building-agents/PPO_llm.py

473 lines
22 KiB
Python
Raw Permalink Normal View History

2024-11-22 10:03:31 +08:00
import json
import os
import pickle
from copy import deepcopy
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from data_manager import *
from environment import ESSEnv
from tools import optimization_base_result
def load_llm_actions(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
return data
class ActorPPO(nn.Module):
def __init__(self, mid_dim, state_dim, action_dim):
super().__init__()
self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.Hardswish(),
nn.Linear(mid_dim, action_dim))
# the logarithm (log) of standard deviation (std) of action, it is a trainable parameter
self.a_logstd = nn.Parameter(torch.zeros((1, action_dim)) - 0.5, requires_grad=True)
self.sqrt_2pi_log = np.log(np.sqrt(2 * np.pi))
def forward(self, state):
return self.net(state).tanh() # action.tanh() limit the data output of action
def get_action(self, state):
a_avg = self.forward(state) # too big for the action
a_std = self.a_logstd.exp()
noise = torch.randn_like(a_avg)
action = a_avg + noise * a_std
return action, noise
def get_logprob_entropy(self, state, action):
a_avg = self.forward(state)
a_std = self.a_logstd.exp()
delta = ((a_avg - action) / a_std).pow(2) * 0.5
logprob = -(self.a_logstd + self.sqrt_2pi_log + delta).sum(1) # new_logprob
dist_entropy = (logprob.exp() * logprob).mean() # policy entropy
return logprob, dist_entropy
def get_old_logprob(self, _action, noise): # noise = action - a_noise
delta = noise.pow(2) * 0.5
return -(self.a_logstd + self.sqrt_2pi_log + delta).sum(1) # old_logprob
class CriticAdv(nn.Module):
def __init__(self, mid_dim, state_dim, _action_dim):
super().__init__()
self.net = nn.Sequential(nn.Linear(state_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.ReLU(),
nn.Linear(mid_dim, mid_dim), nn.Hardswish(),
nn.Linear(mid_dim, 1)
)
def forward(self, state):
return self.net(state) # Advantage value
class AgentPPO:
def __init__(self):
super().__init__()
self.state = None
self.device = None
self.action_dim = None
self.get_obj_critic = None
self.current_index = 0
self.criterion = torch.nn.SmoothL1Loss()
self.cri = self.cri_target = self.if_use_cri_target = self.cri_optim = self.ClassCri = None
self.act = self.act_target = self.if_use_act_target = self.act_optim = self.ClassAct = None
self.ClassCri = CriticAdv
self.ClassAct = ActorPPO
self.ratio_clip = 0.2 # ratio.clamp(1 - clip, 1 + clip)
self.lambda_entropy = 0.02 # could be 0.01~0.05
self.lambda_gae_adv = 0.98 # could be 0.95~0.99, GAE (Generalized Advantage Estimation. ICLR.2016.)
self.get_reward_sum = None # self.get_reward_sum_gae if if_use_gae else self.get_reward_sum_raw
self.trajectory_list = None
self.llm_actions = load_llm_actions('data/results.json')
def init(self, net_dim, state_dim, action_dim, learning_rate=1e-4, if_use_gae=False, gpu_id=0):
self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu")
self.trajectory_list = list()
# choose whether to use gae or not
self.get_reward_sum = self.get_reward_sum_gae if if_use_gae else self.get_reward_sum_raw
self.cri = self.ClassCri(net_dim, state_dim, action_dim).to(self.device)
self.act = self.ClassAct(net_dim, state_dim, action_dim).to(self.device) if self.ClassAct else self.cri
self.cri_target = deepcopy(self.cri) if self.if_use_cri_target else self.cri
self.act_target = deepcopy(self.act) if self.if_use_act_target else self.act
self.cri_optim = torch.optim.Adam(self.cri.parameters(), learning_rate)
self.act_optim = torch.optim.Adam(self.act.parameters(), learning_rate) if self.ClassAct else self.cri
def select_action(self, state):
states = torch.as_tensor((state,), dtype=torch.float32, device=self.device)
actions, noises = self.act.get_action(states)
return actions[0].detach().cpu().numpy(), noises[0].detach().cpu().numpy()
def explore_env(self, env, target_step, index):
state = self.state # sent state to agent and then agent sent state to method
trajectory_temp = list()
last_done = 0
for i in range(target_step):
action, noise = self.select_action(state)
llm_action = self.llm_actions[index]
action = [0.95 * action[i] + 0.05 * llm_action[i] for i in range(5)]
state, next_state, reward, done, = env.step(np.tanh(action))
trajectory_temp.append((state, reward, done, action, noise))
if done:
state = env.reset()
last_done = i
else:
state = next_state
self.state = state
'''splice list'''
# store 0 trajectory information to list
trajectory_list = self.trajectory_list + trajectory_temp[:last_done + 1]
self.trajectory_list = trajectory_temp[last_done:]
return trajectory_list
def update_net(self, buffer, batch_size, repeat_times, soft_update_tau):
"""put data extract and update network together"""
with torch.no_grad():
buf_len = buffer[0].shape[0]
# decompose buffer data
buf_state, buf_action, buf_noise, buf_reward, buf_mask = [ten.to(self.device) for ten in buffer]
'''get buf_r_sum, buf_logprob'''
bs = 4096
buf_value = [self.cri_target(buf_state[i:i + bs]) for i in range(0, buf_len, bs)]
buf_value = torch.cat(buf_value, dim=0)
buf_logprob = self.act.get_old_logprob(buf_action, buf_noise)
buf_r_sum, buf_advantage = self.get_reward_sum(buf_len, buf_reward, buf_mask, buf_value) # detach()
# normalize advantage
buf_advantage = (buf_advantage - buf_advantage.mean()) / (buf_advantage.std() + 1e-5)
del buf_noise, buffer[:]
'''PPO: Surrogate objective of Trust Region'''
obj_critic = obj_actor = None
for _ in range(int(buf_len / batch_size * repeat_times)):
indices = torch.randint(buf_len, size=(batch_size,), requires_grad=False, device=self.device)
state = buf_state[indices]
action = buf_action[indices]
r_sum = buf_r_sum[indices]
logprob = buf_logprob[indices]
advantage = buf_advantage[indices]
new_logprob, obj_entropy = self.act.get_logprob_entropy(state, action) # it's obj_actor
ratio = (new_logprob - logprob.detach()).exp()
surrogate1 = advantage * ratio
surrogate2 = advantage * ratio.clamp(1 - self.ratio_clip, 1 + self.ratio_clip)
obj_surrogate = -torch.min(surrogate1, surrogate2).mean()
obj_actor = obj_surrogate + obj_entropy * self.lambda_entropy
self.optim_update(self.act_optim, obj_actor) # update actor
value = self.cri(state).squeeze(1) # critic network predicts the reward_sum (Q value) of state
# use smoothloss L1 to evaluate the value loss
# obj_critic = self.criterion(value, r_sum) / (r_sum.std() + 1e-6)
obj_critic = self.criterion(value, r_sum)
self.optim_update(self.cri_optim, obj_critic) # calculate and update the back propogation of value loss
# choose whether to use soft update
self.soft_update(self.cri_target, self.cri, soft_update_tau) if self.cri_target is not self.cri else None
a_std_log = getattr(self.act, 'a_std_log', torch.zeros(1))
return obj_critic.item(), obj_actor.item(), a_std_log.mean().item() # logging_tuple
def get_reward_sum_raw(self, buf_len, buf_reward, buf_mask, buf_value) -> (torch.Tensor, torch.Tensor):
buf_r_sum = torch.empty(buf_len, dtype=torch.float32, device=self.device) # reward sum
pre_r_sum = 0
for i in range(buf_len - 1, -1, -1):
buf_r_sum[i] = buf_reward[i] + buf_mask[i] * pre_r_sum
pre_r_sum = buf_r_sum[i]
buf_advantage = buf_r_sum - (buf_mask * buf_value[:, 0])
return buf_r_sum, buf_advantage
def get_reward_sum_gae(self, buf_len, ten_reward, ten_mask, ten_value) -> (torch.Tensor, torch.Tensor):
buf_r_sum = torch.empty(buf_len, dtype=torch.float32, device=self.device) # old policy value
buf_advantage = torch.empty(buf_len, dtype=torch.float32, device=self.device) # advantage value
pre_r_sum = 0.0
pre_advantage = 0.0 # advantage value of previous step
for i in range(buf_len - 1, -1, -1):
buf_r_sum[i] = ten_reward[i] + ten_mask[i] * pre_r_sum
pre_r_sum = buf_r_sum[i]
buf_advantage[i] = ten_reward[i] + ten_mask[i] * (pre_advantage - ten_value[i]) # fix a bug here
pre_advantage = ten_value[i] + buf_advantage[i] * self.lambda_gae_adv
return buf_r_sum, buf_advantage
@staticmethod
def optim_update(optimizer, objective):
optimizer.zero_grad()
objective.backward()
optimizer.step()
@staticmethod
def soft_update(target_net, current_net, tau):
for tar, cur in zip(target_net.parameters(), current_net.parameters()):
tar.data.copy_(cur.data.__mul__(tau) + tar.data.__mul__(1.0 - tau))
class Arguments:
def __init__(self, agent=None, env=None):
self.agent = agent # Deep Reinforcement Learning algorithm
self.env = env # the environment for training
self.cwd = None # current work directory. None means set automatically
self.visible_gpu = '0' # for example: os.environ['CUDA_VISIBLE_DEVICES'] = '0, 2,'
self.num_threads = 32 # cpu_num for evaluate model, torch.set_num_threads(self.num_threads)
'''Arguments for training'''
self.num_episode = 1000 # to control the train episodes for PPO
self.gamma = 0.995 # discount factor of future rewards
self.learning_rate = 1e-4 # 2e-4 / 6e-5 / 2 ** -4
self.soft_update_tau = 2 ** -8 # 5e-3 / 4e-4 / 2 ** -8 1e-3
self.net_dim = 256 # the network width
self.batch_size = 4096 # num of transitions sampled from replay buffer.
self.repeat_times = 2 ** 5 # collect target_step, then update network
self.target_step = 4096 # repeatedly update network to keep critic's loss small
self.max_memo = self.target_step # capacity of replay buffer
self.if_gae_or_raw = True # GAE for on-policy sparse reward: Generalized Advantage Estimation.
'''Arguments for evaluate'''
self.random_seed = 1234 # initialize random seed in self.init_before_training()
# self.random_seed_list = [1234, 2234, 3234]
self.random_seed_list = [3234]
self.train = True
self.save_network = True
self.test_network = True
self.save_test_data = True
self.compare_with_gurobi = True
self.plot_on = True
def init_before_training(self):
if self.cwd is None:
agent_name = self.agent.__class__.__name__
self.cwd = f'./{agent_name}'
np.random.seed(self.random_seed)
torch.manual_seed(self.random_seed)
torch.set_num_threads(self.num_threads)
torch.set_default_dtype(torch.float32)
os.environ['CUDA_VISIBLE_DEVICES'] = str(self.visible_gpu)
def update_buffer(_trajectory):
_trajectory = list(map(list, zip(*_trajectory))) # 2D-list transpose, here cut the trajectory into 5 parts
ten_state = torch.as_tensor(_trajectory[0], dtype=torch.float32) # tensor state here
ten_reward = torch.as_tensor(_trajectory[1], dtype=torch.float32)
# _trajectory[2] = done, replace done by mask, save memory
ten_mask = (1.0 - torch.as_tensor(_trajectory[2], dtype=torch.float32)) * gamma
ten_action = torch.as_tensor(_trajectory[3], dtype=torch.float32)
ten_noise = torch.as_tensor(_trajectory[4], dtype=torch.float32)
buffer[:] = (ten_state, ten_action, ten_noise, ten_reward, ten_mask) # list store tensors
_steps = ten_reward.shape[0] # how many steps are collected in all trajectories
_r_exp = ten_reward.mean() # the mean reward
return _steps, _r_exp
def test_one_episode(env, act, device, index):
"""to get evaluate information, here record the unbalance of after taking action"""
record_state = []
record_action = []
record_reward = []
record_unbalance = []
record_system_info = [] # [time, price, netload, action, real action, soc, output*4, unbalance, cost]
record_init_info = [] # include month,day,time,intial soc
env.TRAIN = False
state = env.reset()
record_init_info.append([env.month, env.day, env.current_time, env.battery.current_capacity])
print(f'current testing month is {env.month}, day is {env.day},initial_soc is {env.battery.current_capacity}')
llm_actions = load_llm_actions('data/results.json')
for i in range(24):
s_tensor = torch.as_tensor((state,), device=device)
a_tensor = act(s_tensor)
rl_action = a_tensor.detach().cpu().numpy()[0]
llm_action = llm_actions[index]
action = [0.95 * rl_action[i] + 0.05 * llm_action[i] for i in range(5)]
real_action = action
state, next_state, reward, done = env.step(action)
record_system_info.append([state[0], state[1], state[3] + env.wind.current_power, action, real_action,
env.battery.SOC(), env.battery.energy_change, next_state[4], next_state[5],
next_state[6], env.solar.current_power, env.wind.current_power, env.unbalance,
env.operation_cost, reward])
record_state.append(state)
record_action.append(real_action)
record_reward.append(reward)
record_unbalance.append(env.unbalance)
state = next_state
# add information of last step dg1, dh2, dg3, soc, tem, irr
record_system_info[-1][7:12] = [env.final_step_outputs[0], env.final_step_outputs[1], env.final_step_outputs[2],
env.final_step_outputs[4], env.final_step_outputs[5]]
record_system_info[-1][5] = env.final_step_outputs[3]
record = {'init_info': record_init_info, 'system_info': record_system_info, 'state': record_state,
'action': record_action, 'reward': record_reward, 'unbalance': record_unbalance}
return record
def test_llm(env, index):
record_system_info = []
record_init_info = []
env.TRAIN = False
record_init_info.append([env.month, env.day, env.current_time, env.battery.current_capacity])
llm_actions = load_llm_actions('data/results.json')
cumulative_reward = 0
for i in range(24):
action = llm_actions[index + i]
real_action = action
state, next_state, reward, done = env.step(action)
record_system_info.append([state[0], state[1], state[3] + env.wind.current_power, action, real_action,
env.battery.SOC(), env.battery.energy_change, next_state[4], next_state[5],
next_state[6], env.solar.current_power, env.wind.current_power, env.unbalance,
env.operation_cost, reward])
cumulative_reward += reward
if done:
break
record_system_info[-1][7:12] = [env.final_step_outputs[0], env.final_step_outputs[1], env.final_step_outputs[2],
env.final_step_outputs[4], env.final_step_outputs[5]]
record_system_info[-1][5] = env.final_step_outputs[3]
record = {'system_info': record_system_info, 'cumulative_reward': cumulative_reward}
return record
def get_episode_return(env, act, device, index):
episode_reward = 0.0
episode_unbalance = 0.0
state = env.reset()
llm_actions = load_llm_actions('data/results.json')
for i in range(24):
s_tensor = torch.as_tensor((state,), device=device)
a_tensor = act(s_tensor)
rl_action = a_tensor.detach().cpu().numpy()[0]
llm_action = llm_actions[index]
action = [0.95 * rl_action[i] + 0.05 * llm_action[i] for i in range(5)]
state, next_state, reward, done, = env.step(action)
state = next_state
episode_reward += reward
episode_unbalance += env.real_unbalance
if done:
break
return episode_reward, episode_unbalance
if __name__ == '__main__':
args = Arguments()
reward_record = {'episode': [], 'steps': [], 'mean_episode_reward': [], 'unbalance': []}
loss_record = {'episode': [], 'steps': [], 'critic_loss': [], 'actor_loss': [], 'entropy_loss': []}
args.visible_gpu = '0,1'
for seed in args.random_seed_list:
args.random_seed = seed
args.agent = AgentPPO()
args.agent.cri_target = True
agent_name = f'{args.agent.__class__.__name__}'
args.env = ESSEnv()
args.init_before_training()
'''init agent and environment'''
agent = args.agent
env = args.env
agent.init(args.net_dim, env.state_space.shape[0], env.action_space.shape[0], args.learning_rate,
args.if_gae_or_raw)
cwd = args.cwd
gamma = args.gamma
batch_size = args.batch_size # how much data should be used to update net
target_step = args.target_step # how many steps of one episode should stop
repeat_times = args.repeat_times # how many times should update for one batch size data
soft_update_tau = args.soft_update_tau
agent.state = env.reset()
'''init buffer'''
buffer = list()
'''init training parameters'''
num_episode = args.num_episode
args.train = False
args.save_network = False
# args.test_network = False
# args.save_test_data = False
# args.compare_with_gurobi = False
# args.plot_on = False
if args.train:
for i_episode in range(num_episode):
with torch.no_grad():
index = (sum(Constant.MONTHS_LEN[:env.month - 1]) + env.day - 1) * 24 + env.current_time
trajectory_list = agent.explore_env(env, target_step, index)
steps, r_exp = update_buffer(trajectory_list)
critic_loss, actor_loss, entropy_loss = agent.update_net(buffer, batch_size, repeat_times,
soft_update_tau)
loss_record['critic_loss'].append(critic_loss)
loss_record['actor_loss'].append(actor_loss)
loss_record['entropy_loss'].append(entropy_loss)
with torch.no_grad():
episode_reward, episode_unbalance = get_episode_return(env, agent.act, agent.device, index)
reward_record['mean_episode_reward'].append(episode_reward)
reward_record['unbalance'].append(episode_unbalance)
print(f'epsiode: {i_episode}, reward: {episode_reward}, unbalance: {episode_unbalance}')
act_save_path = f'{args.cwd}/actor_llm_1015.pth'
loss_record_path = f'{args.cwd}/loss_llm_1015.pkl'
reward_record_path = f'{args.cwd}/reward_llm_1015.pkl'
if args.save_network:
with open(loss_record_path, 'wb') as tf:
pickle.dump(loss_record, tf)
with open(reward_record_path, 'wb') as tf:
pickle.dump(reward_record, tf)
torch.save(agent.act.state_dict(), act_save_path)
print('actor parameters have been saved')
if args.test_network:
args.cwd = agent_name
agent.act.load_state_dict(torch.load(act_save_path))
print('parameters have been reload and test')
index = (sum(Constant.MONTHS_LEN[:env.month - 1]) + env.day - 1) * 24 + env.current_time
record = test_one_episode(env, agent.act, agent.device, index)
# re = test_llm(env, index)
rl_data = pd.DataFrame(record['system_info'])
# llm_data = pd.DataFrame(re['system_info'])
rl_data.columns = ['time_step', 'price', 'netload', 'action', 'real_action', 'soc', 'battery',
'gen1', 'gen2', 'gen3', 'pv', 'wind', 'unbalance', 'operation_cost', 'reward']
if args.save_test_data:
test_data_save_path = f'{args.cwd}/test_llm_1015.pkl'
# test_llm_save_path = f'{args.cwd}/test_only_llm_1015.pkl'
with open(test_data_save_path, 'wb') as tf:
pickle.dump(record, tf)
# with open(test_llm_save_path, 'wb') as f:
# pickle.dump(re, f)
'''compare with gurobi data and results'''
if args.compare_with_gurobi:
month = record['init_info'][0][0]
day = record['init_info'][0][1]
initial_soc = record['init_info'][0][3]
base_result = optimization_base_result(env, month, day, initial_soc)
if args.plot_on:
from plotDRL import *
plot_args = PlotArgs()
plot_args.feature_change = 'llm_1015'
args.cwd = agent_name
plot_dir = make_dir(args.cwd, plot_args.feature_change)
# plot_optimization_result(base_result, plot_dir)
# plot_evaluation_information(args.cwd + '/' + 'test_llm_1015.pkl', plot_dir)
plot_soc(base_result, args.cwd + '/' + 'test_llm_1015.pkl', plot_dir)
plot_energy(base_result, args.cwd + '/' + 'test_llm_1015.pkl', plot_dir)
'''compare the different cost get from gurobi and PPO'''
print('rl_cost:', sum(rl_data['operation_cost']))
print('gurobi_cost:', sum(base_result['step_cost']))
print('ration:', sum(rl_data['operation_cost']) / sum(base_result['step_cost']))