building-agents/environment.py

165 lines
7.8 KiB
Python
Raw Permalink Normal View History

2024-11-22 10:03:31 +08:00
import gym
import pandas as pd
from data_manager import *
from module import *
from parameters import *
class ESSEnv(gym.Env):
def __init__(self, **kwargs):
super(ESSEnv, self).__init__()
self.excess = None
self.shedding = None
self.unbalance = None
self.real_unbalance = None
self.operation_cost = None
self.current_output = None
self.final_step_outputs = None
self.data_manager = DataManager()
self._load_year_data()
self.month = 1
self.day = 1
self.TRAIN = True
self.current_time = None
self.episode_length = 24
self.penalty_coefficient = 50 # 约束惩罚系数
self.sell_coefficient = 0.1 # 售出利润系数
self.battery_parameters = kwargs.get('battery_parameters', battery_parameters)
self.dg_parameters = kwargs.get('dg_parameters', dg_parameters)
self.solar_parameters = kwargs.get('solar_parameters', solar_parameters)
self.wind_parameters = kwargs.get('wind_parameters', wind_parameters)
self.grid = Grid()
self.battery = Battery(self.battery_parameters)
self.dg1 = DG(self.dg_parameters['gen_1'])
self.dg2 = DG(self.dg_parameters['gen_2'])
self.dg3 = DG(self.dg_parameters['gen_3'])
self.solar = Solar(self.solar_parameters)
self.wind = Wind(self.wind_parameters)
self.action_space = gym.spaces.Box(low=-1, high=1, shape=(5,), dtype=np.float32) # 已增加调节电压动作
self.state_space = gym.spaces.Box(low=0, high=1, shape=(10,), dtype=np.float32)
def reset(self, *args):
self.month = np.random.randint(1, 13) # choose 12 month
if self.TRAIN:
self.day = np.random.randint(1, 20)
else:
self.day = np.random.randint(20, Constant.MONTHS_LEN[self.month - 1])
self.current_time = 0
self.battery.reset()
self.dg1.reset()
self.dg2.reset()
self.dg3.reset()
self.solar.reset()
self.wind.reset()
return self._build_state()
def _build_state(self):
soc = self.battery.SOC()
dg1_output = self.dg1.current_output
dg2_output = self.dg2.current_output
dg3_output = self.dg3.current_output
time_step = self.current_time
price = self.data_manager.get_price_data(self.month, self.day, self.current_time)
houseload = self.data_manager.get_load_cons_data(self.month, self.day, self.current_time)
temperature = self.data_manager.get_temperature_data(self.month, self.day, self.current_time)
irradiance = self.data_manager.get_irradiance_data(self.month, self.day, self.current_time)
windspeed = self.data_manager.get_wind_data(self.month, self.day, self.current_time)
wind_gen = self.wind.step(windspeed)
netload = houseload - wind_gen
obs = np.concatenate((np.float32(time_step), np.float32(price), np.float32(soc), np.float32(netload),
np.float32(dg1_output), np.float32(dg2_output), np.float32(dg3_output),
np.float32(temperature), np.float32(irradiance), np.float32(windspeed)), axis=None)
return obs
def step(self, action): # state transition: current_obs->take_action->get_reward->get_finish->next_obs
# 在每个组件中添加动作
current_obs = self._build_state()
temperature = current_obs[7]
irradiance = current_obs[8]
self.wind.current_power = current_obs[9]
self.battery.step(action[0]) # 执行状态转换,电池当前容量也改变
self.dg1.step(action[1])
self.dg2.step(action[2])
self.dg3.step(action[3])
self.solar.step(temperature, irradiance, action[4])
self.current_output = np.array((self.dg1.current_output, self.dg2.current_output, self.dg3.current_output,
-self.battery.energy_change, self.solar.current_power, self.wind.current_power))
actual_production = sum(self.current_output)
price = current_obs[1]
netload = current_obs[3] - self.solar.output_change
unbalance = actual_production - netload
# reward = 0.0
excess_penalty = 0
deficient_penalty = 0
sell_benefit, buy_cost = 0, 0
self.excess, self.shedding = 0, 0
if unbalance >= 0: # 过剩
if unbalance <= self.grid.exchange_ability:
sell_benefit = self.grid.get_cost(price, unbalance) * self.sell_coefficient
else:
sell_benefit = self.grid.get_cost(price, self.grid.exchange_ability) * self.sell_coefficient
# real unbalance超电网限值
self.excess = unbalance - self.grid.exchange_ability
excess_penalty = self.excess * self.penalty_coefficient
else: # unbalance <0, 缺少惩罚
if abs(unbalance) <= self.grid.exchange_ability:
buy_cost = self.grid.get_cost(price, abs(unbalance))
else:
buy_cost = self.grid.get_cost(price, self.grid.exchange_ability)
self.shedding = abs(unbalance) - self.grid.exchange_ability
deficient_penalty = self.shedding * self.penalty_coefficient
battery_cost = self.battery.get_cost(self.battery.energy_change)
dg1_cost = self.dg1.get_cost(self.dg1.current_output)
dg2_cost = self.dg2.get_cost(self.dg2.current_output)
dg3_cost = self.dg3.get_cost(self.dg3.current_output)
solar_cost = self.solar.get_cost(self.solar.current_power)
wind_cost = self.wind.gen_cost(self.wind.current_power)
self.operation_cost = (battery_cost + dg1_cost + dg2_cost + dg3_cost + solar_cost + wind_cost
+ excess_penalty + deficient_penalty - sell_benefit + buy_cost)
reward = - self.operation_cost / 1e3
self.unbalance = unbalance
self.real_unbalance = self.shedding + self.excess
final_step_outputs = [self.dg1.current_output, self.dg2.current_output, self.dg3.current_output,
self.battery.current_capacity, self.solar.current_power, self.wind.current_power]
self.current_time += 1
finish = (self.current_time == self.episode_length)
if finish:
self.final_step_outputs = final_step_outputs
self.current_time = 0
next_obs = self.reset()
else:
next_obs = self._build_state()
return current_obs, next_obs, float(reward), finish
def _load_year_data(self):
price_df = pd.read_csv('data/prices.csv', sep=',')
load_df = pd.read_csv('data/houseload.csv', sep=',')
irradiance_df = pd.read_csv('data/irradiance.csv', sep=',')
temperature_df = pd.read_csv('data/temper.csv', sep=',')
wind_df = pd.read_csv('data/wind.csv', sep=',')
price = price_df['price'].to_numpy(dtype=float)
load = load_df['houseload'].to_numpy(dtype=float)
irradiance = irradiance_df['irradiance'].to_numpy(dtype=float)
temperature = temperature_df['t2m'].to_numpy(dtype=float)
wind = wind_df['wind_speed'].to_numpy(dtype=float)
'''重新设计价格和发电量以及需求的大小'''
def process_elements(elements, transform_function, add_function):
for element in elements:
transformed_element = transform_function(element)
add_function(transformed_element)
process_elements(price, lambda x: max(x, 0.5), self.data_manager.add_price_element)
process_elements(load, lambda x: x * 3, self.data_manager.add_load_element)
process_elements(irradiance, lambda x: x, self.data_manager.add_irradiance_element)
process_elements(temperature, lambda x: x, self.data_manager.add_temperature_element)
process_elements(wind, lambda x: x, self.data_manager.add_wind_element)