * height) #16*16*128 --128*256
Q = self.l2_norm(Q).permute(-3, -1, -2)
K = self.l2_norm(K)
tailor_sum = 1 / (width * height + torch.einsum("bnc, bc->bn", Q, torch.sum(K, dim=-1) + self.eps))
value_sum = torch.einsum("bcn->bc", V).unsqueeze(-1)
value_sum = value_sum.expand(-1, chnnels, width * height)
matrix = torch.einsum('bmn, bcn->bmc', K, V)
matrix_sum = value_sum + torch.einsum("bnm, bmc->bcn", Q, matrix)
weight_value = torch.einsum("bcn, bn->bcn", matrix_sum, tailor_sum)
weight_value = weight_value.view(batch_size, chnnels, height, width)
return (self.gamma * weight_value).contiguous()
class ConvBNReLU(nn.Module):
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
super(ConvBNReLU, self).__init__()
self.conv = nn.Conv2d(in_chan,
out_chan,
kernel_size=ks,
stride=stride,
padding=padding,
bias=False)
self.bn = BatchNorm2d(out_chan)
self.relu = nn.ReLU(inplace=True)
self.init_weight()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
class UpSample(nn.Module):
def __init__(self, n_chan, factor=2):
super(UpSample, self).__init__()
out_chan = n_chan * factor * factor
self.proj = nn.Conv2d(n_chan, out_chan, 1, 1, 0)
self.up = nn.PixelShuffle(factor)
self.init_weight()
def forward(self, x):
feat = self.proj(x)
feat = self.up(feat)
return feat
def init_weight(self):
nn.init.xavier_normal_(self.proj.weight, gain=1.)
class Output(nn.Module):
def __init__(self, in_chan, mid_chan, n_classes, up_factor=32, *args, **kwargs):
super(Output, self).__init__()
self.up_factor = up_factor
out_chan = n_classes * up_factor * up_factor
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
self.conv_out = nn.Conv2d(mid_chan, out_chan, kernel_size=1, bias=True)
self.up = nn.PixelShuffle(up_factor)
self.init_weight()
def forward(self, x):
x = self.conv(x)
x = self.conv_out(x)
x = self.up(x)
return x
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, (nn.Linear, nn.Conv2d)):
wd_params.append(module.weight)
if not module.bias is None:
nowd_params.append(module.bias)
elif isinstance(module, nn.modules.batchnorm._BatchNorm):
nowd_params += list(module.parameters())
return wd_params, nowd_params
class AttentionEnhancementModule(nn.Module):
def __init__(self, in_chan, out_chan):
super(AttentionEnhancementModule, self).__init__()
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
self.conv_atten = Attention(out_chan)
self.bn_atten = BatchNorm2d(out_chan)
self.init_weight()
def forward(self, x):
feat = self.conv(x)
att = self.conv_atten(feat)
return self.bn_atten(att)
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None:
nn.init.constant_(ly.bias, 0)
class ContextPath(nn.Module):
def __init__(self, *args, **kwargs):
super(ContextPath, self).__init__()
self.resnet = resnet18()
self.arm16 = AttentionEnhancementModule(256, 128)
self.arm32 = AttentionEnhancementModule(512, 128)
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
self.up32 = nn.Upsample(scale_factor=2.)
self.up16 = nn.Upsample(scale_factor=2.)
self.init_weight()
def forward(self, x):
feat8, feat16, feat32 = self.resnet(x)
avg = torch.mean(feat32, dim=(2, 3), keepdim=True)
avg = self.conv_avg(avg)
feat32_arm = self.arm32(feat32)
feat32_sum = feat32_arm + avg
feat32_up = self.up32(feat32_sum)
feat32_up = self.conv_head32(feat32_up)
feat16_arm = self.arm16(feat16)
feat16_sum = feat16_arm + feat32_up
feat16_up = self.up16(feat16_sum)
feat16_up = self.conv_head16(feat16_up)
return feat16_up, self.up16(feat16), self.up32(feat32) # x8, x16
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None:
nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, (nn.Linear, nn.Conv2d)):
wd_params.append(module.weight)
if not module.bias is None:
nowd_params.append(module.bias)
elif isinstance(module, nn.modules.batchnorm._BatchNorm):
nowd_params += list(module.parameters())
return wd_params, nowd_params
class SpatialPath(nn.Module):
def __init__(self, *args, **kwargs):
super(SpatialPath, self).__init__()
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
self.init_weight()
def forward(self, x):
feat = self.conv1(x)
feat = self.conv2(feat)
feat = self.conv3(feat)
feat = self.conv_out(feat)
return feat
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
wd_params.append(module.weight)
if not module.bias is None:
nowd_params.append(module.bias)
elif isinstance(module, nn.modules.batchnorm._BatchNorm):
nowd_params += list(module.parameters())
return wd_params, nowd_params
class FeatureAggregationModule(nn.Module):
def __init__(self, in_chan, out_chan):
super(FeatureAggregationModule, self).__init__()
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
self.conv_atten = Attention(out_chan)
self.init_weight()
def forward(self, fsp, fcp):
fcat = torch.cat([fsp, fcp], dim=1)
feat = self.convblk(fcat)
atten = self.conv_atten(feat)
feat_atten = torch.mul(feat, atten)
feat_out = feat_atten + feat
return feat_out
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params = [], []
for name, module in self.named_modules():
if isinstance(module, (nn.Linear, nn.Conv2d)):
wd_params.append(module.weight)
if not module.bias is None:
nowd_params.append(module.bias)
elif isinstance(module, nn.modules.batchnorm._BatchNorm):
nowd_params += list(module.parameters())
return wd_params, nowd_params
class ABCNet(nn.Module):
def __init__(self, band, n_classes):
super(ABCNet, self).__init__()
self.name = 'ABCNet'
self.cp = ContextPath()
self.sp = SpatialPath()
self.fam = FeatureAggregationModule(256, 256)
self.conv_out = Output(256, 256, n_classes, up_factor=8)
if self.training:
self.conv_out16 = Output(256, 64, n_classes, up_factor=8)
self.conv_out32 = Output(512, 64, n_classes, up_factor=16)
self.init_weight()
def forward(self, x):
H, W = x.size()[2:]
feat_cp8, feat_cp16, feat_cp32 = self.cp(x)
feat_sp = self.sp(x)
feat_fuse = self.fam(feat_sp, feat_cp8)
feat_out = self.conv_out(feat_fuse)
if self.training:
feat_out16 = self.conv_out16(feat_cp16)
feat_out32 = self.conv_out32(feat_cp32)
return feat_out, feat_out16, feat_out32
# feat_out = feat_out.argmax(dim=1)
return feat_out
def init_weight(self):
for ly in self.children():
if isinstance(ly, nn.Conv2d):
nn.init.kaiming_normal_(ly.weight, a=1)
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
def get_params(self):
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
for name, child in self.named_children():
child_wd_params, child_nowd_params = child.get_params()
if isinstance(child, (FeatureAggregationModule, Output)):
lr_mul_wd_params += child_wd_params
lr_mul_nowd_params += child_nowd_params
else:
wd_params += child_wd_params
nowd_params += child_nowd_params
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params
if __name__ == "__main__":
net = ABCNet(3, 19)
in_ten = torch.randn(4, 3, 512, 512)
out = net(in_ten)
print(out.shape)