93 lines
3.4 KiB
Python
93 lines
3.4 KiB
Python
import random
|
||
|
||
import numpy as np
|
||
import torch
|
||
from PIL import Image
|
||
|
||
#---------------------------------------------------------#
|
||
# 将图像转换成RGB图像,防止灰度图在预测时报错。
|
||
# 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
|
||
#---------------------------------------------------------#
|
||
def cvtColor(image):
|
||
if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
|
||
return image
|
||
else:
|
||
image = image.convert('RGB')
|
||
return image
|
||
|
||
#---------------------------------------------------#
|
||
# 对输入图像进行resize
|
||
#---------------------------------------------------#
|
||
def resize_image(image, size):
|
||
iw, ih = image.size
|
||
w, h = size
|
||
|
||
scale = min(w/iw, h/ih)
|
||
nw = int(iw*scale)
|
||
nh = int(ih*scale)
|
||
|
||
image = image.resize((nw,nh), Image.BICUBIC)
|
||
new_image = Image.new('RGB', size, (128,128,128))
|
||
new_image.paste(image, ((w-nw)//2, (h-nh)//2))
|
||
|
||
return new_image, nw, nh # 颜色会变
|
||
|
||
#---------------------------------------------------#
|
||
# 获得学习率
|
||
#---------------------------------------------------#
|
||
def get_lr(optimizer):
|
||
for param_group in optimizer.param_groups:
|
||
return param_group['lr']
|
||
|
||
#---------------------------------------------------#
|
||
# 设置种子
|
||
#---------------------------------------------------#
|
||
def seed_everything(seed=11):
|
||
random.seed(seed)
|
||
np.random.seed(seed)
|
||
torch.manual_seed(seed)
|
||
torch.cuda.manual_seed(seed)
|
||
torch.cuda.manual_seed_all(seed)
|
||
torch.backends.cudnn.deterministic = True
|
||
torch.backends.cudnn.benchmark = False
|
||
|
||
#---------------------------------------------------#
|
||
# 设置Dataloader的种子
|
||
#---------------------------------------------------#
|
||
def worker_init_fn(worker_id, rank, seed):
|
||
worker_seed = rank + seed
|
||
random.seed(worker_seed)
|
||
np.random.seed(worker_seed)
|
||
torch.manual_seed(worker_seed)
|
||
|
||
def preprocess_input(image):
|
||
image -= np.array([123.675, 116.28, 103.53], np.float32)
|
||
image /= np.array([58.395, 57.12, 57.375], np.float32)
|
||
return image
|
||
|
||
def show_config(**kwargs):
|
||
print('Configurations:')
|
||
print('-' * 70)
|
||
print('|%25s | %40s|' % ('keys', 'values'))
|
||
print('-' * 70)
|
||
for key, value in kwargs.items():
|
||
print('|%25s | %40s|' % (str(key), str(value)))
|
||
print('-' * 70)
|
||
|
||
def download_weights(phi, model_dir="./model_data"):
|
||
import os
|
||
from torch.hub import load_state_dict_from_url
|
||
|
||
download_urls = {
|
||
'b0' : "https://github.com/bubbliiiing/segformer-pytorch/releases/download/v1.0/segformer_b0_backbone_weights.pth",
|
||
'b1' : "https://github.com/bubbliiiing/segformer-pytorch/releases/download/v1.0/segformer_b1_backbone_weights.pth",
|
||
'b2' : "https://github.com/bubbliiiing/segformer-pytorch/releases/download/v1.0/segformer_b2_backbone_weights.pth",
|
||
'b3' : "https://github.com/bubbliiiing/segformer-pytorch/releases/download/v1.0/segformer_b3_backbone_weights.pth",
|
||
'b4' : "https://github.com/bubbliiiing/segformer-pytorch/releases/download/v1.0/segformer_b4_backbone_weights.pth",
|
||
'b5' : "https://github.com/bubbliiiing/segformer-pytorch/releases/download/v1.0/segformer_b5_backbone_weights.pth",
|
||
}
|
||
url = download_urls[phi]
|
||
|
||
if not os.path.exists(model_dir):
|
||
os.makedirs(model_dir)
|
||
load_state_dict_from_url(url, model_dir) |