ai-station-code/work_util/params.py

245 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from pydantic import BaseModel, PositiveFloat, PositiveInt
import os
import pickle
from datetime import datetime
current_directory = os.getcwd()
class ModelParams():
config = {
'user': 'root',
'password': 'ai-station-root',
'host': '124.16.151.196',
'database': 'ai-station',
'port':12222
}
task_types_order = [
'回归预测任务',
'时序预测任务',
'计算机视觉任务',
'强化学习任务',
'自然语言处理任务',
'算法标注工具'
]
# 前缀dmsb 地貌识别
#
dmsb_count = True
dmsb_name_classes = ["_background_", "Cropland", 'Forest', 'Grass', 'Shrub', 'Wetland', 'Water', 'Tundra', 'Impervious surface', 'Bareland', 'Ice/snow']
dmsb_colors = [
(0, 0, 0), # Background (黑色)
(252, 250, 205), # Cropland (淡黄色)
(0, 123, 79), # Forest (深绿色)
(157, 221, 106), # Grass (浅绿色)
(77, 208, 159), # Shrub (浅蓝绿色)
(111, 208, 242), # Wetland (浅蓝色)
(10, 78, 151), # Water (深蓝色)
(92, 106, 55), # Tundra (土黄色)
(155, 36, 22), # Impervious surface (红色)
(205, 205, 205), # Bareland (灰色)
(211, 242, 255) # Ice/snow (浅天蓝色)
]
# 前缀 wdpv 屋顶光伏
wdpv_palette = [0, 0, 0, 255, 0, 0, 0, 255, 0]
wdpv_colors = [(0, 0, 0), # 黑色
(255, 0, 0), # 红色
(0, 255, 0)] # 绿色
# 煤热解
meirejie_model_dict = {
"adb_char" : "model/char_ADB.joblib",
"dtr_char": "model/char_DTR.joblib",
"en_char":"model/char_ElasticNet.joblib",
"gp_char":"model/char_GaussianProcessRegressor.joblib",
"kn_char":"model/char_KNeighborsRegressor.joblib",
"lasso_char":"model/char_Lasso.joblib",
"lr_char":"model/char_LinearRegression.joblib",
"rfr_char":"model/char_RFR.joblib",
"ridge_char":"model/char_Ridge.joblib",
"svr_char":"model/char_SVR.joblib",
"xgb_char":"model/char_XGB.joblib",
"adb_gas" : "model/gas_ADB.joblib",
"dtr_gas": "model/gas_DTR.joblib",
"en_gas":"model/gas_ElasticNet.joblib",
"gp_gas":"model/gas_GaussianProcessRegressor.joblib",
"kn_gas":"model/gas_KNeighborsRegressor.joblib",
"lasso_gas":"model/gas_Lasso.joblib",
"lr_gas":"model/gas_LinearRegression.joblib",
"rfr_gas":"model/gas_RFR.joblib",
"ridge_gas":"model/gas_Ridge.joblib",
"svr_gas":"model/gas_SVR.joblib",
"xgb_gas":"model/gas_XGB.joblib",
"adb_water" : "model/water_ADB.joblib",
"dtr_water": "model/water_DTR.joblib",
"en_water":"model/water_ElasticNet.joblib",
"gp_water":"model/water_GaussianProcessRegressor.joblib",
"kn_water":"model/water_KNeighborsRegressor.joblib",
"lasso_water":"model/water_Lasso.joblib",
"lr_water":"model/water_LinearRegression.joblib",
"rfr_water":"model/water_RFR.joblib",
"ridge_water":"model/water_Ridge.joblib",
"svr_water":"model/water_SVR.joblib",
"xgb_water":"model/water_XGB.joblib",
"adb_tar" : "model/tar_ADB.joblib",
"dtr_tar": "model/tar_DTR.joblib",
"en_tar":"model/tar_ElasticNet.joblib",
"gp_tar":"model/tar_GaussianProcessRegressor.joblib",
"kn_tar":"model/tar_KNeighborsRegressor.joblib",
"lasso_tar":"model/tar_Lasso.joblib",
"lr_tar":"model/tar_LinearRegression.joblib",
"rfr_tar":"model/tar_RFR.joblib",
"ridge_tar":"model/tar_Ridge.joblib",
"svr_tar":"model/tar_SVR.joblib",
"xgb_tar":"model/tar_XGB.joblib"
}
index = ['mae', 'r2', 'result']
columns = ['XGBoost', 'Linear Regression', 'Ridge Regression', 'Gaussian Process Regression',
'ElasticNet Regression', 'K-Nearest Neighbors', 'Support Vector Regression',
'Decision Tree Regression', 'Random Forest Regression', 'AdaBoost Regression']
meirejie_model_list_gas = ['xgb_gas','lr_gas','ridge_gas','gp_gas','en_gas','kn_gas','svr_gas','dtr_gas','rfr_gas','adb_gas']
meirejie_model_list_char = ['xgb_char','lr_char','ridge_char','gp_char','en_char','kn_char','svr_char','dtr_char','rfr_char','adb_char']
meirejie_model_list_water = ['xgb_water','lr_water','ridge_water','gp_water','en_water','kn_water','svr_water','dtr_water','rfr_water','adb_water']
meirejie_model_list_tar = ['xgb_tar','lr_tar','ridge_tar','gp_tar','en_tar','kn_tar','svr_tar','dtr_tar','rfr_tar','adb_tar']
meirejie_gas_mae = [1.93, 3.15, 3.15,1.51, 3.15, 2.15, 2.98, 2.4, 2.42, 3.0]
meirejie_gas_r2 = [0.78, 0.68, 0.68,0.89,0.68, 0.75, 0.65, 0.74, 0.69, 0.62]
meirejie_char_mae = [5.38, 7.0, 7.03, 2.91, 7.03, 3.94,13.5,12.55, 4.8,6.39]
meirejie_char_r2 = [0.09, 0.01, 0.01, 0.8, 0.01, 0.7, 0.1,0.13, 0.16, 0.16]
meirejie_water_mae = [1.74,4.33,4.35,1.47,0.83,4.18,2.51,1.38,1.42]
meirejie_water_r2 = [0.87,0.47,0.46,0.89,0.45,0.98,0.23,0.67,0.89,0.95]
meirejie_tar_mae = [0.93,2.09,2.09,1.31,2.09,1.28,1.51,1.24,0.96,1.49]
meirejie_tar_r2 = [0.78,0.32,0.33,0.6,0.33,0.55,0.57,0.48,0.74,0.6]
meirejie_test_data = {
'tar':'tar_data_test.csv',
'char':'char_data_test.csv',
'water':'water_data_test.csv',
'gas':'gas_data_test.csv',
}
# 煤基碳材料
meijitancailiao_model_dict = {
"adb_ssa" : "model/SSA_ADB.joblib",
"dtr_ssa": "model/SSA_DTR.joblib",
"en_ssa":"model/SSA_ElasticNet.joblib",
"gp_ssa":"model/SSA_GaussianProcessRegressor.joblib",
"kn_ssa":"model/SSA_KNeighborsRegressor.joblib",
"lasso_ssa":"model/SSA_Lasso.joblib",
"lr_ssa":"model/SSA_LinearRegression.joblib",
"rfr_ssa":"model/SSA_RFR.joblib",
"ridge_ssa":"model/SSA_Ridge.joblib",
"svr_ssa":"model/SSA_SVR.joblib",
"xgb_ssa":"model/SSA_XGB.joblib",
"adb_tpv" : "model/TPV_ADB.joblib",
"dtr_tpv": "model/TPV_DTR.joblib",
"en_tpv":"model/TPV_ElasticNet.joblib",
"gp_tpv":"model/TPV_GaussianProcessRegressor.joblib",
"gdbt_tpv":"model/TPV_GDBT.joblib",
"kn_tpv":"model/TPV_KNeighborsRegressor.joblib",
"lasso_tpv":"model/TPV_Lasso.joblib",
"lr_tpv":"model/TPV_LinearRegression.joblib",
"rfr_tpv":"model/TPV_RFR.joblib",
"ridge_tpv":"model/TPV_Ridge.joblib",
"svr_tpv":"model/TPV_SVR.joblib",
"xgb_tpv":"model/TPV_XGB.joblib",
"adb_meitan" : "model/meitan_ADB.joblib",
"dtr_meitan": "model/meitan_DTR.joblib",
"en_meitan":"model/meitan_ElasticNet.joblib",
"gp_meitan":"model/meitan_GaussianProcessRegressor.joblib",
"gdbt_meitan":"model/meitan_GDBT.joblib",
"kn_meitan":"model/meitan_KNeighborsRegressor.joblib",
"lasso_meitan":"model/meitan_Lasso.joblib",
"lr_meitan":"model/meitan_LinearRegression.joblib",
"rfr_meitan":"model/meitan_RFR.joblib",
"ridge_meitan":"model/meitan_Ridge.joblib",
"svr_meitan":"model/meitan_SVR.joblib",
"xgb_meitan":"model/meitan_XGB.joblib",
"adb_meiliqing" : "model/meiliqing_ADB.joblib",
"dtr_meiliqing": "model/meiliqing_DTR.joblib",
"en_meiliqing":"model/meiliqing_ElasticNet.joblib",
"gp_meiliqing":"model/meiliqing_GaussianProcessRegressor.joblib",
"gdbt_meiliqing":"model/meiliqing_GDBT.joblib",
"kn_meiliqing":"model/meiliqing_KNeighborsRegressor.joblib",
"lasso_meiliqing":"model/meiliqing_Lasso.joblib",
"lr_meiliqing":"model/meiliqing_LinearRegression.joblib",
"rfr_meiliqing":"model/meiliqing_RFR.joblib",
"ridge_meiliqing":"model/meiliqing_Ridge.joblib",
"svr_meiliqing":"model/meiliqing_SVR.joblib",
"xgb_meiliqing":"model/meiliqing_XGB.joblib",
}
columns_ssa = ['XGBoost', 'Linear Regression', 'Ridge Regression', 'Gaussian Process Regression',
'ElasticNet Regression', 'K-Nearest Neighbors', 'Support Vector Regression',
'Decision Tree Regression', 'Random Forest Regression', 'AdaBoost Regression']
meijitancailiao_model_list_ssa = ['xgb_ssa','lr_ssa','ridge_ssa','gp_ssa','en_ssa','kn_ssa','svr_ssa','dtr_ssa','rfr_ssa','adb_ssa']
meijitancailiao_ssa_mae = [258, 407,408 ,282 ,411 ,389, 405, 288,193, 330]
meijitancailiao_ssa_r2 = [0.92,0.82,0.82,0.89,0.81,0.82,0.87,0.88,0.95,0.88]
columns_tpv = ['XGBoost', 'Linear Regression', 'Ridge Regression', 'Gaussian Process Regression',
'ElasticNet Regression', 'Gradient Boosting Regression', 'Support Vector Regression',
'Decision Tree Regression', 'Random Forest Regression', 'AdaBoost Regression']
meijitancailiao_model_list_tpv = ['xgb_tpv', 'lr_tpv', 'ridge_tpv', 'gp_tpv', 'en_tpv', 'gdbt_tpv', 'svr_tpv', 'dtr_tpv', 'rfr_tpv', 'adb_tpv']
meijitancailiao_tpv_mae = [0.2, 0.2, 0.2, 0.2, 0.2, 0.23, 0.23, 0.21, 0.16, 0.21]
meijitancailiao_tpv_r2 = [0.81, 0.81, 0.81, 0.8, 0.82, 0.80, 0.78, 0.73, 0.85, 0.84]
columns_meitan = ['XGBoost', 'Linear Regression', 'Ridge Regression', 'Gaussian Process Regression',
'ElasticNet Regression', 'Gradient Boosting Regression', 'Support Vector Regression',
'Decision Tree Regression', 'Random Forest Regression', 'AdaBoost Regression']
meijitancailiao_model_list_meitan = ['xgb_meitan', 'lr_meitan', 'ridge_meitan', 'gp_meitan', 'kn_meitan', 'gdbt_meitan', 'svr_meitan', 'dtr_meitan', 'rfr_meitan', 'adb_meitan']
meijitancailiao_meitan_mae = [8.17, 37.61, 37.66, 13.41, 20.96, 8.03, 14.89, 19.48, 12.53, 15.6]
meijitancailiao_meitan_r2 = [0.96, 0.19, 0.19, 0.91, 0.8, 0.96, 0.88, 0.86, 0.91, 0.91]
columns_meiliqing = ['XGBoost', 'Linear Regression', 'Ridge Regression', 'Gaussian Process Regression',
'ElasticNet Regression', 'Gradient Boosting Regression', 'Support Vector Regression',
'Decision Tree Regression', 'Random Forest Regression', 'AdaBoost Regression']
meijitancailiao_model_list_meiliqing = ['xgb_meiliqing', 'lr_meiliqing', 'ridge_meiliqing', 'gp_meiliqing', 'kn_meiliqing', 'gdbt_meiliqing', 'svr_meiliqing', 'dtr_meiliqing', 'rfr_meiliqing', 'adb_meiliqing']
meijitancailiao_meiliqing_mae = [8.38, 35.02, 35.1, 11.02, 13.58, 7.04, 13.13, 13.13, 11.25, 9.99]
meijitancailiao_meiliqing_r2 = [0.95, 0.33, 0.33, 0.94, 0.91, 0.97, 0.88, 0.89, 0.92, 0.94]
meijitancailiao_test_data = {
'ssa':'test_ssa.csv',
'tpv':'test_tpv.csv',
'meitan':'test_meitan.csv',
'meiliqing':'test_meiliqing.csv',
}
simu_model_dict = {
"adb" : ["model/SSA_ADB.joblib","model/TPV_ADB.joblib"],
"dtr": ["model/SSA_DTR.joblib","model/TPV_DTR.joblib"],
"en":["model/SSA_ElasticNet.joblib","model/TPV_ElasticNet.joblib"],
"gp":["model/SSA_GaussianProcessRegressor.joblib","model/TPV_GaussianProcessRegressor.joblib"],
"kn":["model/SSA_KNeighborsRegressor.joblib","model/TPV_KNeighborsRegressor.joblib"],
"lasso":["model/SSA_Lasso.joblib","model/TPV_Lasso.joblib"],
"lr":["model/SSA_LinearRegression.joblib","model/TPV_LinearRegression.joblib"],
"rfr":["model/SSA_RFR.joblib","model/TPV_RFR.joblib"],
"ridge":["model/SSA_Ridge.joblib","model/TPV_Ridge.joblib"],
"svr":["model/SSA_SVR.joblib","model/TPV_SVR.joblib"],
"xgb":["model/SSA_XGB.joblib","model/TPV_XGB.joblib"],
"gdbt":["model/SSA_GDBT.joblib","model/TPV_GDBT.joblib"]
}